Search results for: Object motion detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2674

Search results for: Object motion detection

2014 Influence Analysis of Pelamis Wave Energy Converter Structure Parameters

Authors: Liu Shengnan, Sun Liping, Zhu Jianxun

Abstract:

Based on three dimensional potential flow theory and hinged rigid body motion equations, structure RAOs of Pelamis wave energy converter is analyzed. Analysis of numerical simulation is carried out on Pelamis in the irregular wave conditions, and the motion response of structures and total generated power is obtained. The paper analyzes influencing factors on the average power including diameter of floating body, section form of floating body, draft, hinged stiffness and damping. The optimum parameters are achieved in Zhejiang Province. Compared with the results of the pelamis experiment made by Glasgow University, the method applied in this paper is feasible.

Keywords: Pelamis, Hinge, Floating multibody, Wave energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3268
2013 Computational Prediction of Complicated Atmospheric Motion for Spinning or non- Spinning Projectiles

Authors: Dimitrios N. Gkritzapis, Elias E. Panagiotopoulos, Dionissios P. Margaris, Dimitrios G. Papanikas

Abstract:

A full six degrees of freedom (6-DOF) flight dynamics model is proposed for the accurate prediction of short and long-range trajectories of high spin and fin-stabilized projectiles via atmospheric flight to final impact point. The projectiles is assumed to be both rigid (non-flexible), and rotationally symmetric about its spin axis launched at low and high pitch angles. The mathematical model is based on the full equations of motion set up in the no-roll body reference frame and is integrated numerically from given initial conditions at the firing site. The projectiles maneuvering motion depends on the most significant force and moment variations, in addition to wind and gravity. The computational flight analysis takes into consideration the Mach number and total angle of attack effects by means of the variable aerodynamic coefficients. For the purposes of the present work, linear interpolation has been applied from the tabulated database of McCoy-s book. The developed computational method gives satisfactory agreement with published data of verified experiments and computational codes on atmospheric projectile trajectory analysis for various initial firing flight conditions.

Keywords: Constant-Variable aerodynamic coefficients, low and high pitch angles, wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2428
2012 Research and Development of a Biomorphic Robot Driven by Shape Memory Alloys

Authors: Y.J. Lai, H.Y. Peng, M.W. Wu, J. Shaw

Abstract:

In this study, we used shape memory alloys as actuators to build a biomorphic robot which can imitate the motion of an earthworm. The robot can be used to explore in a narrow space. Therefore we chose shape memory alloys as actuators. Because of the small deformation of a wire shape memory alloy, spiral shape memory alloys are selected and installed both on the X axis and Y axis (each axis having two shape memory alloys) to enable the biomorphic robot to do reciprocating motion. By the mechanism we designed, the robot can increase the distance as it moves in a duty cycle. In addition, two shape memory alloys are added to the robot head for controlling right and left turns. By sending pulses through the I/O card from the controller, the signals are then amplified by a driver to heat the shape memory alloys in order to make the SMA shrink to pull the mechanism to move.

Keywords: Biomorphic Robot, Shape Memory Alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
2011 Mining Network Data for Intrusion Detection through Naïve Bayesian with Clustering

Authors: Dewan Md. Farid, Nouria Harbi, Suman Ahmmed, Md. Zahidur Rahman, Chowdhury Mofizur Rahman

Abstract:

Network security attacks are the violation of information security policy that received much attention to the computational intelligence society in the last decades. Data mining has become a very useful technique for detecting network intrusions by extracting useful knowledge from large number of network data or logs. Naïve Bayesian classifier is one of the most popular data mining algorithm for classification, which provides an optimal way to predict the class of an unknown example. It has been tested that one set of probability derived from data is not good enough to have good classification rate. In this paper, we proposed a new learning algorithm for mining network logs to detect network intrusions through naïve Bayesian classifier, which first clusters the network logs into several groups based on similarity of logs, and then calculates the prior and conditional probabilities for each group of logs. For classifying a new log, the algorithm checks in which cluster the log belongs and then use that cluster-s probability set to classify the new log. We tested the performance of our proposed algorithm by employing KDD99 benchmark network intrusion detection dataset, and the experimental results proved that it improves detection rates as well as reduces false positives for different types of network intrusions.

Keywords: Clustering, detection rate, false positive, naïveBayesian classifier, network intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5543
2010 FEM Simulation of Triple Diffusive Magnetohydrodynamics Effect of Nanofluid Flow over a Nonlinear Stretching Sheet

Authors: Rangoli Goyal, Rama Bhargava

Abstract:

The triple diffusive boundary layer flow of nanofluid under the action of constant magnetic field over a non-linear stretching sheet has been investigated numerically. The model includes the effect of Brownian motion, thermophoresis, and cross-diffusion; slip mechanisms which are primarily responsible for the enhancement of the convective features of nanofluid. The governing partial differential equations are transformed into a system of ordinary differential equations (by using group theory transformations) and solved numerically by using variational finite element method. The effects of various controlling parameters, such as the magnetic influence number, thermophoresis parameter, Brownian motion parameter, modified Dufour parameter, and Dufour solutal Lewis number, on the fluid flow as well as on heat and mass transfer coefficients (both of solute and nanofluid) are presented graphically and discussed quantitatively. The present study has industrial applications in aerodynamic extrusion of plastic sheets, coating and suspensions, melt spinning, hot rolling, wire drawing, glass-fibre production, and manufacture of polymer and rubber sheets, where the quality of the desired product depends on the stretching rate as well as external field including magnetic effects.

Keywords: FEM, Thermophoresis, Diffusiophoresis, Brownian motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
2009 Natural-Direction-Consistent 3D-Design and Printing Methods

Authors: Yasusi Kanada

Abstract:

Objects are usually horizontally sliced when printed by 3D printers. Therefore, if an object to be printed, such as a collection of fibers, originally has natural direction in shape, the printed direction contradicts with the natural direction. By using proper tools, such as field-oriented 3D paint software, field-oriented solid modelers, field-based tool-path generation software, and non-horizontal FDM 3D printers, the natural direction can be modeled and objects can be printed in a direction that is consistent with the natural direction. This consistence results in embodiment of momentum or force in expressions of the printed object. To achieve this goal, several design and manufacturing problems, but not all, have been solved. An application of this method is (Japanese) 3D calligraphy.

Keywords: 3D printing, Three-dimensional printing, Solid free-form fabrication, SFF, Fused deposition modeling, FDM, Additive manufacturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
2008 Tool Failure Detection Based on Statistical Analysis of Metal Cutting Acoustic Emission Signals

Authors: Othman Belgassim, Krzysztof Jemielniak

Abstract:

The analysis of Acoustic Emission (AE) signal generated from metal cutting processes has often approached statistically. This is due to the stochastic nature of the emission signal as a result of factors effecting the signal from its generation through transmission and sensing. Different techniques are applied in this manner, each of which is suitable for certain processes. In metal cutting where the emission generated by the deformation process is rather continuous, an appropriate method for analysing the AE signal based on the root mean square (RMS) of the signal is often used and is suitable for use with the conventional signal processing systems. The aim of this paper is to set a strategy in tool failure detection in turning processes via the statistic analysis of the AE generated from the cutting zone. The strategy is based on the investigation of the distribution moments of the AE signal at predetermined sampling. The skews and kurtosis of these distributions are the key elements in the detection. A normal (Gaussian) distribution has first been suggested then this was eliminated due to insufficiency. The so called Beta distribution was then considered, this has been used with an assumed β density function and has given promising results with regard to chipping and tool breakage detection.

Keywords: AE signal, skew, kurtosis, tool failure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
2007 FSM-based Recognition of Dynamic Hand Gestures via Gesture Summarization Using Key Video Object Planes

Authors: M. K. Bhuyan

Abstract:

The use of human hand as a natural interface for humancomputer interaction (HCI) serves as the motivation for research in hand gesture recognition. Vision-based hand gesture recognition involves visual analysis of hand shape, position and/or movement. In this paper, we use the concept of object-based video abstraction for segmenting the frames into video object planes (VOPs), as used in MPEG-4, with each VOP corresponding to one semantically meaningful hand position. Next, the key VOPs are selected on the basis of the amount of change in hand shape – for a given key frame in the sequence the next key frame is the one in which the hand changes its shape significantly. Thus, an entire video clip is transformed into a small number of representative frames that are sufficient to represent a gesture sequence. Subsequently, we model a particular gesture as a sequence of key frames each bearing information about its duration. These constitute a finite state machine. For recognition, the states of the incoming gesture sequence are matched with the states of all different FSMs contained in the database of gesture vocabulary. The core idea of our proposed representation is that redundant frames of the gesture video sequence bear only the temporal information of a gesture and hence discarded for computational efficiency. Experimental results obtained demonstrate the effectiveness of our proposed scheme for key frame extraction, subsequent gesture summarization and finally gesture recognition.

Keywords: Hand gesture, MPEG-4, Hausdorff distance, finite state machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
2006 Spatial Objects Shaping with High-Pressure Abrasive Water Jet Controlled By Virtual Image Luminance

Authors: P. J. Borkowski, J. A. Borkowski

Abstract:

The paper presents a novel method for the 3D shaping of different materials using a high-pressure abrasive water jet and a flat target image. For steering movement process of the jet a principle similar to raster image way of record and readout was used. However, respective colors of pixel of such a bitmap are connected with adequate jet feed rate that causes erosion of material with adequate depth. Thanks to that innovation, one can observe spatial imaging of the object. Theoretical basis as well as spatial model of material shaping and experimental stand including steering program are presented in. There are also presented methodic and some experimental erosion results as well as practical example of object-s bas-relief made of metal.

Keywords: High-pressure, abrasive, water jet, material shaping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
2005 Sloshing Control in Tilting Phases of the Pouring Process

Authors: Maria P. Tzamtzi, Fotis N. Koumboulis

Abstract:

We propose a control design scheme that aims to prevent undesirable liquid outpouring and suppress sloshing during the forward and backward tilting phases of the pouring process, for the case of liquid containers carried by manipulators. The proposed scheme combines a partial inverse dynamics controller with a PID controller, tuned with the use of a “metaheuristic" search algorithm. The “metaheuristic" search algorithm tunes the PID controller based on simulation results of the plant-s linearization around the operating point corresponding to the critical tilting angle, where outpouring initiates. Liquid motion is modeled using the well-known pendulumtype model. However, the proposed controller does not require measurements of the liquid-s motion within the tank.

Keywords: Robotic systems, Controller design, Sloshingsuppression, Metaheuristic optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
2004 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-

Authors: Nieto Bernal Wilson, Carmona Suarez Edgar

Abstract:

The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects.  Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.

Keywords: Data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
2003 Subpixel Detection of Circular Objects Using Geometric Property

Authors: Wen-Yen Wu, Wen-Bin Yu

Abstract:

In this paper, we propose a method for detecting circular shapes with subpixel accuracy. First, the geometric properties of circles have been used to find the diameters as well as the circumference pixels. The center and radius are then estimated by the circumference pixels. Both synthetic and real images have been tested by the proposed method. The experimental results show that the new method is efficient.

Keywords: Subpixel, least squares estimation, circle detection, Hough transformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2140
2002 Optimal Speed Controller Design of the Two-Inertia Stabilization System

Authors: Byoung-Uk Nam, Hag-Seong Kim, Ho-Jung Lee, Dong-Hyun Kim

Abstract:

This paper focuses on systematic analysis and controller design of the two-inertia STABILIZATION system, considering the angular motion on a base body. This approach is essential to the stabilization system to aim at a target under three or six degrees of freedom base motion. Four controllers, such as conventional PDF(Pseudo-Derivative Feedback) controller with motor speed feedback, PDF controller with load speed feedback, modified PDF controller with motor-load speed feedback and feedforward controller added to modified PDF controller, are suggested to improve reference tracking and disturbance rejection performance. Characteristics and performance of each controller are analyzed and validated by simulation in the case of the modified PDF controller with and without a feedforward controller.

Keywords: Two-Inertia stabilization System, ITAE criterion, Speed Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2693
2001 Investigation on Nanoparticle Velocity in Two Phase Approach

Authors: E. Mat Tokit, Yusoff M. Z, Mohammed H.

Abstract:

Numerical investigation on the generality of nanoparticle velocity equation had been done on the previous published work. The three dimensional governing equations (continuity, momentum and energy) were solved using finite volume method (FVM). Parametric study of thermal performance between pure water-cooled and nanofluid-cooled are evaluated for volume fraction in the range of 1% to 4%, and nanofluid type of gamma-Al2O3 at Reynolds number range of 67.41 to 286.77. The nanofluid is modeled using single and two phase approach. Three different existing Brownian motion velocities are applied in comparing the generality of the equation for a wide parametric condition. Deviation in between the Brownian motion velocity is identified to be due to the different means of mean free path and constant value used in diffusion equation.

Keywords: Brownian nanoparticle velocity, heat transfer enhancement, nanofluid, two phase model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2521
2000 On the Seismic Response of Collided Structures

Authors: George D. Hatzigeorgiou, Nikos G. Pnevmatikos

Abstract:

This study examines the inelastic behavior of adjacent planar reinforced concrete (R.C.) frames subjected to strong ground motions. The investigation focuses on the effects of vertical ground motion on the seismic pounding. The examined structures are modeled and analyzed by RUAUMOKO dynamic nonlinear analysis program using reliable hysteretic models for both structural members and contact elements. It is found that the vertical ground motion mildly affects the seismic response of adjacent buildings subjected to structural pounding and, for this reason, it can be ignored from the displacement and interstorey drifts assessment. However, the structural damage is moderately affected by the vertical component of earthquakes.

Keywords: Nonlinear seismic behavior, reinforced concrete structures, structural pounding, vertical ground motions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2099
1999 Fault Detection of Pipeline in Water Distribution Network System

Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee

Abstract:

Water pipe network is installed underground and once equipped, it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using MATLAB. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.

Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2345
1998 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation Based Approach

Authors: Sujoy Das, M. M. Ghosh

Abstract:

The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solidsolid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulselike pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.

Keywords: Brownian dynamics, Molecular dynamics, Nanofluid, Thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2272
1997 Autonomous Control of a Mobile Manipulator

Authors: Shonal Singh, Bibhya Sharma, Jito Vanualailai

Abstract:

This paper considers the design of a motion planner that will simultaneously accomplish control and motion planning of a n-link nonholonomic mobile manipulator, wherein, a n-link holonomic manipulator is coupled with a nonholonomic mobile platform, within an obstacle-ridden environment. This planner, derived from the Lyapunov-based control scheme, generates collision-free trajectories from an initial configuration to a final configuration in a constrained environment cluttered with stationary solid objects of different shapes and sizes. We demonstrate the efficiency of the control scheme and the resulting acceleration controllers of the mobile manipulator with results through computer simulations of an interesting scenario.

Keywords: Artificial potential fields, Lyapunov-based control scheme, Lyapunov stability, nonholonomic manipulator, minimum distance technique, kinodynamic constraints.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
1996 A Forward Automatic Censored Cell-Averaging Detector for Multiple Target Situations in Log-Normal Clutter

Authors: Musa'ed N. Almarshad, Saleh A. Alshebeili, Mourad Barkat

Abstract:

A challenging problem in radar signal processing is to achieve reliable target detection in the presence of interferences. In this paper, we propose a novel algorithm for automatic censoring of radar interfering targets in log-normal clutter. The proposed algorithm, termed the forward automatic censored cell averaging detector (F-ACCAD), consists of two steps: removing the corrupted reference cells (censoring) and the actual detection. Both steps are performed dynamically by using a suitable set of ranked cells to estimate the unknown background level and set the adaptive thresholds accordingly. The F-ACCAD algorithm does not require any prior information about the clutter parameters nor does it require the number of interfering targets. The effectiveness of the F-ACCAD algorithm is assessed by computing, using Monte Carlo simulations, the probability of censoring and the probability of detection in different background environments.

Keywords: CFAR, Log-normal clutter, Censoring, Probabilityof detection, Probability of false alarm, Probability of falsecensoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922
1995 Testing Object-Oriented Framework Applications Using FIST2 Tool: A Case Study

Authors: Jehad Al Dallal

Abstract:

An application framework provides a reusable design and implementation for a family of software systems. Frameworks are introduced to reduce the cost of a product line (i.e., a family of products that shares the common features). Software testing is a timeconsuming and costly ongoing activity during the application software development process. Generating reusable test cases for the framework applications during the framework development stage, and providing and using the test cases to test part of the framework application whenever the framework is used reduces the application development time and cost considerably. This paper introduces the Framework Interface State Transition Tester (FIST2), a tool for automated unit testing of Java framework applications. During the framework development stage, given the formal descriptions of the framework hooks, the specifications of the methods of the framework-s extensible classes, and the illegal behavior description of the Framework Interface Classes (FICs), FIST2 generates unitlevel test cases for the classes. At the framework application development stage, given the customized method specifications of the implemented FICs, FIST2 automates the use, execution, and evaluation of the already generated test cases to test the implemented FICs. The paper illustrates the use of the FIST2 tool for testing several applications that use the SalesPoint framework.

Keywords: Automated testing, class testing, FICs, FIST2, object-oriented framework, object-oriented testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
1994 Design of Compliant Mechanism Based Microgripper with Three Finger Using Topology Optimization

Authors: R. Bharanidaran, B. T. Ramesh

Abstract:

High precision in motion is required to manipulate the micro objects in precision industries for micro assembly, cell manipulation etc. Precision manipulation is achieved based on the appropriate mechanism design of micro devices such as microgrippers. Design of a compliant based mechanism is the better option to achieve a highly precised and controlled motion. This research article highlights the method of designing a compliant based three fingered microgripper suitable for holding asymmetric objects. Topological optimization technique, a systematic method is implemented in this research work to arrive a topologically optimized design of the mechanism needed to perform the required micro motion of the gripper. Optimization technique has a drawback of generating senseless regions such as node to node connectivity and staircase effect at the boundaries. Hence, it is required to have post processing of the design to make it manufacturable. To reduce the effect of post processing stage and to preserve the edges of the image, a cubic spline interpolation technique is introduced in the MATLAB program. Structural performance of the topologically developed mechanism design is tested using finite element method (FEM) software. Further the microgripper structure is examined to find its fatigue life and vibration characteristics.

Keywords: Compliant mechanism, Cubic spline interpolation, FEM, Topology optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3585
1993 Application of Artificial Neural Network for Predicting Maintainability Using Object-Oriented Metrics

Authors: K. K. Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra

Abstract:

Importance of software quality is increasing leading to development of new sophisticated techniques, which can be used in constructing models for predicting quality attributes. One such technique is Artificial Neural Network (ANN). This paper examined the application of ANN for software quality prediction using Object- Oriented (OO) metrics. Quality estimation includes estimating maintainability of software. The dependent variable in our study was maintenance effort. The independent variables were principal components of eight OO metrics. The results showed that the Mean Absolute Relative Error (MARE) was 0.265 of ANN model. Thus we found that ANN method was useful in constructing software quality model.

Keywords: Software quality, Measurement, Metrics, Artificial neural network, Coupling, Cohesion, Inheritance, Principal component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2581
1992 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: Anomaly detection, autoencoder, data centers, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 756
1991 Neural Network Motion Control of VTAV by NARMA-L2 Controller for Enhanced Situational Awareness

Authors: Igor Astrov, Natalya Berezovski

Abstract:

This paper focuses on a critical component of the situational awareness (SA), the control of autonomous vertical flight for vectored thrust aerial vehicle (VTAV). With the SA strategy, we proposed a neural network motion control procedure to address the dynamics variation and performance requirement difference of flight trajectory for a VTAV. This control strategy with using of NARMAL2 neurocontroller for chosen model of VTAV has been verified by simulation of take-off and forward maneuvers using software package Simulink and demonstrated good performance for fast stabilization of motors, consequently, fast SA with economy in energy can be asserted during search-and-rescue operations.

Keywords: NARMA-L2 neurocontroller, situational awareness, vectored thrust aerial vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
1990 An Enhanced SAR-Based Tsunami Detection System

Authors: Jean-Pierre Dubois, Jihad S. Daba, H. Karam, J. Abdallah

Abstract:

Tsunami early detection and warning systems have proved to be of ultimate importance, especially after the destructive tsunami that hit Japan in March 2012. Such systems are crucial to inform the authorities of any risk of a tsunami and of the degree of its danger in order to make the right decision and notify the public of the actions they need to take to save their lives. The purpose of this research is to enhance existing tsunami detection and warning systems. We first propose an automated and miniaturized model of an early tsunami detection and warning system. The model for the operation of a tsunami warning system is simulated using the data acquisition toolbox of Matlab and measurements acquired from specified internet pages due to the lack of the required real-life sensors, both seismic and hydrologic, and building a graphical user interface for the system. In the second phase of this work, we implement various satellite image filtering schemes to enhance the acquired synthetic aperture radar images of the tsunami affected region that are masked by speckle noise. This enables us to conduct a post-tsunami damage extent study and calculate the percentage damage. We conclude by proposing improvements to the existing telecommunication infrastructure of existing warning tsunami systems using a migration to IP-based networks and fiber optics links.

Keywords: Detection, GIS, GSN, GTS, GPS, speckle noise, synthetic aperture radar, tsunami, wiener filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
1989 Medical Image Segmentation Based On Vigorous Smoothing and Edge Detection Ideology

Authors: Jagadish H. Pujar, Pallavi S. Gurjal, Shambhavi D. S, Kiran S. Kunnur

Abstract:

Medical image segmentation based on image smoothing followed by edge detection assumes a great degree of importance in the field of Image Processing. In this regard, this paper proposes a novel algorithm for medical image segmentation based on vigorous smoothening by identifying the type of noise and edge diction ideology which seems to be a boom in medical image diagnosis. The main objective of this algorithm is to consider a particular medical image as input and make the preprocessing to remove the noise content by employing suitable filter after identifying the type of noise and finally carrying out edge detection for image segmentation. The algorithm consists of three parts. First, identifying the type of noise present in the medical image as additive, multiplicative or impulsive by analysis of local histograms and denoising it by employing Median, Gaussian or Frost filter. Second, edge detection of the filtered medical image is carried out using Canny edge detection technique. And third part is about the segmentation of edge detected medical image by the method of Normalized Cut Eigen Vectors. The method is validated through experiments on real images. The proposed algorithm has been simulated on MATLAB platform. The results obtained by the simulation shows that the proposed algorithm is very effective which can deal with low quality or marginal vague images which has high spatial redundancy, low contrast and biggish noise, and has a potential of certain practical use of medical image diagnosis.

Keywords: Image Segmentation, Image smoothing, Edge Detection, Impulsive noise, Gaussian noise, Median filter, Canny edge, Eigen values, Eigen vector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923
1988 A Case Study of the Digital Translation of the Lucy Lloyd and Wilhelm Bleek |Xam and !Kun Notebooks into The Digital Bleek and Lloyd

Authors: F. Saptouw

Abstract:

This paper will examine the digitization process of the |Xam and !Kun notebooks, authored by Lucy Lloyd, Dorothea Bleek and Wilhelm Bleek, and their collaborators |a!kunta, ||kabbo, ≠kasin, Dia!kwain, !kweiten ta ||ken, |han≠kass'o, !nanni, Tamme, |uma, and Da during the 19th century. Detail will be provided about the status of the archive, the creation of the digital archive and selected research projects linked to the archive. The Digital Bleek and Lloyd project is an example of institutional collaboration by the University of Cape Town, University of South Africa, Iziko South African Museum, the National Library of South Africa and the Western Cape Provincial Archives and Records Service. The contemporary value of the archive will be discussed in relation to its current manifestation as a collection of archival and digital objects, each with its own set of properties and archival risk factors. This tension between the two ways to access the archive will be interrogated to shed light on the slippages between the digital object and the archival object. The primary argument is that the process of digitization generates an ontological shift in the status of the archival object. The secondary argument is an engagement with practices to curate the encounters with these ontologically shifted objects and how to relate to each as a contemporary viewer. In conclusion this paper will argue for regarding these archival objects according to the interpretive framework utilized to engage secular relics.

Keywords: Archive, curatorship, digitization, The Digital Bleek and Lloyd.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597
1987 Electrophoretic Motion of a Liquid Droplet within an Uncharged Cylindrical Pore

Authors: Cheng-Hsuan Huang, Eric Lee

Abstract:

Electrophoretic motion of a liquid droplet within an uncharged cylindrical pore is investigated theoretically in this study. It is found that the boundary effect in terms of the reduction of droplet mobility (droplet velocity per unit strength of the applied electric field) is very significant when the double layer surrounding the droplet is thick, and diminishes as it gets very thin. Moreover, the viscosity ratio of the ambient fluid to the internal one, σ, is a crucial factor in determining its electrophoretic behavior. The boundary effect is less significant as the viscosity ratio gets high. Up to 70% mobility reduction is observed when this ratio is low (σ = 0.01), whereas only 40% reduction when it is high (σ = 100). The results of this study can be utilized in various fields of biotechnology, such as a biosensor or a lab-on-a-chip device.

Keywords: Cylindrical pore, Electrophoresis, Lab-on-a-chip, Liquid droplet

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
1986 Hydrodynamic Performance of a Moored Barge in Irregular Wave

Authors: Srinivasan Chandrasekaran, Shihas A. Khader

Abstract:

Motion response of floating structures is of great concern in marine engineering. Nonlinearity is an inherent property of any floating bodies subjected to irregular waves. These floating structures are continuously subjected to environmental loadings from wave, current, wind etc. This can result in undesirable motions of the vessel which may challenge the operability. For a floating body to remain in its position, it should be able to induce a restoring force when displaced. Mooring is provided to enable this restoring force. This paper discusses the hydrodynamic performance and motion characteristics of an 8 point spread mooring system applied to a pipe laying barge operating in the West African sea. The modelling of the barge is done using a computer aided-design (CAD) software RHINOCEROS. Irregular waves are generated using a suitable wave spectrum. Both frequency domain and time domain analysis is done. Numerical simulations based on potential theory are carried out to find the responses and hydrodynamic performance of the barge in both free floating as well as moored conditions. Initially, potential flow frequency domain analysis is done to obtain the Response Amplitude Operator (RAO) which gives an idea about the structural motion in free floating state. RAOs for different wave headings are analyzed. In the following step, a time domain analysis is carried out to obtain the responses of the structure in the moored condition. In this study, wave induced motions are only taken into consideration. Wind and current loads are ruled out and shall be included in further studies. For the current study, 2000 seconds simulation is taken. The results represent wave induced motion responses, mooring line tensions and identify critical mooring lines.

Keywords: Irregular wave, moored barge, time domain analysis, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766
1985 Health Assessment of Electronic Products using Mahalanobis Distance and Projection Pursuit Analysis

Authors: Sachin Kumar, Vasilis Sotiris, Michael Pecht

Abstract:

With increasing complexity in electronic systems there is a need for system level anomaly detection and fault isolation. Anomaly detection based on vector similarity to a training set is used in this paper through two approaches, one the preserves the original information, Mahalanobis Distance (MD), and the other that compresses the data into its principal components, Projection Pursuit Analysis. These methods have been used to detect deviations in system performance from normal operation and for critical parameter isolation in multivariate environments. The study evaluates the detection capability of each approach on a set of test data with known faults against a baseline set of data representative of such “healthy" systems.

Keywords: Mahalanobis distance, Principle components, Projection pursuit, Health assessment, Anomaly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688