Search results for: decision regions
1510 Creating Maintenance Cost Model for University Buildings
Authors: AbdulLateef A. Olanrewaju, Arazi Idrus, Mohd F. Khamidi
Abstract:
Maintenance costs incurred on building differs. The difference can be as results of the types, functions, age, building health index, size, form height, location and complexity of the building. These are contributing to the difficulty in maintenance development of deterministic maintenance cost model. This paper is concerns with reporting the preliminary findings on the creation of building maintenance cost distributions for universities in Malaysia. This study is triggered by the need to provide guides on maintenance costs distributions for decision making. For this purpose, a survey questionnaire was conducted to investigate the distribution of maintenance costs in the universities. Altogether, responses were received from twenty universities comprising both private and publicly owned. The research found that engineering services, roofing and finishes were the elements contributing the larger segment of the maintenance costs. Furthermore, the study indicates the significance of maintenance cost distribution as decision making tool towards maintenance management.Keywords: Performance matrix, university buildings, costmodel, Malaysia
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20371509 On Innovation and Knowledge Economy in Russia
Authors: Zhanna Mingaleva, Irina Mirskikh
Abstract:
Innovational development of regions in Russia is generally faced with the essential influence from federal and local authorities. The organization of effective mechanism of innovation development (and self-development) is impossible without establishment of defined institutional conditions in the analyzed field. Creative utilization of scientific concepts and information should merge, giving rise to continuing innovation and advanced production. The paper presents an analysis of institutional conditions in the field of creation and development of innovation activity infrastructure and transferring of knowledge and skills between different economic agents in Russia. Knowledge is mainly privately owned, developed through R&D investments and incorporated into technology or a product. Innovation infrastructure is a strong concentration mechanism of advanced facilities, which are mainly located inside large agglomerations or city-regions in order to benefit from scale effects in both input markets (human capital, private financial capital) and output markets (higher education services, research services). The empirical results of the paper show that in the presence of more efficient innovation and knowledge transfer and transcoding system and of a more open attitude of economic agents towards innovation, the innovation and knowledge capacity of regional economy is much higher.
Keywords: knowledge economy, innovational development, transfer of knowledge, institutional preconditions, innovation andknowledge capacity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22791508 Genetic Algorithm Optimization of a Small Scale Natural Gas Liquefaction Process
Authors: M. I. Abdelhamid, A. O. Ghallab, R. S. Ettouney, M. A. El-Rifai
Abstract:
An optimization scheme based on COM server is suggested for communication between Genetic Algorithm (GA) toolbox of MATLAB and Aspen HYSYS. The structure and details of the proposed framework are discussed. The power of the developed scheme is illustrated by its application to the optimization of a recently developed natural gas liquefaction process in which Aspen HYSYS was used for minimization of the power consumption by optimizing the values of five operating variables. In this work, optimization by coupling between the GA in MATLAB and Aspen HYSYS model of the same process using the same five decision variables enabled improvements in power consumption by 3.3%, when 77% of the natural gas feed is liquefied. Also on inclusion of the flow rates of both nitrogen and carbon dioxide refrigerants as two additional decision variables, the power consumption decreased by 6.5% for a 78% liquefaction of the natural gas feed.
Keywords: Stranded gas liquefaction, genetic algorithm, COM server, single nitrogen expansion, carbon dioxide pre-cooling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15241507 On-line Control of the Natural and Anthropogenic Safety in Krasnoyarsk Region
Authors: T. Penkova, A. Korobko, V. Nicheporchuk., L. Nozhenkova, A. Metus
Abstract:
This paper presents an approach of on-line control of the state of technosphere and environment objects based on the integration of Data Warehouse, OLAP and Expert systems technologies. It looks at the structure and content of data warehouse that provides consolidation and storage of monitoring data. There is a description of OLAP-models that provide a multidimensional analysis of monitoring data and dynamic analysis of principal parameters of controlled objects. The authors suggest some criteria of emergency risk assessment using expert knowledge about danger levels. It is demonstrated now some of the proposed solutions could be adopted in territorial decision making support systems. Operational control allows authorities to detect threat, prevent natural and anthropogenic emergencies and ensure a comprehensive safety of territory.Keywords: Decision making support systems, Emergency risk assessment, Natural and anthropogenic safety, On-line control, Territory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18911506 An Exploration of Cross-Cultural Behaviour: The Characteristics of Chinese Consumers’ Decision Making in Europe
Authors: Yongsheng Guo, Xiaoxian Zhu, Mandella Osei-Assibey Bonsu
Abstract:
This study explores the effects of national culture on consumer behaviour by identifying the characteristics of Chinese consumers’ decision making in Europe. It offers a better understanding of how cultural factors affect consumers’ behaviour, and how consumers make decisions in other nations with different culture. It adopted a grounded theory approach and conducted 24 in-depth interviews. Grounded theory models are developed to link the causal conditions, process, and consequences. Results reveal that some cultural factors including conservatism, emotionality, acquaintance community, long-term orientation and principles affect Chinese consumers when making purchase decisions in Europe. Most Chinese consumers plan and prepare their expenditure and stay in Europe as cultural learners, and purchase durable products or assets as investment, and share their experiences within a community. This study identified potential problems such as political and social environment, complex procedures, and restrictions. This study found that external factors influence internal factors and then internal characters determine consumer behaviour. This study proposes that cultural traits developed in convergence evolution through social selection and Chinese consumers persist most characters but adapt some perceptions and actions overtime in other countries. This study suggests that cultural marketing could be adopted by companies to reflect consumers’ preferences. Agencies, shops, and the authorities could take actions to reduce the complexity and restrictions.
Keywords: National culture, consumer behaviour, cultural marketing, decision making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4771505 Evolution of Quality Function Deployment (QFD) via Fuzzy Concepts and Neural Networks
Authors: M. Haghighi, M. Zowghi, B. Zohouri
Abstract:
Quality Function Deployment (QFD) is an expounded, multi-step planning method for delivering commodity, services, and processes to customers, both external and internal to an organization. It is a way to convert between the diverse customer languages expressing demands (Voice of the Customer), and the organization-s languages expressing results that sate those demands. The policy is to establish one or more matrices that inter-relate producer and consumer reciprocal expectations. Due to its visual presence is called the “House of Quality" (HOQ). In this paper, we assumed HOQ in multi attribute decision making (MADM) pattern and through a proposed MADM method, rank technical specifications. Thereafter compute satisfaction degree of customer requirements and for it, we apply vagueness and uncertainty conditions in decision making by fuzzy set theory. This approach would propound supervised neural network (perceptron) for MADM problem solving.
Keywords: MADM, fuzzy set, QFD, supervised neural network (perceptron).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17421504 Graph Cuts Segmentation Approach Using a Patch-Based Similarity Measure Applied for Interactive CT Lung Image Segmentation
Authors: Aicha Majda, Abdelhamid El Hassani
Abstract:
Lung CT image segmentation is a prerequisite in lung CT image analysis. Most of the conventional methods need a post-processing to deal with the abnormal lung CT scans such as lung nodules or other lesions. The simplest similarity measure in the standard Graph Cuts Algorithm consists of directly comparing the pixel values of the two neighboring regions, which is not accurate because this kind of metrics is extremely sensitive to minor transformations such as noise or other artifacts problems. In this work, we propose an improved version of the standard graph cuts algorithm based on the Patch-Based similarity metric. The boundary penalty term in the graph cut algorithm is defined Based on Patch-Based similarity measurement instead of the simple intensity measurement in the standard method. The weights between each pixel and its neighboring pixels are Based on the obtained new term. The graph is then created using theses weights between its nodes. Finally, the segmentation is completed with the minimum cut/Max-Flow algorithm. Experimental results show that the proposed method is very accurate and efficient, and can directly provide explicit lung regions without any post-processing operations compared to the standard method.Keywords: Graph cuts, lung CT scan, lung parenchyma segmentation, patch based similarity metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7431503 A New Fuzzy Mathematical Model in Recycling Collection Networks: A Possibilistic Approach
Authors: B. Vahdani, R. Tavakkoli-Moghaddam, A. Baboli, S. M. Mousavi
Abstract:
Focusing on the environmental issues, including the reduction of scrap and consumer residuals, along with the benefiting from the economic value during the life cycle of goods/products leads the companies to have an important competitive approach. The aim of this paper is to present a new mixed nonlinear facility locationallocation model in recycling collection networks by considering multi-echelon, multi-suppliers, multi-collection centers and multifacilities in the recycling network. To make an appropriate decision in reality, demands, returns, capacities, costs and distances, are regarded uncertain in our model. For this purpose, a fuzzy mathematical programming-based possibilistic approach is introduced as a solution methodology from the recent literature to solve the proposed mixed-nonlinear programming model (MNLP). The computational experiments are provided to illustrate the applicability of the designed model in a supply chain environment and to help the decision makers to facilitate their analysis.
Keywords: Location-allocation model, recycling collection networks, fuzzy mathematical programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20981502 Using Data Mining Technique for Scholarship Disbursement
Authors: J. K. Alhassan, S. A. Lawal
Abstract:
This work is on decision tree-based classification for the disbursement of scholarship. Tree-based data mining classification technique is used in other to determine the generic rule to be used to disburse the scholarship. The system based on the defined rules from the tree is able to determine the class (status) to which an applicant shall belong whether Granted or Not Granted. The applicants that fall to the class of granted denote a successful acquirement of scholarship while those in not granted class are unsuccessful in the scheme. An algorithm that can be used to classify the applicants based on the rules from tree-based classification was also developed. The tree-based classification is adopted because of its efficiency, effectiveness, and easy to comprehend features. The system was tested with the data of National Information Technology Development Agency (NITDA) Abuja, a Parastatal of Federal Ministry of Communication Technology that is mandated to develop and regulate information technology in Nigeria. The system was found working according to the specification. It is therefore recommended for all scholarship disbursement organizations.Keywords: Decision tree, classification, data mining, scholarship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21561501 3D Liver Segmentation from CT Images Using a Level Set Method Based on a Shape and Intensity Distribution Prior
Authors: Nuseiba M. Altarawneh, Suhuai Luo, Brian Regan, Guijin Tang
Abstract:
Liver segmentation from medical images poses more challenges than analogous segmentations of other organs. This contribution introduces a liver segmentation method from a series of computer tomography images. Overall, we present a novel method for segmenting liver by coupling density matching with shape priors. Density matching signifies a tracking method which operates via maximizing the Bhattacharyya similarity measure between the photometric distribution from an estimated image region and a model photometric distribution. Density matching controls the direction of the evolution process and slows down the evolving contour in regions with weak edges. The shape prior improves the robustness of density matching and discourages the evolving contour from exceeding liver’s boundaries at regions with weak boundaries. The model is implemented using a modified distance regularized level set (DRLS) model. The experimental results show that the method achieves a satisfactory result. By comparing with the original DRLS model, it is evident that the proposed model herein is more effective in addressing the over segmentation problem. Finally, we gauge our performance of our model against matrices comprising of accuracy, sensitivity, and specificity.
Keywords: Bhattacharyya distance, distance regularized level set (DRLS) model, liver segmentation, level set method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23381500 An Evaluation of Barriers to Implement Reverse Logistics: A Case Study of Indian Fastener Industry
Authors: D. Garg, S. Luthra, A. Haleem
Abstract:
Reverse logistics (RL) is supposed to be a systematic procedure that helps in improving the environmental hazards and maintain business sustainability for industries. Industries in Indian are now opting for adoption of RL techniques in business. But, RL practices are not popular in Indian industries because of many barriers for its successful implementation. Therefore, need arises to identify and evaluate the barriers to implement RL practices by taking an Indian industries perspective. Literature review approach and case study approach have been adapted to identify relevant barriers to implement RL practices. Further, Fuzzy Decision Making Trial and Evaluation Laboratory methodology has been brought into use for evaluating causal relationships among the barriers to implement RL practices. Seven barriers out of ten barriers have been categorized into the cause group and remaining into effect group. This research will help Indian industries to manage these barriers towards effective implementing RL practices.Keywords: Barriers, decision making trial and evaluation laboratory, fuzzy set theory, Indian industries, reverse logistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21901499 Multiple Targets Classification and Fuzzy Logic Decision Fusion in Wireless Sensor Networks
Authors: Ahmad Aljaafreh
Abstract:
This paper proposes a hierarchical hidden Markov model (HHMM) to model the detection of M vehicles in a wireless sensor network (WSN). The HHMM model contains an extra level of hidden Markov model to model the temporal transitions of each state of the first HMM. By modeling the temporal transitions, only those hypothesis with nonzero transition probabilities needs to be tested. Thus, this method efficiently reduces the computation load, which is preferable in WSN applications.This paper integrates several techniques to optimize the detection performance. The output of the states of the first HMM is modeled as Gaussian Mixture Model (GMM), where the number of states and the number of Gaussians are experimentally determined, while the other parameters are estimated using Expectation Maximization (EM). HHMM is used to model the sequence of the local decisions which are based on multiple hypothesis testing with maximum likelihood approach. The states in the HHMM represent various combinations of vehicles of different types. Due to the statistical advantages of multisensor data fusion, we propose a heuristic based on fuzzy weighted majority voting to enhance cooperative classification of moving vehicles within a region that is monitored by a wireless sensor network. A fuzzy inference system weighs each local decision based on the signal to noise ratio of the acoustic signal for target detection and the signal to noise ratio of the radio signal for sensor communication. The spatial correlation among the observations of neighboring sensor nodes is efficiently utilized as well as the temporal correlation. Simulation results demonstrate the efficiency of this scheme.
Keywords: Classification, decision fusion, fuzzy logic, hidden Markov model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62491498 Long Term Examination of the Profitability Estimation Focused on Benefits
Authors: Stephan Printz, Kristina Lahl, René Vossen, Sabina Jeschke
Abstract:
Strategic investment decisions are characterized by high innovation potential and long-term effects on the competitiveness of enterprises. Due to the uncertainty and risks involved in this complex decision making process, the need arises for well-structured support activities. A method that considers cost and the long-term added value is the cost-benefit effectiveness estimation. One of those methods is the “profitability estimation focused on benefits – PEFB”-method developed at the Institute of Management Cybernetics at RWTH Aachen University. The method copes with the challenges associated with strategic investment decisions by integrating long-term non-monetary aspects whilst also mapping the chronological sequence of an investment within the organization’s target system. Thus, this method is characterized as a holistic approach for the evaluation of costs and benefits of an investment. This participation-oriented method was applied to business environments in many workshops. The results of the workshops are a library of more than 96 cost aspects, as well as 122 benefit aspects. These aspects are preprocessed and comparatively analyzed with regards to their alignment to a series of risk levels. For the first time, an accumulation and a distribution of cost and benefit aspects regarding their impact and probability of occurrence are given. The results give evidence that the PEFB-method combines precise measures of financial accounting with the incorporation of benefits. Finally, the results constitute the basics for using information technology and data science for decision support when applying within the PEFB-method.Keywords: Cost-benefit analysis, multi-criteria decision, profitability estimation focused on benefits, risk and uncertainty analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15001497 Opportunistic Routing with Secure Coded Wireless Multicast Using MAS Approach
Authors: E. Golden Julie, S. Tamil Selvi, Y. Harold Robinson
Abstract:
Many Wireless Sensor Network (WSN) applications necessitate secure multicast services for the purpose of broadcasting delay sensitive data like video files and live telecast at fixed time-slot. This work provides a novel method to deal with end-to-end delay and drop rate of packets. Opportunistic Routing chooses a link based on the maximum probability of packet delivery ratio. Null Key Generation helps in authenticating packets to the receiver. Markov Decision Process based Adaptive Scheduling algorithm determines the time slot for packet transmission. Both theoretical analysis and simulation results show that the proposed protocol ensures better performance in terms of packet delivery ratio, average end-to-end delay and normalized routing overhead.
Keywords: Delay-sensitive data, Markovian Decision Process based Adaptive Scheduling, Opportunistic Routing, Digital Signature authentication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19571496 Systematics of Water Lilies (Genus Nymphaea L.) Using 18S rDNA Sequences
Authors: M. Nakkuntod, S. Srinarang, K.W. Hilu
Abstract:
Water lily (Nymphaea L.) is the largest genus of Nymphaeaceae. This family is composed of six genera (Nuphar, Ondinea, Euryale, Victoria, Barclaya, Nymphaea). Its members are nearly worldwide in tropical and temperate regions. The classification of some species in Nymphaea is ambiguous due to high variation in leaf and flower parts such as leaf margin, stamen appendage. Therefore, the phylogenetic relationships based on 18S rDNA were constructed to delimit this genus. DNAs of 52 specimens belonging to water lily family were extracted using modified conventional method containing cetyltrimethyl ammonium bromide (CTAB). The results showed that the amplified fragment is about 1600 base pairs in size. After analysis, the aligned sequences presented 9.36% for variable characters comprising 2.66% of parsimonious informative sites and 6.70% of singleton sites. Moreover, there are 6 regions of 1-2 base(s) for insertion/deletion. The phylogenetic trees based on maximum parsimony and maximum likelihood with high bootstrap support indicated that genus Nymphaea was a paraphyletic group because of Ondinea, Victoria and Euryale disruption. Within genus Nymphaea, subgenus Nymphaea is a basal lineage group which cooperated with Euryale and Victoria. The other four subgenera, namely Lotos, Hydrocallis, Brachyceras and Anecphya were included the same large clade which Ondinea was placed within Anecphya clade due to geographical sharing.
Keywords: nrDNA, phylogeny, taxonomy, Waterlily.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11291495 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation
Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint
Abstract:
Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19191494 Holistic Face Recognition using Multivariate Approximation, Genetic Algorithms and AdaBoost Classifier: Preliminary Results
Authors: C. Villegas-Quezada, J. Climent
Abstract:
Several works regarding facial recognition have dealt with methods which identify isolated characteristics of the face or with templates which encompass several regions of it. In this paper a new technique which approaches the problem holistically dispensing with the need to identify geometrical characteristics or regions of the face is introduced. The characterization of a face is achieved by randomly sampling selected attributes of the pixels of its image. From this information we construct a set of data, which correspond to the values of low frequencies, gradient, entropy and another several characteristics of pixel of the image. Generating a set of “p" variables. The multivariate data set with different polynomials minimizing the data fitness error in the minimax sense (L∞ - Norm) is approximated. With the use of a Genetic Algorithm (GA) it is able to circumvent the problem of dimensionality inherent to higher degree polynomial approximations. The GA yields the degree and values of a set of coefficients of the polynomials approximating of the image of a face. By finding a family of characteristic polynomials from several variables (pixel characteristics) for each face (say Fi ) in the data base through a resampling process the system in use, is trained. A face (say F ) is recognized by finding its characteristic polynomials and using an AdaBoost Classifier from F -s polynomials to each of the Fi -s polynomials. The winner is the polynomial family closer to F -s corresponding to target face in data base.
Keywords: AdaBoost Classifier, Holistic Face Recognition, Minimax Multivariate Approximation, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14971493 Effect of Moisture Content Compaction in the Geometry Definition of Earth Dams
Authors: Julian B. García, Virginie Q. R. Pinto, André P. Assis
Abstract:
This paper presents numerical flow and slope stability simulations in three typical sections of earth dams built in tropical regions, two homogeneous with different slope inclinations, and the other one heterogeneous with impermeable core. The geotechnical material parameters used in this work were obtained from a lab testing of physical characterization, compaction, consolidation, variable load permeability and saturated triaxial type CD for compacted soil samples with standard proctor energy at optimum moisture content (23%), optimum moisture content + 2% and optimum moisture content +5%. The objective is to analyze the general behavior of earth dams built in rainy regions where optimum moisture is exceeded. The factor of safety is satisfactory for the three sections compacted in all moisture content during the stages of operation and end of construction. On The other hand, the rapid drawdown condition is the critical phase for homogeneus dams configuration, the factor of safety obtained were unsatisfactory. In general, the heterogeneous dam behavior is more efficient due to the fact that the slopes are made up of gravel, which favors the dissipation of pore pressures during the rapid drawdown. For the critical phase, the slopes should have lower inclinations of the upstream and downstream slopes to guarantee stability, although it increases the costs.
Keywords: Earth dams, flow, moisture content, slope stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9261492 Momentum Accounting in Public Management: A Case Study in a Brazilian Navy-s Services Provider Military Organization
Authors: Rodrigo Barreiros Leal, Aracéli Cristina de Sousa Ferreira
Abstract:
This study examines the possibility to apply the theory of multidimensional accounting (momentum accounting) in a Brazilian Navy-s Services Provider Military Organization (Organização Militar Prestadora de Serviços - OMPS). In general, the core of the said theory is the fact that Accounting does not recognize the inertia of transactions occurring in an entity, and that occur repeatedly in some cases, regardless of the implementation of new actions by its managers. The study evaluates the possibility of greater use of information recorded in the financial statements of the unit of analysis, within the strategic decisions of the organization. As a research strategy, we adopted the case study. The results infer that it is possible to use the theory in the context of a multidimensional OMPS, promoting useful information for decision-making and thereby contributing to the strengthening of the necessary alignment of its administration with the current desires of the Brazilian society.
Keywords: Multidimensional Accounting, Public Management, Decision Making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28791491 Development of a Project Selection Method on Information System Using ANP and Fuzzy Logic
Authors: Ingu Kim, Shangmun Shin, Yongsun Choi, Nguyen Manh Thang, Edwin R. Ramos, Won-Joo Hwang
Abstract:
Project selection problems on management information system (MIS) are often considered a multi-criteria decision-making (MCDM) for a solving method. These problems contain two aspects, such as interdependencies among criteria and candidate projects and qualitative and quantitative factors of projects. However, most existing methods reported in literature consider these aspects separately even though these two aspects are simultaneously incorporated. For this reason, we proposed a hybrid method using analytic network process (ANP) and fuzzy logic in order to represent both aspects. We then propose a goal programming model to conduct an optimization for the project selection problems interpreted by a hybrid concept. Finally, a numerical example is conducted as verification purposes.Keywords: Analytic Network Process (ANP), Multi-Criteria Decision-Making (MCDM), Fuzzy Logic, Information System Project Selection, Goal Programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20891490 A Computational Study on Flow Separation Control of Humpback Whale Inspired Sinusoidal Hydrofoils
Authors: J. Joy, T. H. New, I. H. Ibrahim
Abstract:
A computational study on bio-inspired NACA634-021 hydrofoils with leading-edge protuberances has been carried out to investigate their hydrodynamic flow control characteristics at a Reynolds number of 14,000 and different angles-of-attack. The numerical simulations were performed using ANSYS FLUENT and based on Reynolds-Averaged Navier-Stokes (RANS) solver mode incorporated with k-ω Shear Stress Transport (SST) turbulence model. The results obtained indicate varying flow phenomenon along the peaks and troughs over the span of the hydrofoils. Compared to the baseline hydrofoil with no leading-edge protuberances, the leading-edge modified hydrofoils tend to reduce flow separation extents along the peak regions. In contrast, there are increased flow separations in the trough regions of the hydrofoil with leading-edge protuberances. Interestingly, it was observed that dissimilar flow separation behaviour is produced along different peak- or trough-planes along the hydrofoil span, even though the troughs or peaks are physically similar at each interval for a particular hydrofoil. Significant interactions between adjacent flow structures produced by the leading-edge protuberances have also been observed. These flow interactions are believed to be responsible for the dissimilar flow separation behaviour along physically similar peak- or trough-planes.Keywords: Computational Fluid Dynamics, Flow separation control, Hydrofoils, Leading-edge protuberances.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20161489 Material Selection for a Manual Winch Rope Drum
Authors: Moses F. Oduori, Enoch K. Musyoka, Thomas O. Mbuya
Abstract:
The selection of materials is an essential task in mechanical design processes. This paper sets out to demonstrate the application of analytical decision making during mechanical design and, particularly, in selecting a suitable material for a given application. Equations for the mechanical design of a manual winch rope drum are used to derive quantitative material performance indicators, which are then used in a multiple attribute decision making (MADM) model to rank the candidate materials. Thus, the processing of mechanical design considerations and material properties data into information that is suitable for use in a quantitative materials selection process is demonstrated for the case of a rope drum design. Moreover, Microsoft Excel®, a commonly available computer package, is used in the selection process. The results of the materials selection process are in agreement with current industry practice in rope drum design. The procedure that is demonstrated here should be adaptable to other design situations in which a need arises for the selection of engineering materials, and other engineering entities.
Keywords: Design Decisions, Materials Selection, Mechanical Design, Rope Drum Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37781488 Proposal of a Model Supporting Decision-Making Based On Multi-Objective Optimization Analysis on Information Security Risk Treatment
Authors: Ritsuko Kawasaki (Aiba), Takeshi Hiromatsu
Abstract:
Management is required to understand all information security risks within an organization, and to make decisions on which information security risks should be treated in what level by allocating how much amount of cost. However, such decision-making is not usually easy, because various measures for risk treatment must be selected with the suitable application levels. In addition, some measures may have objectives conflicting with each other. It also makes the selection difficult. Moreover, risks generally have trends and it also should be considered in risk treatment. Therefore, this paper provides the extension of the model proposed in the previous study. The original model supports the selection of measures by applying a combination of weighted average method and goal programming method for multi-objective analysis to find an optimal solution. The extended model includes the notion of weights to the risks, and the larger weight means the priority of the risk.
Keywords: Information security risk treatment, Selection of risk measures, Risk acceptanceand Multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17211487 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering
Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel
Abstract:
Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.Keywords: Classification, data mining, spam filtering, naive Bayes, decision tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14971486 A Framework for Identifying the Critical Factors Affecting the Decision to Adopt and Use Inter-Organizational Information Systems
Authors: K. Bouchbout, Z. Alimazighi
Abstract:
The importance of inter-organizational system (IOS) has been increasingly recognized by organizations. However, IOS adoption has proved to be difficult and, at this stage, why this is so is not fully uncovered. In practice, benefits have often remained concentrated, primarily accruing to the dominant party, resulting in low rates of adoption and usage, and often culminating in the failure of the IOS. The main research question is why organizations initiate or join IOS and what factors influence their adoption and use levels. This paper reviews the literature on IOS adoption and proposes a theoretical framework in order to identify the critical factors to capture a complete picture of IOS adoption. With our proposed critical factors, we are able to investigate their relative contributions to IOS adoption decisions. We obtain findings that suggested that there are five groups of factors that significantly affect the adoption and use decision of IOS in the Supply Chain Management (SCM) context: 1) interorganizational context, 2) organizational context, 3) technological context, 4) perceived costs, and 5) perceived benefits.Keywords: Business-to-Business relationships, buyer-supplier relationships, Critical factors, Interorganizational Information Systems, IOS adoption and use.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20481485 Fuzzy Approach for Ranking of Motor Vehicles Involved in Road Accidents
Authors: Lazim Abdullah, N orhanadiah Zam
Abstract:
Increasing number of vehicles and lack of awareness among road users may lead to road accidents. However no specific literature was found to rank vehicles involved in accidents based on fuzzy variables of road users. This paper proposes a ranking of four selected motor vehicles involved in road accidents. Human and non-human factors that normally linked with road accidents are considered for ranking. The imprecision or vagueness inherent in the subjective assessment of the experts has led the application of fuzzy sets theory to deal with ranking problems. Data in form of linguistic variables were collected from three authorised personnel of three Malaysian Government agencies. The Multi Criteria Decision Making, fuzzy TOPSIS was applied in computational procedures. From the analysis, it shows that motorcycles vehicles yielded the highest closeness coefficient at 0.6225. A ranking can be drawn using the magnitude of closeness coefficient. It was indicated that the motorcycles recorded the first rank.
Keywords: Road accidents, decision making, closeness coefficient, fuzzy number
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15411484 A Panel Cointegration Analysis for Macroeconomic Determinants of International Housing Market
Authors: Mei-Se Chien, Chien-Chiang Lee, Sin-Jie Cai
Abstract:
The main purpose of this paper is to investigate thelong-run equilibrium and short-run dynamics of international housing prices when macroeconomic variables change. We apply the Pedroni’s, panel cointegration, using the unbalanced panel data analysis of 33 countries over the period from 1980Q1 to 2013Q1, to examine the relationships among house prices and macroeconomic variables. Our empirical results of panel data cointegration tests support the existence of a cointegration among these macroeconomic variables and house prices. Besides, the empirical results of panel DOLS further present that a 1% increase in economic activity, long-term interest rates, and construction costs cause house prices to respectively change 2.16%, -0.04%, and 0.22% in the long run.Furthermore, the increasing economic activity and the construction cost would cause strongerimpacts on the house prices for lower income countries than higher income countries.The results lead to the conclusion that policy of house prices growth can be regarded as economic growth for lower income countries. Finally, in America region, the coefficient of economic activity is the highest, which displays that increasing economic activity causes a faster rise in house prices there than in other regions. There are some special cases whereby the coefficients of interest rates are significantly positive in America and Asia regions.
Keywords: House prices, Macroeconomic Variables, Panel cointegration, Dynamic OLS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51721483 Selection of Solid Waste Landfill Site Using Geographical Information System (GIS)
Abstract:
Rapid population growth, urbanization and industrialization are known as the most important factors of environment problems. Elimination and management of solid wastes are also within the most important environment problems. One of the main problems in solid waste management is the selection of the best site for elimination of solid wastes. Lately, Geographical Information System (GIS) has been used for easing selection of landfill area. GIS has the ability of imitating necessary economic, environmental and political limitations. They play an important role for the site selection of landfill area as a decision support tool. In this study; map layers will be studied for minimum effect of environmental, social and cultural factors and maximum effect for engineering/economic factors for site selection of landfill areas and using GIS for a decision support mechanism in solid waste landfill areas site selection will be presented in Aksaray/Turkey city, Güzelyurt district practice.Keywords: GIS, landfill, solid waste, spatial analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31791482 Ground Motion Modelling in Bangladesh Using Stochastic Method
Authors: Mizan Ahmed, Srikanth Venkatesan
Abstract:
Geological and tectonic framework indicates that Bangladesh is one of the most seismically active regions in the world. The Bengal Basin is at the junction of three major interacting plates: the Indian, Eurasian, and Burma Plates. Besides there are many active faults within the region, e.g. the large Dauki fault in the north. The country has experienced a number of destructive earthquakes due to the movement of these active faults. Current seismic provisions of Bangladesh are mostly based on earthquake data prior to the 1990. Given the record of earthquakes post 1990, there is a need to revisit the design provisions of the code. This paper compares the base shear demand of three major cities in Bangladesh: Dhaka (the capital city), Sylhet, and Chittagong for earthquake scenarios of magnitudes 7.0MW, 7.5MW, 8.0MW, and 8.5MW using a stochastic model. In particular, the stochastic model allows the flexibility to input region specific parameters such as shear wave velocity profile (that were developed from Global Crustal Model CRUST2.0) and include the effects of attenuation as individual components. Effects of soil amplification were analysed using the Extended Component Attenuation Model (ECAM). Results show that the estimated base shear demand is higher in comparison with code provisions leading to the suggestion of additional seismic design consideration in the study regions.Keywords: Attenuation, earthquake, ground motion, stochastic, seismic hazard.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20341481 Deep Reinforcement Learning for Optimal Decision-making in Supply Chains
Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol
Abstract:
We propose the use of Reinforcement Learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making make it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and a statistical analysis of the results. We study generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.
Keywords: Inventory Management, Reinforcement Learning, Supply Chain Optimization, Uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 383