Search results for: neural system.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9175

Search results for: neural system.

8515 Classification of Initial Stripe Height Patterns using Radial Basis Function Neural Network for Proportional Gain Prediction

Authors: Prasit Wonglersak, Prakarnkiat Youngkong, Ittipon Cheowanish

Abstract:

This paper aims to improve a fine lapping process of hard disk drive (HDD) lapping machines by removing materials from each slider together with controlling the strip height (SH) variation to minimum value. The standard deviation is the key parameter to evaluate the strip height variation, hence it is minimized. In this paper, a design of experiment (DOE) with factorial analysis by twoway analysis of variance (ANOVA) is adopted to obtain a statistically information. The statistics results reveal that initial stripe height patterns affect the final SH variation. Therefore, initial SH classification using a radial basis function neural network is implemented to achieve the proportional gain prediction.

Keywords: Stripe height variation, Two-way analysis ofvariance (ANOVA), Radial basis function neural network, Proportional gain prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
8514 Evolution of Quality Function Deployment (QFD) via Fuzzy Concepts and Neural Networks

Authors: M. Haghighi, M. Zowghi, B. Zohouri

Abstract:

Quality Function Deployment (QFD) is an expounded, multi-step planning method for delivering commodity, services, and processes to customers, both external and internal to an organization. It is a way to convert between the diverse customer languages expressing demands (Voice of the Customer), and the organization-s languages expressing results that sate those demands. The policy is to establish one or more matrices that inter-relate producer and consumer reciprocal expectations. Due to its visual presence is called the “House of Quality" (HOQ). In this paper, we assumed HOQ in multi attribute decision making (MADM) pattern and through a proposed MADM method, rank technical specifications. Thereafter compute satisfaction degree of customer requirements and for it, we apply vagueness and uncertainty conditions in decision making by fuzzy set theory. This approach would propound supervised neural network (perceptron) for MADM problem solving.

Keywords: MADM, fuzzy set, QFD, supervised neural network (perceptron).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
8513 Improving the Performance of Back-Propagation Training Algorithm by Using ANN

Authors: Vishnu Pratap Singh Kirar

Abstract:

Artificial Neural Network (ANN) can be trained using back propagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a twoterm algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.

Keywords: Neural Network, Backpropagation, Local Minima, Fast Convergence Rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3559
8512 Estimating Shortest Circuit Path Length Complexity

Authors: Azam Beg, P. W. Chandana Prasad, S.M.N.A Senenayake

Abstract:

When binary decision diagrams are formed from uniformly distributed Monte Carlo data for a large number of variables, the complexity of the decision diagrams exhibits a predictable relationship to the number of variables and minterms. In the present work, a neural network model has been used to analyze the pattern of shortest path length for larger number of Monte Carlo data points. The neural model shows a strong descriptive power for the ISCAS benchmark data with an RMS error of 0.102 for the shortest path length complexity. Therefore, the model can be considered as a method of predicting path length complexities; this is expected to lead to minimum time complexity of very large-scale integrated circuitries and related computer-aided design tools that use binary decision diagrams.

Keywords: Monte Carlo circuit simulation data, binary decision diagrams, neural network modeling, shortest path length estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
8511 Bi-lingual Handwritten Character and Numeral Recognition using Multi-Dimensional Recurrent Neural Networks (MDRNN)

Authors: Kandarpa Kumar Sarma

Abstract:

The key to the continued success of ANN depends, considerably, on the use of hybrid structures implemented on cooperative frame-works. Hybrid architectures provide the ability to the ANN to validate heterogeneous learning paradigms. This work describes the implementation of a set of Distributed and Hybrid ANN models for Character Recognition applied to Anglo-Assamese scripts. The objective is to describe the effectiveness of Hybrid ANN setups as innovative means of neural learning for an application like multilingual handwritten character and numeral recognition.

Keywords: Assamese, Feature, Recurrent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1532
8510 Estimating Saturated Hydraulic Conductivity from Soil Physical Properties using Neural Networks Model

Authors: B. Ghanbarian-Alavijeh, A.M. Liaghat, S. Sohrabi

Abstract:

Saturated hydraulic conductivity is one of the soil hydraulic properties which is widely used in environmental studies especially subsurface ground water. Since, its direct measurement is time consuming and therefore costly, indirect methods such as pedotransfer functions have been developed based on multiple linear regression equations and neural networks model in order to estimate saturated hydraulic conductivity from readily available soil properties e.g. sand, silt, and clay contents, bulk density, and organic matter. The objective of this study was to develop neural networks (NNs) model to estimate saturated hydraulic conductivity from available parameters such as sand and clay contents, bulk density, van Genuchten retention model parameters (i.e. r θ , α , and n) as well as effective porosity. We used two methods to calculate effective porosity: : (1) eff s FC φ =θ -θ , and (2) inf φ =θ -θ eff s , in which s θ is saturated water content, FC θ is water content retained at -33 kPa matric potential, and inf θ is water content at the inflection point. Total of 311 soil samples from the UNSODA database was divided into three groups as 187 for the training, 62 for the validation (to avoid over training), and 62 for the test of NNs model. A commercial neural network toolbox of MATLAB software with a multi-layer perceptron model and back propagation algorithm were used for the training procedure. The statistical parameters such as correlation coefficient (R2), and mean square error (MSE) were also used to evaluate the developed NNs model. The best number of neurons in the middle layer of NNs model for methods (1) and (2) were calculated 44 and 6, respectively. The R2 and MSE values of the test phase were determined for method (1), 0.94 and 0.0016, and for method (2), 0.98 and 0.00065, respectively, which shows that method (2) estimates saturated hydraulic conductivity better than method (1).

Keywords: Neural network, Saturated hydraulic conductivity, Soil physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557
8509 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water

Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri

Abstract:

In this research, the capability of neural networks in  modeling and learning complicated and nonlinear relations has been  used to develop a model for the prediction of changes in the diameter  of bubbles in pool boiling distilled water. The input parameters used  in the development of this network include element temperature, heat  flux, and retention time of bubbles. The test data obtained from the  experiment of the pool boiling of distilled water, and the  measurement of the bubbles form on the cylindrical element. The  model was developed based on training algorithm, which is  typologically of back-propagation type. Considering the correlation  coefficient obtained from this model is 0.9633. This shows that this  model can be trusted for the simulation and modeling of the size of  bubble and thermal transfer of boiling.

Keywords: Bubble Diameter, Heat Flux, Neural Network, Training Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
8508 Metaheuristic Algorithms for Decoding Binary Linear Codes

Authors: Hassan Berbia, Faissal Elbouanani, Rahal Romadi, Mostafa Belkasmi

Abstract:

This paper introduces two decoders for binary linear codes based on Metaheuristics. The first one uses a genetic algorithm and the second is based on a combination genetic algorithm with a feed forward neural network. The decoder based on the genetic algorithms (DAG) applied to BCH and convolutional codes give good performances compared to Chase-2 and Viterbi algorithm respectively and reach the performances of the OSD-3 for some Residue Quadratic (RQ) codes. This algorithm is less complex for linear block codes of large block length; furthermore their performances can be improved by tuning the decoder-s parameters, in particular the number of individuals by population and the number of generations. In the second algorithm, the search space, in contrast to DAG which was limited to the code word space, now covers the whole binary vector space. It tries to elude a great number of coding operations by using a neural network. This reduces greatly the complexity of the decoder while maintaining comparable performances.

Keywords: Block code, decoding, methaheuristic, genetic algorithm, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
8507 Affine Radial Basis Function Neural Networks for the Robust Control of Hyperbolic Distributed Parameter Systems

Authors: Eleni Aggelogiannaki, Haralambos Sarimveis

Abstract:

In this work, a radial basis function (RBF) neural network is developed for the identification of hyperbolic distributed parameter systems (DPSs). This empirical model is based only on process input-output data and used for the estimation of the controlled variables at specific locations, without the need of online solution of partial differential equations (PDEs). The nonlinear model that is obtained is suitably transformed to a nonlinear state space formulation that also takes into account the model mismatch. A stable robust control law is implemented for the attenuation of external disturbances. The proposed identification and control methodology is applied on a long duct, a common component of thermal systems, for a flow based control of temperature distribution. The closed loop performance is significantly improved in comparison to existing control methodologies.

Keywords: Hyperbolic Distributed Parameter Systems, Radial Basis Function Neural Networks, H∞ control, Thermal systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
8506 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle

Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores, Valentin Soloiu

Abstract:

This work describes a system that uses electromyography (EMG) signals obtained from muscle sensors and an Artificial Neural Network (ANN) for signal classification and pattern recognition that is used to control a small unmanned aerial vehicle using specific arm movements. The main objective of this endeavor is the development of an intelligent interface that allows the user to control the flight of a drone beyond direct manual control. The sensor used were the MyoWare Muscle sensor which contains two EMG electrodes used to collect signals from the posterior (extensor) and anterior (flexor) forearm, and the bicep. The collection of the raw signals from each sensor was performed using an Arduino Uno. Data processing algorithms were developed with the purpose of classifying the signals generated by the arm’s muscles when performing specific movements, namely: flexing, resting, and motion of the arm. With these arm motions roll control of the drone was achieved. MATLAB software was utilized to condition the signals and prepare them for the classification. To generate the input vector for the ANN and perform the classification, the root mean square and the standard deviation were processed for the signals from each electrode. The neuromuscular information was trained using an ANN with a single 10 neurons hidden layer to categorize the four targets. The result of the classification shows that an accuracy of 97.5% was obtained. Afterwards, classification results are used to generate the appropriate control signals from the computer to the drone through a Wi-Fi network connection. These procedures were successfully tested, where the drone responded successfully in real time to the commanded inputs.

Keywords: Biosensors, electromyography, Artificial Neural Network, Arduino, drone flight control, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 556
8505 Integrating Fast Karnough Map and Modular Neural Networks for Simplification and Realization of Complex Boolean Functions

Authors: Hazem M. El-Bakry

Abstract:

In this paper a new fast simplification method is presented. Such method realizes Karnough map with large number of variables. In order to accelerate the operation of the proposed method, a new approach for fast detection of group of ones is presented. Such approach implemented in the frequency domain. The search operation relies on performing cross correlation in the frequency domain rather than time one. It is proved mathematically and practically that the number of computation steps required for the presented method is less than that needed by conventional cross correlation. Simulation results using MATLAB confirm the theoretical computations. Furthermore, a powerful solution for realization of complex functions is given. The simplified functions are implemented by using a new desigen for neural networks. Neural networks are used because they are fault tolerance and as a result they can recognize signals even with noise or distortion. This is very useful for logic functions used in data and computer communications. Moreover, the implemented functions are realized with minimum amount of components. This is done by using modular neural nets (MNNs) that divide the input space into several homogenous regions. Such approach is applied to implement XOR function, 16 logic functions on one bit level, and 2-bit digital multiplier. Compared to previous non- modular designs, a clear reduction in the order of computations and hardware requirements is achieved.

Keywords: Boolean Functions, Simplification, KarnoughMap, Implementation of Logic Functions, Modular NeuralNetworks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
8504 A Survey of Sentiment Analysis Based on Deep Learning

Authors: Pingping Lin, Xudong Luo, Yifan Fan

Abstract:

Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.

Keywords: Natural language processing, sentiment analysis, document analysis, multimodal sentiment analysis, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
8503 Web Pages Aesthetic Evaluation Using Low-Level Visual Features

Authors: Maryam Mirdehghani, S. Amirhassan Monadjemi

Abstract:

Web sites are rapidly becoming the preferred media choice for our daily works such as information search, company presentation, shopping, and so on. At the same time, we live in a period where visual appearances play an increasingly important role in our daily life. In spite of designers- effort to develop a web site which be both user-friendly and attractive, it would be difficult to ensure the outcome-s aesthetic quality, since the visual appearance is a matter of an individual self perception and opinion. In this study, it is attempted to develop an automatic system for web pages aesthetic evaluation which are the building blocks of web sites. Based on the image processing techniques and artificial neural networks, the proposed method would be able to categorize the input web page according to its visual appearance and aesthetic quality. The employed features are multiscale/multidirectional textural and perceptual color properties of the web pages, fed to perceptron ANN which has been trained as the evaluator. The method is tested using university web sites and the results suggested that it would perform well in the web page aesthetic evaluation tasks with around 90% correct categorization.

Keywords: Web Page Design, Web Page Aesthetic, Color Spaces, Texture, Neural Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
8502 Existence and Exponential Stability of Almost Periodic Solution for Cohen-Grossberg SICNNs with Impulses

Authors: Meng Hu, Lili Wang

Abstract:

In this paper, based on the estimation of the Cauchy matrix of linear impulsive differential equations, by using Banach fixed point theorem and Gronwall-Bellman-s inequality, some sufficient conditions are obtained for the existence and exponential stability of almost periodic solution for Cohen-Grossberg shunting inhibitory cellular neural networks (SICNNs) with continuously distributed delays and impulses. An example is given to illustrate the main results.

Keywords: Almost periodic solution, exponential stability, neural networks, impulses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14332
8501 A Self Supervised Bi-directional Neural Network (BDSONN) Architecture for Object Extraction Guided by Beta Activation Function and Adaptive Fuzzy Context Sensitive Thresholding

Authors: Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik, Prashanta Kumar Nandi

Abstract:

A multilayer self organizing neural neural network (MLSONN) architecture for binary object extraction, guided by a beta activation function and characterized by backpropagation of errors estimated from the linear indices of fuzziness of the network output states, is discussed. Since the MLSONN architecture is designed to operate in a single point fixed/uniform thresholding scenario, it does not take into cognizance the heterogeneity of image information in the extraction process. The performance of the MLSONN architecture with representative values of the threshold parameters of the beta activation function employed is also studied. A three layer bidirectional self organizing neural network (BDSONN) architecture comprising fully connected neurons, for the extraction of objects from a noisy background and capable of incorporating the underlying image context heterogeneity through variable and adaptive thresholding, is proposed in this article. The input layer of the network architecture represents the fuzzy membership information of the image scene to be extracted. The second layer (the intermediate layer) and the final layer (the output layer) of the network architecture deal with the self supervised object extraction task by bi-directional propagation of the network states. Each layer except the output layer is connected to the next layer following a neighborhood based topology. The output layer neurons are in turn, connected to the intermediate layer following similar topology, thus forming a counter-propagating architecture with the intermediate layer. The novelty of the proposed architecture is that the assignment/updating of the inter-layer connection weights are done using the relative fuzzy membership values at the constituent neurons in the different network layers. Another interesting feature of the network lies in the fact that the processing capabilities of the intermediate and the output layer neurons are guided by a beta activation function, which uses image context sensitive adaptive thresholding arising out of the fuzzy cardinality estimates of the different network neighborhood fuzzy subsets, rather than resorting to fixed and single point thresholding. An application of the proposed architecture for object extraction is demonstrated using a synthetic and a real life image. The extraction efficiency of the proposed network architecture is evaluated by a proposed system transfer index characteristic of the network.

Keywords: Beta activation function, fuzzy cardinality, multilayer self organizing neural network, object extraction,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
8500 Functional Near Infrared Spectroscope for Cognition Brain Tasks by Wavelets Analysis and Neural Networks

Authors: Truong Quang Dang Khoa, Masahiro Nakagawa

Abstract:

Brain Computer Interface (BCI) has been recently increased in research. Functional Near Infrared Spectroscope (fNIRs) is one the latest technologies which utilize light in the near-infrared range to determine brain activities. Because near infrared technology allows design of safe, portable, wearable, non-invasive and wireless qualities monitoring systems, fNIRs monitoring of brain hemodynamics can be value in helping to understand brain tasks. In this paper, we present results of fNIRs signal analysis indicating that there exist distinct patterns of hemodynamic responses which recognize brain tasks toward developing a BCI. We applied two different mathematics tools separately, Wavelets analysis for preprocessing as signal filters and feature extractions and Neural networks for cognition brain tasks as a classification module. We also discuss and compare with other methods while our proposals perform better with an average accuracy of 99.9% for classification.

Keywords: functional near infrared spectroscope (fNIRs), braincomputer interface (BCI), wavelets, neural networks, brain activity, neuroimaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037
8499 Performance Evaluation of a Neural Network based General Purpose Space Vector Modulator

Authors: A.Muthuramalingam, S.Himavathi

Abstract:

Space Vector Modulation (SVM) is an optimum Pulse Width Modulation (PWM) technique for an inverter used in a variable frequency drive applications. It is computationally rigorous and hence limits the inverter switching frequency. Increase in switching frequency can be achieved using Neural Network (NN) based SVM, implemented on application specific chips. This paper proposes a neural network based SVM technique for a Voltage Source Inverter (VSI). The network proposed is independent of switching frequency. Different architectures are investigated keeping the total number of neurons constant. The performance of the inverter is compared for various switching frequencies for different architectures of NN based SVM. From the results obtained, the network with minimum resource and appropriate word length is identified. The bit precision required for this application is identified. The network with 8-bit precision is implemented in the IC XCV 400 and the results are presented. The performance of NN based general purpose SVM with higher bit precision is discussed.

Keywords: NN based SVM, FPGA Implementation, LayerMultiplexing, NN structure and Resource Reduction, PerformanceEvaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
8498 Machine Learning Methods for Flood Hazard Mapping

Authors: S. Zappacosta, C. Bove, M. Carmela Marinelli, P. di Lauro, K. Spasenovic, L. Ostano, G. Aiello, M. Pietrosanto

Abstract:

This paper proposes a neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The classification capability was compared with the flood hazard mapping River Basin Plans (Piani Assetto Idrogeologico, acronimed as PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), encoding four different increasing flood hazard levels. The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.

Keywords: flood modeling, hazard map, neural networks, hydrogeological risk, flood risk assessment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
8497 Phytopathology Prediction in Dry Soil Using Artificial Neural Networks Modeling

Authors: F. Allag, S. Bouharati, M. Belmahdi, R. Zegadi

Abstract:

The rapid expansion of deserts in recent decades as a result of human actions combined with climatic changes has highlighted the necessity to understand biological processes in arid environments. Whereas physical processes and the biology of flora and fauna have been relatively well studied in marginally used arid areas, knowledge of desert soil micro-organisms remains fragmentary. The objective of this study is to conduct a diversity analysis of bacterial communities in unvegetated arid soils. Several biological phenomena in hot deserts related to microbial populations and the potential use of micro-organisms for restoring hot desert environments. Dry land ecosystems have a highly heterogeneous distribution of resources, with greater nutrient concentrations and microbial densities occurring in vegetated than in bare soils. In this work, we found it useful to use techniques of artificial intelligence in their treatment especially artificial neural networks (ANN). The use of the ANN model, demonstrate his capability for addressing the complex problems of uncertainty data.

Keywords: Desert soil, Climatic changes, Bacteria, Vegetation, Artificial neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
8496 Multi-Label Hierarchical Classification for Protein Function Prediction

Authors: Helyane B. Borges, Julio Cesar Nievola

Abstract:

Hierarchical classification is a problem with applications in many areas as protein function prediction where the dates are hierarchically structured. Therefore, it is necessary the development of algorithms able to induce hierarchical classification models. This paper presents experimenters using the algorithm for hierarchical classification called Multi-label Hierarchical Classification using a Competitive Neural Network (MHC-CNN). It was tested in ten datasets the Gene Ontology (GO) Cellular Component Domain. The results are compared with the Clus-HMC and Clus-HSC using the hF-Measure.

Keywords: Hierarchical Classification, Competitive Neural Network, Global Classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380
8495 The Use of Artificial Neural Network in Option Pricing: The Case of S and P 100 Index Options

Authors: Zeynep İltüzer Samur, Gül Tekin Temur

Abstract:

Due to the increasing and varying risks that economic units face with, derivative instruments gain substantial importance, and trading volumes of derivatives have reached very significant level. Parallel with these high trading volumes, researchers have developed many different models. Some are parametric, some are nonparametric. In this study, the aim is to analyse the success of artificial neural network in pricing of options with S&P 100 index options data. Generally, the previous studies cover the data of European type call options. This study includes not only European call option but also American call and put options and European put options. Three data sets are used to perform three different ANN models. One only includes data that are directly observed from the economic environment, i.e. strike price, spot price, interest rate, maturity, type of the contract. The others include an extra input that is not an observable data but a parameter, i.e. volatility. With these detail data, the performance of ANN in put/call dimension, American/European dimension, moneyness dimension is analyzed and whether the contribution of the volatility in neural network analysis make improvement in prediction performance or not is examined. The most striking results revealed by the study is that ANN shows better performance when pricing call options compared to put options; and the use of volatility parameter as an input does not improve the performance.

Keywords: Option Pricing, Neural Network, S&P 100 Index, American/European options

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3085
8494 Quality Classification and Monitoring Using Adaptive Metric Distance and Neural Networks: Application in Pickling Process

Authors: S. Bouhouche, M. Lahreche, S. Ziani, J. Bast

Abstract:

Modern manufacturing facilities are large scale, highly complex, and operate with large number of variables under closed loop control. Early and accurate fault detection and diagnosis for these plants can minimise down time, increase the safety of plant operations, and reduce manufacturing costs. Fault detection and isolation is more complex particularly in the case of the faulty analog control systems. Analog control systems are not equipped with monitoring function where the process parameters are continually visualised. In this situation, It is very difficult to find the relationship between the fault importance and its consequences on the product failure. We consider in this paper an approach to fault detection and analysis of its effect on the production quality using an adaptive centring and scaling in the pickling process in cold rolling. The fault appeared on one of the power unit driving a rotary machine, this machine can not track a reference speed given by another machine. The length of metal loop is then in continuous oscillation, this affects the product quality. Using a computerised data acquisition system, the main machine parameters have been monitored. The fault has been detected and isolated on basis of analysis of monitored data. Normal and faulty situation have been obtained by an artificial neural network (ANN) model which is implemented to simulate the normal and faulty status of rotary machine. Correlation between the product quality defined by an index and the residual is used to quality classification.

Keywords: Modeling, fault detection and diagnosis, parameters estimation, neural networks, Fault Detection and Diagnosis (FDD), pickling process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
8493 Detecting and Secluding Route Modifiers by Neural Network Approach in Wireless Sensor Networks

Authors: C. N. Vanitha, M. Usha

Abstract:

In a real world scenario, the viability of the sensor networks has been proved by standardizing the technologies. Wireless sensor networks are vulnerable to both electronic and physical security breaches because of their deployment in remote, distributed, and inaccessible locations. The compromised sensor nodes send malicious data to the base station, and thus, the total network effectiveness will possibly be compromised. To detect and seclude the Route modifiers, a neural network based Pattern Learning predictor (PLP) is presented. This algorithm senses data at any node on present and previous patterns obtained from the en-route nodes. The eminence of any node is upgraded by their predicted and reported patterns. This paper propounds a solution not only to detect the route modifiers, but also to seclude the malevolent nodes from the network. The simulation result proves the effective performance of the network by the presented methodology in terms of energy level, routing and various network conditions.

Keywords: Neural networks, pattern learning, security, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1303
8492 Analysis and Classification of Hiv-1 Sub- Type Viruses by AR Model through Artificial Neural Networks

Authors: O. Yavuz, L. Ozyilmaz

Abstract:

HIV-1 genome is highly heterogeneous. Due to this variation, features of HIV-I genome is in a wide range. For this reason, the ability to infection of the virus changes depending on different chemokine receptors. From this point of view, R5 HIV viruses use CCR5 coreceptor while X4 viruses use CXCR5 and R5X4 viruses can utilize both coreceptors. Recently, in Bioinformatics, R5X4 viruses have been studied to classify by using the experiments on HIV-1 genome. In this study, R5X4 type of HIV viruses were classified using Auto Regressive (AR) model through Artificial Neural Networks (ANNs). The statistical data of R5X4, R5 and X4 viruses was analyzed by using signal processing methods and ANNs. Accessible residues of these virus sequences were obtained and modeled by AR model since the dimension of residues is large and different from each other. Finally the pre-processed data was used to evolve various ANN structures for determining R5X4 viruses. Furthermore ROC analysis was applied to ANNs to show their real performances. The results indicate that R5X4 viruses successfully classified with high sensitivity and specificity values training and testing ROC analysis for RBF, which gives the best performance among ANN structures.

Keywords: Auto-Regressive Model, HIV, Neural Networks, ROC Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180
8491 Maximum Power Point Tracking for Small Scale Wind Turbine Using Multilayer Perceptron Neural Network Implementation without Mechanical Sensor

Authors: Piyangkun Kukutapan, Siridech Boonsang

Abstract:

The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.

Keywords: Maximum power point tracking, multilayer perceptron neural network, optimal duty cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
8490 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques

Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas

Abstract:

The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.

Keywords: Artificial neural network, competitive dynamics, logistic regression, text classification, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 535
8489 Control Improvement of a C Sugar Cane Crystallization Using an Auto-Tuning PID Controller Based on Linearization of a Neural Network

Authors: S. Beyou, B. Grondin-Perez, M. Benne, C. Damour, J.-P. Chabriat

Abstract:

The industrial process of the sugar cane crystallization produces a residual that still contains a lot of soluble sucrose and the objective of the factory is to improve its extraction. Therefore, there are substantial losses justifying the search for the optimization of the process. Crystallization process studied on the industrial site is based on the “three massecuites process". The third step of this process constitutes the final stage of exhaustion of the sucrose dissolved in the mother liquor. During the process of the third step of crystallization (Ccrystallization), the phase that is studied and whose control is to be improved, is the growing phase (crystal growth phase). The study of this process on the industrial site is a problem in its own. A control scheme is proposed to improve the standard PID control law used in the factory. An auto-tuning PID controller based on instantaneous linearization of a neural network is then proposed.

Keywords: Auto-tuning, PID, Instantaneous linearization, Neural network, Non linear process, C-crystallisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
8488 Optimal Document Archiving and Fast Information Retrieval

Authors: Hazem M. El-Bakry, Ahmed A. Mohammed

Abstract:

In this paper, an intelligent algorithm for optimal document archiving is presented. It is kown that electronic archives are very important for information system management. Minimizing the size of the stored data in electronic archive is a main issue to reduce the physical storage area. Here, the effect of different types of Arabic fonts on electronic archives size is discussed. Simulation results show that PDF is the best file format for storage of the Arabic documents in electronic archive. Furthermore, fast information detection in a given PDF file is introduced. Such approach uses fast neural networks (FNNs) implemented in the frequency domain. The operation of these networks relies on performing cross correlation in the frequency domain rather than spatial one. It is proved mathematically and practically that the number of computation steps required for the presented FNNs is less than that needed by conventional neural networks (CNNs). Simulation results using MATLAB confirm the theoretical computations.

Keywords: Information Storage and Retrieval, Electronic Archiving, Fast Information Detection, Cross Correlation, Frequency Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
8487 Prediction of Rubberised Concrete Strength by Using Artificial Neural Networks

Authors: A. M. N. El-Khoja, A. F. Ashour, J. Abdalhmid, X. Dai, A. Khan

Abstract:

In recent years, waste tyre problem is considered as one of the most crucial environmental pollution problems facing the world. Thus, reusing waste rubber crumb from recycled tyres to develop highly damping concrete is technically feasible and a viable alternative to landfill or incineration. The utilization of waste rubber in concrete generally enhances the ductility, toughness, thermal insulation, and impact resistance. However, the mechanical properties decrease with the amount of rubber used in concrete. The aim of this paper is to develop artificial neural network (ANN) models to predict the compressive strength of rubberised concrete (RuC). A trained and tested ANN was developed using a comprehensive database collected from different sources in the literature. The ANN model developed used 5 input parameters that include: coarse aggregate (CA), fine aggregate (FA), w/c ratio, fine rubber (Fr), and coarse rubber (Cr), whereas the ANN outputs were the corresponding compressive strengths. A parametric study was also conducted to study the trend of various RuC constituents on the compressive strength of RuC.

Keywords: Rubberized concrete, compressive strength, artificial neural network, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 908
8486 A Robust Visual SLAM for Indoor Dynamic Environment

Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou

Abstract:

Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to gather information in unknown environments to achieve simultaneous localization and mapping of the environment. This technology has a wide range of applications in autonomous driving, virtual reality, and other related fields. Currently, the research advancements related to VSLAM can maintain high accuracy in static environments. But in dynamic environments, the presence of moving objects in the scene can reduce the stability of the VSLAM system, leading to inaccurate localization and mapping, or even system failure. In this paper, a robust VSLAM method was proposed to effectively address the challenges in dynamic environments. We proposed a dynamic region removal scheme based on a semantic segmentation neural network and geometric constraints. Firstly, a semantic segmentation neural network is used to extract the prior active motion region, prior static region, and prior passive motion region in the environment. Then, the lightweight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static regions and dynamic regions. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under a high dynamic environment.

Keywords: Dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 180