Search results for: smooth optimization methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5727

Search results for: smooth optimization methods

5127 Neural Networks and Particle Swarm Optimization Based MPPT for Small Wind Power Generator

Authors: Chun-Yao Lee, Yi-Xing Shen, Jung-Cheng Cheng, Yi-Yin Li, Chih-Wen Chang

Abstract:

This paper proposes the method combining artificial neural network (ANN) with particle swarm optimization (PSO) to implement the maximum power point tracking (MPPT) by controlling the rotor speed of the wind generator. First, the measurements of wind speed, rotor speed of wind power generator and output power of wind power generator are applied to train artificial neural network and to estimate the wind speed. Second, the method mentioned above is applied to estimate and control the optimal rotor speed of the wind turbine so as to output the maximum power. Finally, the result reveals that the control system discussed in this paper extracts the maximum output power of wind generator within the short duration even in the conditions of wind speed and load impedance variation.

Keywords: Maximum power point tracking, artificial neuralnetwork, particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208
5126 Phase Equilibrium of Volatile Organic Compounds in Polymeric Solvents Using Group Contribution Methods

Authors: E. Muzenda

Abstract:

Group contribution methods such as the UNIFAC are of major interest to researchers and engineers involved synthesis, feasibility studies, design and optimization of separation processes as well as other applications of industrial use. Reliable knowledge of the phase equilibrium behavior is crucial for the prediction of the fate of the chemical in the environment and other applications. The objective of this study was to predict the solubility of selected volatile organic compounds (VOCs) in glycol polymers and biodiesel. Measurements can be expensive and time consuming, hence the need for thermodynamic models. The results obtained in this study for the infinite dilution activity coefficients compare very well those published in literature obtained through measurements. It is suggested that in preliminary design or feasibility studies of absorption systems for the abatement of volatile organic compounds, prediction procedures should be implemented while accurate fluid phase equilibrium data should be obtained from experiment.

Keywords: Volatile organic compounds, Prediction, Phaseequilibrium, Environmental, Infinite dilution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
5125 Jobs Scheduling and Worker Assignment Problem to Minimize Makespan using Ant Colony Optimization Metaheuristic

Authors: Mian Tahir Aftab, Muhammad Umer, Riaz Ahmad

Abstract:

This article proposes an Ant Colony Optimization (ACO) metaheuristic to minimize total makespan for scheduling a set of jobs and assign workers for uniformly related parallel machines. An algorithm based on ACO has been developed and coded on a computer program Matlab®, to solve this problem. The paper explains various steps to apply Ant Colony approach to the problem of minimizing makespan for the worker assignment & jobs scheduling problem in a parallel machine model and is aimed at evaluating the strength of ACO as compared to other conventional approaches. One data set containing 100 problems (12 Jobs, 03 machines and 10 workers) which is available on internet, has been taken and solved through this ACO algorithm. The results of our ACO based algorithm has shown drastically improved results, especially, in terms of negligible computational effort of CPU, to reach the optimal solution. In our case, the time taken to solve all 100 problems is even lesser than the average time taken to solve one problem in the data set by other conventional approaches like GA algorithm and SPT-A/LMC heuristics.

Keywords: Ant Colony Optimization (ACO), Genetic algorithms (GA), Makespan, SPT-A/LMC heuristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3472
5124 Optimization of a Hybrid Wind-Pv-Diesel Standalone System: Case Chlef, Algeria

Authors: T. Tahri, A. Bettahar, M. Douani

Abstract:

In this work, an attempt is made to design an optimal wind/pv/diesel hybrid power system for a village of Ain Merane, Chlef, Algeria, where the wind speed and solar radiation measurements were made. The aim of this paper is the optimization of a hybrid wind/solar/diesel system applied in term of technical and economic feasibility by simulation using HOMER. A comparison was made between the performance of wind/pv/diesel system and the classic connecting system.

Keywords: Chlef-Algeria, Homer, Renewable energy, Wind-pvdiesel hybrid system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3051
5123 Methodology: A Review in Modelling and Predictability of Embankment in Soft Ground

Authors: Bhim Kumar Dahal

Abstract:

Transportation network development in the developing country is in rapid pace. The majority of the network belongs to railway and expressway which passes through diverse topography, landform and geological conditions despite the avoidance principle during route selection. Construction of such networks demand many low to high embankment which required improvement in the foundation soil. This paper is mainly focused on the various advanced ground improvement techniques used to improve the soft soil, modelling approach and its predictability for embankments construction. The ground improvement techniques can be broadly classified in to three groups i.e. densification group, drainage and consolidation group and reinforcement group which are discussed with some case studies.  Various methods were used in modelling of the embankments from simple 1-dimensional to complex 3-dimensional model using variety of constitutive models. However, the reliability of the predictions is not found systematically improved with the level of sophistication.  And sometimes the predictions are deviated more than 60% to the monitored value besides using same level of erudition. This deviation is found mainly due to the selection of constitutive model, assumptions made during different stages, deviation in the selection of model parameters and simplification during physical modelling of the ground condition. This deviation can be reduced by using optimization process, optimization tools and sensitivity analysis of the model parameters which will guide to select the appropriate model parameters.

Keywords: Embankment, ground improvement, modelling, model prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 952
5122 Impact of the Electricity Market Prices on Energy Storage Operation during the COVID-19 Pandemic

Authors: Marin Mandić, Elis Sutlović, Tonći Modrić, Luka Stanić

Abstract:

With the restructuring and deregulation of the power system, storage owners, generation companies or private producers can offer their multiple services on various power markets and earn income in different types of markets, such as the day-ahead, real-time, ancillary services market, etc. During the COVID-19 pandemic, electricity prices, as well as ancillary services prices, increased significantly. The optimization of the energy storage operation was performed using a suitable model for simulating the operation of a pumped storage hydropower plant under market conditions. The objective function maximizes the income earned through energy arbitration, regulation-up, regulation-down and spinning reserve services. The optimization technique used for solving the objective function is mixed integer linear programming (MILP). In numerical examples, the pumped storage hydropower plant operation has been optimized considering the already achieved hourly electricity market prices from Nord Pool for the pre-pandemic (2019) and the pandemic (2020 and 2021) years. The impact of the electricity market prices during the COVID-19 pandemic on energy storage operation is shown through the analysis of income, operating hours, reserved capacity and consumed energy for each service. The results indicate the role of energy storage during a significant fluctuation in electricity and services prices.

Keywords: Electrical market prices, electricity market, energy storage optimization, mixed integer linear programming, MILP, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 517
5121 Optimal Design of Composite Patch for a Cracked Pipe by Utilizing Genetic Algorithm and Finite Element Method

Authors: Mahdi Fakoor, Seyed Mohammad Navid Ghoreishi

Abstract:

Composite patching is a common way for reinforcing the cracked pipes and cylinders. The effects of composite patch reinforcement on fracture parameters of a cracked pipe depend on a variety of parameters such as number of layers, angle, thickness, and material of each layer. Therefore, stacking sequence optimization of composite patch becomes crucial for the applications of cracked pipes. In this study, in order to obtain the optimal stacking sequence for a composite patch that has minimum weight and maximum resistance in propagation of cracks, a coupled Multi-Objective Genetic Algorithm (MOGA) and Finite Element Method (FEM) process is proposed. This optimization process has done for longitudinal and transverse semi-elliptical cracks and optimal stacking sequences and Pareto’s front for each kind of cracks are presented. The proposed algorithm is validated against collected results from the existing literature.

Keywords: Multi objective optimization, Pareto front, composite patch, cracked pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 909
5120 Key Frame Based Video Summarization via Dependency Optimization

Authors: Janya Sainui

Abstract:

As a rapid growth of digital videos and data communications, video summarization that provides a shorter version of the video for fast video browsing and retrieval is necessary. Key frame extraction is one of the mechanisms to generate video summary. In general, the extracted key frames should both represent the entire video content and contain minimum redundancy. However, most of the existing approaches heuristically select key frames; hence, the selected key frames may not be the most different frames and/or not cover the entire content of a video. In this paper, we propose a method of video summarization which provides the reasonable objective functions for selecting key frames. In particular, we apply a statistical dependency measure called quadratic mutual informaion as our objective functions for maximizing the coverage of the entire video content as well as minimizing the redundancy among selected key frames. The proposed key frame extraction algorithm finds key frames as an optimization problem. Through experiments, we demonstrate the success of the proposed video summarization approach that produces video summary with better coverage of the entire video content while less redundancy among key frames comparing to the state-of-the-art approaches.

Keywords: Video summarization, key frame extraction, dependency measure, quadratic mutual information, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 963
5119 Pallet Tracking and Cost Optimization of the Flow of Goods in Logistics Operations by Serial Shipping Container Code

Authors: Dominika Crnjac Milic, Martina Martinovic, Vladimir Simovic

Abstract:

The case study method in this paper shows the implementation of Information Technology (IT) and the Serial Shipping Container Code (SSCC) in a Croatian company that deals with logistics operations and provides logistics services in the cold chain segment. This company is aware of the sensitivity of the goods entrusted to them by the user of the service, as well as of the importance of speed and accuracy in providing logistics services. To that end, it has implemented and used the latest IT to ensure the highest standard of high-quality logistics services to its customers. Looking for efficiency and optimization of supply chain management, while maintaining a high level of quality of the products that are sold, today's users of outsourced logistics services are open to the implementation of new IT products that ultimately deliver savings. By analysing the positive results and the difficulties that arise when using this technology, we aim to provide an insight into the potential of this approach of the logistics service provider.

Keywords: Logistics operations, serial shipping container code, SSCC, information technology, cost optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 939
5118 NSGA Based Optimal Volt / Var Control in Distribution System with Dispersed Generation

Authors: P. N. Hrisheekesha, Jaydev Sharma

Abstract:

In this paper, a method based on Non-Dominated Sorting Genetic Algorithm (NSGA) has been presented for the Volt / Var control in power distribution systems with dispersed generation (DG). Genetic algorithm approach is used due to its broad applicability, ease of use and high accuracy. The proposed method is better suited for volt/var control problems. A multi-objective optimization problem has been formulated for the volt/var control of the distribution system. The non-dominated sorting genetic algorithm based method proposed in this paper, alleviates the problem of tuning the weighting factors required in solving the multi-objective volt/var control optimization problems. Based on the simulation studies carried out on the distribution system, the proposed scheme has been found to be simple, accurate and easy to apply to solve the multiobjective volt/var control optimization problem of the distribution system with dispersed generation.

Keywords: Dispersed Generation, Distribution System, Non-Dominated Sorting Genetic Algorithm, Voltage / Reactive powercontrol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
5117 Numerical Optimization Design of PEM Fuel Cell Performance Applying the Taguchi Method

Authors: Shan-Jen Cheng, Jr-Ming Miao, Sheng-Ju Wu

Abstract:

The purpose of this paper is applied Taguchi method on the optimization for PEMFC performance, and a representative Computational Fluid Dynamics (CFD) model is selectively performed for statistical analysis. The studied factors in this paper are pressure of fuel cell, operating temperature, the relative humidity of anode and cathode, porosity of gas diffusion electrode (GDE) and conductivity of GDE. The optimal combination for maximum power density is gained by using a three-level statistical method. The results confirmed that the robustness of the optimum design parameters influencing the performance of fuel cell are founded by pressure of fuel cell, 3atm; operating temperature, 353K; the relative humidity of anode, 50%; conductivity of GDE, 1000 S/m, but the relative humidity of cathode and porosity of GDE are pooled as error due to a small sum of squares. The present simulation results give designers the ideas ratify the effectiveness of the proposed robust design methodology for the performance of fuel cell.

Keywords: PEMFC, numerical simulation, optimization, Taguchi method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551
5116 A Retrievable Genetic Algorithm for Efficient Solving of Sudoku Puzzles

Authors: Seyed Mehran Kazemi, Bahare Fatemi

Abstract:

Sudoku is a logic-based combinatorial puzzle game which is popular among people of different ages. Due to this popularity, computer softwares are being developed to generate and solve Sudoku puzzles with different levels of difficulty. Several methods and algorithms have been proposed and used in different softwares to efficiently solve Sudoku puzzles. Various search methods such as stochastic local search have been applied to this problem. Genetic Algorithm (GA) is one of the algorithms which have been applied to this problem in different forms and in several works in the literature. In these works, chromosomes with little or no information were considered and obtained results were not promising. In this paper, we propose a new way of applying GA to this problem which uses more-informed chromosomes than other works in the literature. We optimize the parameters of our GA using puzzles with different levels of difficulty. Then we use the optimized values of the parameters to solve various puzzles and compare our results to another GA-based method for solving Sudoku puzzles.

Keywords: Genetic algorithm, optimization, solving Sudoku puzzles, stochastic local search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3771
5115 Pin type Clamping Attachment for Remote Setup of Machining Process

Authors: Afzeri, R. Muhida, Darmawan, A. N. Berahim

Abstract:

Sharing the manufacturing facility through remote operation and monitoring of a machining process is challenge for effective use the production facility. Several automation tools in term of hardware and software are necessary for successfully remote operation of a machine. This paper presents a prototype of workpiece holding attachment for remote operation of milling process by self configuration the workpiece setup. The prototype is designed with mechanism to reorient the work surface into machining spindle direction with high positioning accuracy. Variety of parts geometry is hold by attachment to perform single setup machining. Pin type with array pattern additionally clamps the workpiece surface from two opposite directions for increasing the machining rigidity. Optimum pins configuration for conforming the workpiece geometry with minimum deformation is determined through hybrid algorithms, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). Prototype with intelligent optimization technique enables to hold several variety of workpiece geometry which is suitable for machining low of repetitive production in remote operation.

Keywords: Optimization, Remote machining, GeneticAlgorithms, Machining Fixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639
5114 Performance Comparison of Particle Swarm Optimization with Traditional Clustering Algorithms used in Self-Organizing Map

Authors: Anurag Sharma, Christian W. Omlin

Abstract:

Self-organizing map (SOM) is a well known data reduction technique used in data mining. It can reveal structure in data sets through data visualization that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOM, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of an adaptive heuristic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOM. The application of our method to several standard data sets demonstrates its feasibility. PSO algorithm utilizes a so-called U-matrix of SOM to determine cluster boundaries; the results of this novel automatic method compare very favorably to boundary detection through traditional algorithms namely k-means and hierarchical based approach which are normally used to interpret the output of SOM.

Keywords: cluster boundaries, clustering, code vectors, data mining, particle swarm optimization, self-organizing maps, U-matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909
5113 Optimization by Means of Genetic Algorithm of the Equivalent Electrical Circuit Model of Different Order for Li-ion Battery Pack

Authors: V. Pizarro-Carmona, S. Castano-Solis, M. Cortés-Carmona, J. Fraile-Ardanuy, D. Jimenez-Bermejo

Abstract:

The purpose of this article is to optimize the Equivalent Electric Circuit Model (EECM) of different orders to obtain greater precision in the modeling of Li-ion battery packs. Optimization includes considering circuits based on 1RC, 2RC and 3RC networks, with a dependent voltage source and a series resistor. The parameters are obtained experimentally using tests in the time domain and in the frequency domain. Due to the high non-linearity of the behavior of the battery pack, Genetic Algorithm (GA) was used to solve and optimize the parameters of each EECM considered (1RC, 2RC and 3RC). The objective of the estimation is to minimize the mean square error between the measured impedance in the real battery pack and those generated by the simulation of different proposed circuit models. The results have been verified by comparing the Nyquist graphs of the estimation of the complex impedance of the pack. As a result of the optimization, the 2RC and 3RC circuit alternatives are considered as viable to represent the battery behavior. These battery pack models are experimentally validated using a hardware-in-the-loop (HIL) simulation platform that reproduces the well-known New York City cycle (NYCC) and Federal Test Procedure (FTP) driving cycles for electric vehicles. The results show that using GA optimization allows obtaining EECs with 2RC or 3RC networks, with high precision to represent the dynamic behavior of a battery pack in vehicular applications.

Keywords: Li-ion battery packs modeling optimized, EECM, GA, electric vehicle applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
5112 Ride Control of Passenger Cars with Semi-active Suspension System Using a Linear Quadratic Regulator and Hybrid Optimization Algorithm

Authors: Ali Fellah Jahromi, Wen Fang Xie, Rama B. Bhat

Abstract:

A semi-active control strategy for suspension systems of passenger cars is presented employing Magnetorheological (MR) dampers. The vehicle is modeled with seven DOFs including the, roll pitch and bounce of car body, and the vertical motion of the four tires. In order to design an optimal controller based on the actuator constraints, a Linear-Quadratic Regulator (LQR) is designed. The design procedure of the LQR consists of selecting two weighting matrices to minimize the energy of the control system. This paper presents a hybrid optimization procedure which is a combination of gradient-based and evolutionary algorithms to choose the weighting matrices with regards to the actuator constraint. The optimization algorithm is defined based on maximum comfort and actuator constraints. It is noted that utilizing the present control algorithm may significantly reduce the vibration response of the passenger car, thus, providing a comfortable ride.

Keywords: Full car model, Linear Quadratic Regulator, Sequential Quadratic Programming, Genetic Algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2940
5111 Power System Security Constrained Economic Dispatch Using Real Coded Quantum Inspired Evolution Algorithm

Authors: A. K. Al-Othman, F. S. Al-Fares, K. M. EL-Nagger

Abstract:

This paper presents a new optimization technique based on quantum computing principles to solve a security constrained power system economic dispatch problem (SCED). The proposed technique is a population-based algorithm, which uses some quantum computing elements in coding and evolving groups of potential solutions to reach the optimum following a partially directed random approach. The SCED problem is formulated as a constrained optimization problem in a way that insures a secure-economic system operation. Real Coded Quantum-Inspired Evolution Algorithm (RQIEA) is then applied to solve the constrained optimization formulation. Simulation results of the proposed approach are compared with those reported in literature. The outcome is very encouraging and proves that RQIEA is very applicable for solving security constrained power system economic dispatch problem (SCED).

Keywords: State Estimation, Fuzzy Linear Regression, FuzzyLinear State Estimator (FLSE) and Measurements Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715
5110 Buckling Optimization of Radially-Graded, Thin-Walled, Long Cylinders under External Pressure

Authors: Karam Y. Maalawi

Abstract:

This paper presents a generalized formulation for the problem of buckling optimization of anisotropic, radially graded, thin-walled, long cylinders subject to external hydrostatic pressure. The main structure to be analyzed is built of multi-angle fibrous laminated composite lay-ups having different volume fractions of the constituent materials within the individual plies. This yield to a piecewise grading of the material in the radial direction; that is the physical and mechanical properties of the composite material are allowed to vary radially. The objective function is measured by maximizing the critical buckling pressure while preserving the total structural mass at a constant value equals to that of a baseline reference design. In the selection of the significant optimization variables, the fiber volume fractions adjoin the standard design variables including fiber orientation angles and ply thicknesses. The mathematical formulation employs the classical lamination theory, where an analytical solution that accounts for the effective axial and flexural stiffness separately as well as the inclusion of the coupling stiffness terms is presented. The proposed model deals with dimensionless quantities in order to be valid for thin shells having arbitrary thickness-to-radius ratios. The critical buckling pressure level curves augmented with the mass equality constraint are given for several types of cylinders showing the functional dependence of the constrained objective function on the selected design variables. It was shown that material grading can have significant contribution to the whole optimization process in achieving the required structural designs with enhanced stability limits.

Keywords: Buckling instability, structural optimization, functionally graded material, laminated cylindrical shells, externalhydrostatic pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2359
5109 Multi-Objective Optimization of Electric Discharge Machining for Inconel 718

Authors: Pushpendra S. Bharti, S. Maheshwari

Abstract:

Electric discharge machining (EDM) is one of the most widely used non-conventional manufacturing process to shape difficult-to-cut materials. The process yield, in terms of material removal rate, surface roughness and tool wear rate, of EDM may considerably be improved by selecting the optimal combination(s) of process parameters. This paper employs Multi-response signal-to-noise (MRSN) ratio technique to find the optimal combination(s) of the process parameters during EDM of Inconel 718. Three cases v.i.z. high cutting efficiency, high surface finish, and normal machining have been taken and the optimal combinations of input parameters have been obtained for each case. Analysis of variance (ANOVA) has been employed to find the dominant parameter(s) in all three cases. The experimental verification of the obtained results has also been made. MRSN ratio technique found to be a simple and effective multi-objective optimization technique.

Keywords: EDM, material removal rate, multi-response signal-to-noise ratio, optimization, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197
5108 Fuzzy Controller Design for Ball and Beam System with an Improved Ant Colony Optimization

Authors: Yeong-Hwa Chang, Chia-Wen Chang, Hung-Wei Lin, C.W. Tao

Abstract:

In this paper, an improved ant colony optimization (ACO) algorithm is proposed to enhance the performance of global optimum search. The strategy of the proposed algorithm has the capability of fuzzy pheromone updating, adaptive parameter tuning, and mechanism resetting. The proposed method is utilized to tune the parameters of the fuzzy controller for a real beam and ball system. Simulation and experimental results indicate that better performance can be achieved compared to the conventional ACO algorithms in the aspect of convergence speed and accuracy.

Keywords: Ant colony algorithm, Fuzzy control, ball and beamsystem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
5107 Relevance Feedback within CBIR Systems

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-nearest neighbors algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing color moments on the RGB space. This compact descriptor, Color Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.

Keywords: CBIR, Category Search, Relevance Feedback (RFB), Query Point Movement, Standard Rocchio’s Formula, Adaptive Shifting Query, Feature Weighting, Optimization of the Parameters of Similarity Metric, Original KNN, Incremental KNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
5106 Optimization of the Headspace Solid-Phase Microextraction Gas Chromatography for Volatile Compounds Determination in Phytophthora Cinnamomi Rands

Authors: Rui Qiu, Giles Hardy, Dong Qu, Robert Trengove, Manjree Agarwal, YongLin Ren

Abstract:

Phytophthora cinnamomi (P. c) is a plant pathogenic oomycete that is capable of damaging plants in commercial production systems and natural ecosystems worldwide. The most common methods for the detection and diagnosis of P. c infection are expensive, elaborate and time consuming. This study was carried out to examine whether species specific and life cycle specific volatile organic compounds (VOCs) can be absorbed by solid-phase microextraction fibers and detected by gas chromatography that are produced by P. c and another oomycete Pythium dissotocum. A headspace solid-phase microextraction (HS-SPME) together with gas chromatography (GC) method was developed and optimized for the identification of the VOCs released by P. c. The optimized parameters included type of fiber, exposure time, desorption temperature and desorption time. Optimization was achieved with the analytes of P. c+V8A and V8A alone. To perform the HS-SPME, six types of fiber were assayed and compared: 7μm Polydimethylsiloxane (PDMS), 100μm Polydimethylsiloxane (PDMS), 50/30μm Divinylbenzene/CarboxenTM/Polydimethylsiloxane DVB/CAR/PDMS), 65μm Polydimethylsiloxane/Divinylbenzene (PDMS/DVB), 85μm Polyacrylate (PA) fibre and 85μm CarboxenTM/ Polydimethylsiloxane (Carboxen™/PDMS). In a comparison of the efficacy of the fibers, the bipolar fiber DVB/CAR/PDMS had a higher extraction efficiency than the other fibers. An exposure time of 16h with DVB/CAR/PDMS fiber in the sample headspace was enough to reach the maximum extraction efficiency. A desorption time of 3min in the GC injector with the desorption temperature of 250°C was enough for the fiber to desorb the compounds of interest. The chromatograms and morphology study confirmed that the VOCs from P. c+V8A had distinct differences from V8A alone, as did different life cycle stages of P. c and different taxa such as Pythium dissotocum. The study proved that P. c has species and life cycle specific VOCs, which in turn demonstrated the feasibility of this method as means of

Keywords: Gas chromatography, headspace solid-phase microextraction, optimization, volatile compounds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
5105 Probability of Globality

Authors: Eva Eggeling, Dieter W. Fellner, Torsten Ullrich

Abstract:

The objective of global optimization is to find the globally best solution of a model. Nonlinear models are ubiquitous in many applications and their solution often requires a global search approach; i.e. for a function f from a set A ⊂ Rn to the real numbers, an element x0 ∈ A is sought-after, such that ∀ x ∈ A : f(x0) ≤ f(x). Depending on the field of application, the question whether a found solution x0 is not only a local minimum but a global one is very important. This article presents a probabilistic approach to determine the probability of a solution being a global minimum. The approach is independent of the used global search method and only requires a limited, convex parameter domain A as well as a Lipschitz continuous function f whose Lipschitz constant is not needed to be known.

Keywords: global optimization, probability theory, probability of globality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
5104 Optimization of Tolerance Grades of a Bearing and Shaft Assembly in a Washing Machine with Regard to Fatigue Life

Authors: M. Cangi, T. Dolar, C. Ersoy, Y. E. Aydogdu, A. I. Aydeniz, A. Mugan

Abstract:

The drum is one of the critical parts in a washing machine in which the clothes are washed and spin by the rotational movement. It is activated by the drum shaft which is attached to an electric motor and subjected to dynamic loading. Being one of the critical components, failures of the drum require costly repairs of dynamic components. In this study, tolerance bands between the drum shaft and its two bearings were examined to develop a relationship between the fatigue life of the shaft and the interaction tolerances. Optimization of tolerance bands was completed in consideration of the fatigue life of the shaft as the cost function. The following methodology is followed: multibody dynamic model of a washing machine was constructed and used to calculate dynamic loading on the components. Then, these forces were used in finite element analyses to calculate the stress field in critical components which was used for fatigue life predictions. The factors affecting the fatigue life were examined to find optimum tolerance grade for a given test condition. Numerical results were verified by experimental observations.

Keywords: Fatigue life, finite element analysis, tolerance analysis, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 933
5103 A Hybrid Multi Objective Algorithm for Flexible Job Shop Scheduling

Authors: Parviz Fattahi

Abstract:

Scheduling for the flexible job shop is very important in both fields of production management and combinatorial optimization. However, it quit difficult to achieve an optimal solution to this problem with traditional optimization approaches owing to the high computational complexity. The combining of several optimization criteria induces additional complexity and new problems. In this paper, a Pareto approach to solve the multi objective flexible job shop scheduling problems is proposed. The objectives considered are to minimize the overall completion time (makespan) and total weighted tardiness (TWT). An effective simulated annealing algorithm based on the proposed approach is presented to solve multi objective flexible job shop scheduling problem. An external memory of non-dominated solutions is considered to save and update the non-dominated solutions during the solution process. Numerical examples are used to evaluate and study the performance of the proposed algorithm. The proposed algorithm can be applied easily in real factory conditions and for large size problems. It should thus be useful to both practitioners and researchers.

Keywords: Flexible job shop, Scheduling, Hierarchical approach, simulated annealing, tabu search, multi objective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2010
5102 A Novel QoS Optimization Architecture for 4G Networks

Authors: Aaqif Afzaal Abbasi, Javaid Iqbal, Akhtar Nawaz Malik

Abstract:

4G Communication Networks provide heterogeneous wireless technologies to mobile subscribers through IP based networks and users can avail high speed access while roaming across multiple wireless channels; possible by an organized way to manage the Quality of Service (QoS) functionalities in these networks. This paper proposes the idea of developing a novel QoS optimization architecture that will judge the user requirements and knowing peak times of services utilization can save the bandwidth/cost factors. The proposed architecture can be customized according to the network usage priorities so as to considerably improve a network-s QoS performance.

Keywords: QoS, Network Coverage Boundary, ServicesArchives Units (SAU), Cumulative Services Archives Units (CSAU).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2021
5101 Application of PSO Technique for Seismic Control of Tall Building

Authors: A. Shayeghi, H. Shayeghi, H. Eimani Kalasar

Abstract:

In recent years, tuned mass damper (TMD) control systems for civil engineering structures have attracted considerable attention. This paper emphasizes on the application of particle swarm application (PSO) to design and optimize the parameters of the TMD control scheme for achieving the best results in the reduction of the building response under earthquake excitations. The Integral of the Time multiplied Absolute value of the Error (ITAE) based on relative displacement of all floors in the building is taken as a performance index of the optimization criterion. The problem of robustly TMD controller design is formatted as an optimization problem based on the ITAE performance index to be solved using the PSO technique which has a story ability to find the most optimistic results. An 11- story realistic building, located in the city of Rasht, Iran is considered as a test system to demonstrate effectiveness of the proposed method. The results analysis through the time-domain simulation and some performance indices reveals that the designed PSO based TMD controller has an excellent capability in reduction of the seismically excited example building.

Keywords: TMD, Particle Swarm Optimization, Tall Buildings, Structural Dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
5100 Development of a Biomechanical Method for Ergonomic Evaluation: Comparison with Observational Methods

Authors: M. Zare, S. Biau, M. Croq, Y. Roquelaure

Abstract:

A wide variety of observational methods have been developed to evaluate the ergonomic workloads in manufacturing. However, the precision and accuracy of these methods remain a subject of debate. The aims of this study were to develop biomechanical methods to evaluate ergonomic workloads and to compare them with observational methods.

Two observational methods, i.e. SCANIA Ergonomic Standard (SES) and Rapid Upper Limb Assessment (RULA), were used to assess ergonomic workloads at two simulated workstations. They included four tasks such as tightening & loosening, attachment of tubes and strapping as well as other actions. Sensors were also used to measure biomechanical data (Inclinometers, Accelerometers, and Goniometers).

Our findings showed that in assessment of some risk factors both RULA & SES were in agreement with the results of biomechanical methods. However, there was disagreement on neck and wrist postures. In conclusion, the biomechanical approach was more precise than observational methods, but some risk factors evaluated with observational methods were not measurable with the biomechanical techniques developed.

Keywords: Ergonomic, Observational Method, Biomechanical method, Workload.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5096
5099 Budget Optimization for Maintenance of Bridges in Egypt

Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham

Abstract:

Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.

Keywords: Bridge Management Systems (BMS), cost optimization condition assessment, fund allocation, Markov chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
5098 Studies on Lucrative Design of Waste Heat Recovery System for Air Conditioners

Authors: Ashwin Bala, K. Panthalaraja Kumaran, S. Prithviraj, R. Pradeep, J. Udhayakumar, S. Ajith

Abstract:

In this paper comprehensive studies have been carried out for the design optimization of a waste heat recovery system for effectively utilizing the domestic air conditioner heat energy for producing hot water. Numerical studies have been carried for the geometry optimization of a waste heat recovery system for domestic air conditioners. Numerical computations have been carried out using a validated 2d pressure based, unsteady, 2nd-order implicit, SST k-ω turbulence model. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier- Stokes equations is employed. At identical inflow and boundary conditions various geometries were tried and effort has been taken for proposing the best design criteria. Several combinations of pipe line shapes viz., straight and spiral with different number of coils for the radiator have been attempted and accordingly the design criteria has been proposed for the waste heat recovery system design. We have concluded that, within the given envelope, the geometry optimization is a meaningful objective for getting better performance of waste heat recovery system for air conditioners.

Keywords: Air-conditioning system, Energy conversion system, Hot water production from waste heat, Waste heat recovery system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2739