Search results for: Tabu search
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 760

Search results for: Tabu search

160 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models

Authors: Yoonsuh Jung

Abstract:

As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an ‘optimal’ value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.

Keywords: Cross Validation, Parameter Averaging, Parameter Selection, Regularization Parameter Search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
159 Maternal Smoking and Risk of Childhood Overweight and Obesity: A Meta-Analysis

Authors: Martina Kanciruk, Jac W. Andrews, Tyrone Donnon

Abstract:

The purpose of this study was to determine the significance of maternal smoking for the development of childhood overweight and/or obesity. Accordingly, a systematic literature review of English-language studies published from 1980 to 2012 using the following data bases: MEDLINE, PsychINFO, Cochrane Database of Systematic Reviews, and Dissertation Abstracts International was conducted. The following terms were used in the search: pregnancy, overweight, obesity, smoking, parents, childhood, risk factors. Eighteen studies of maternal smoking during pregnancy and obesity conducted in Europe, Asia, North America, and South America met the inclusion criteria. A meta-analysis of these studies indicated that maternal smoking during pregnancy is a significant risk factor for overweight and obesity; mothers who smoke during pregnancy are at a greater risk for developing obesity or overweight; the quantity of cigarettes consumed by the mother during pregnancy influenced the odds of offspring overweight and/or obesity. In addition, the results from moderator analyses suggest that part of the heterogeneity discovered between the studies can be explained by the region of world that the study occurred in and the age of the child at the time of weight assessment.

Keywords: Childhood obesity, overweight, smoking, parents, risk factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
158 Developing a Sustainable Educational Portal for the D-Grid Community

Authors: Viktor Achter, Sebastian Breuers, Marc Seifert, Ulrich Lang, Joachim Götze, Bernd Reuther, Paul Müller

Abstract:

Within the last years, several technologies have been developed to help building e-learning portals. Most of them follow approaches that deliver a vast amount of functionalities, suitable for class-like learning. The SuGI project, as part of the D-Grid (funded by the BMBF), targets on delivering a highly scalable and sustainable learning solution to provide materials (e.g. learning modules, training systems, webcasts, tutorials, etc.) containing knowledge about Grid computing to the D-Grid community. In this article, the process of the development of an e-learning portal focused on the requirements of this special user group is described. Furthermore, it deals with the conceptual and technical design of an e-learning portal, addressing the special needs of heterogeneous target groups. The main focus lies on the quality management of the software development process, Web templates for uploading new contents, the rich search and filter functionalities which will be described from a conceptual as well as a technical point of view. Specifically, it points out best practices as well as concepts to provide a sustainable solution to a relatively unknown and highly heterogeneous community.

Keywords: D-Grid, e-learning, e-science, Grid computing, SuGI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1345
157 A Knowledge-Based E-mail System Using Semantic Categorization and Rating Mechanisms

Authors: Azleena Mohd Kassim, Muhamad Rashidi A. Rahman, Yu-N. Cheah

Abstract:

Knowledge-based e-mail systems focus on incorporating knowledge management approach in order to enhance the traditional e-mail systems. In this paper, we present a knowledgebased e-mail system called KS-Mail where people do not only send and receive e-mail conventionally but are also able to create a sense of knowledge flow. We introduce semantic processing on the e-mail contents by automatically assigning categories and providing links to semantically related e-mails. This is done to enrich the knowledge value of each e-mail as well as to ease the organization of the e-mails and their contents. At the application level, we have also built components like the service manager, evaluation engine and search engine to handle the e-mail processes efficiently by providing the means to share and reuse knowledge. For this purpose, we present the KS-Mail architecture, and elaborate on the details of the e-mail server and the application server. We present the ontology mapping technique used to achieve the e-mail content-s categorization as well as the protocols that we have developed to handle the transactions in the e-mail system. Finally, we discuss further on the implementation of the modules presented in the KS-Mail architecture.

Keywords: E-mail rating, knowledge-based system, ontology mapping, text categorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
156 Family History of Obesity and Risk of Childhood Overweight and Obesity: A Meta-Analysis

Authors: Martina Kanciruk, Jac W. Andrews, Tyrone Donnon

Abstract:

The purpose of this study was to determine the significance of history of obesity for the development of childhood overweight and/or obesity. Accordingly, a systematic literature review of English-language studies published from 1980 to 2012 using the following data bases: MEDLINE, PsychINFO, Cochrane Database of Systematic Reviews, and Dissertation Abstracts International was conducted. The following terms were used in the search: pregnancy, overweight, obesity, family history, parents, childhood, risk factors. Eleven studies of family history and obesity conducted in Europe, Asia, North America, and South America met the inclusion criteria. A meta-analysis of these studies indicated that family history of obesity is a significant risk factor of overweight and /or obesity in offspring; risk for offspring overweight and/or obesity associated with family history varies depending of the family members included in the analysis; and when family history of obesity is present, the offspring are at greater risk for developing obesity or overweight. In addition, the results from moderator analyses suggest that part of the heterogeneity discovered between the studies can be explained by the region of world that the study occurred in and the age of the child at the time of weight assessment.

Keywords: Childhood obesity, overweight, family history, risk factors, meta-analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3565
155 Side Effects of Dental Tooth Whitening: Data from Literature

Authors: Saimir Heta, Ilma Robo, Emela Dalloshi, Nevila Alliu, Vera Ostreni

Abstract:

The dental whitening process, beyond the fact that it is a mini-invasive dental treatment, has effects on the dental structure or on the pulp of the tooth where it is applied. The electronic search was performed using keywords to find articles published within the last 10 years about side effects, assessed as such, of the minimally invasive dental bleaching treatment. The aim of the study was to evaluate the side effects of bleaching based on the percentage and type of solution used, where the latter was evaluated on the basic solution used for bleaching. The side effects of bleaching are evaluated in selected articles depending on the method of bleaching application, which means it is carried out with recommended solutions, or with mixtures of alternative solutions or substances based on Internet information. The dental bleaching process has side effects which have not yet been definitively evaluated, experimentally in large samples of individuals or animals (mice or cattle) to arrive at accurate numerical conclusions. The trend of publications about this topic is increasing in recent years, as long as the trend for aesthetic facial treatments, including dental ones, is increasing.

Keywords: Teeth whitening, side effects, permanent teeth, formed dental apex.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23
154 Simultaneous Tuning of Static Var Compensator and Power System Stabilizer Employing Real- Coded Genetic Algorithm

Authors: S. Panda, N. P. Patidar, R. Singh

Abstract:

Power system stability enhancement by simultaneous tuning of a Power System Stabilizer (PSS) and a Static Var Compensator (SVC)-based controller is thoroughly investigated in this paper. The coordination among the proposed damping stabilizers and the SVC internal voltage regulators has also been taken into consideration. The design problem is formulated as an optimization problem with a time-domain simulation-based objective function and Real-Coded Genetic Algorithm (RCGA) is employed to search for optimal controller parameters. The proposed stabilizers are tested on a weakly connected power system with different disturbances and loading conditions. The nonlinear simulation results are presented to show the effectiveness and robustness of the proposed control schemes over a wide range of loading conditions and disturbances. Further, the proposed design approach is found to be robust and improves stability effectively even under small disturbance and unbalanced fault conditions.

Keywords: Real-Coded Genetic Algorithm (RCGA), Static Var Compensator (SVC), Power System Stabilizer (PSS), Low Frequency Oscillations, Power System Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255
153 Application of Genetic Algorithm for FACTS-based Controller Design

Authors: Sidhartha Panda, N. P. Padhy, R.N.Patel

Abstract:

In this paper, genetic algorithm (GA) opmization technique is applied to design Flexible AC Transmission System (FACTS)-based damping controllers. Two types of controller structures, namely a proportional-integral (PI) and a lead-lag (LL) are considered. The design problem of the proposed controllers is formulated as an optimization problem and GA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The proposed controllers are tested on a weakly connected power system subjected to different disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and their ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC-based controllers improve greatly the voltage profile of the system under severe disturbances. Further, the dynamic performances of both the PI and LL structured FACTS-controller are analyzed at different loading conditions and under various disturbance condition as well as under unbalanced fault conditions..

Keywords: Genetic algorithm, proportional-integral controller, lead-lag controller, power system stability, FACTS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2542
152 A Framework for Scalable Autonomous P2P Resource Discovery for the Grid Implementation

Authors: Hesham A. Ali, Mofreh M. Salem, Ahmed A. Hamza

Abstract:

Recently, there have been considerable efforts towards the convergence between P2P and Grid computing in order to reach a solution that takes the best of both worlds by exploiting the advantages that each offers. Augmenting the peer-to-peer model to the services of the Grid promises to eliminate bottlenecks and ensure greater scalability, availability, and fault-tolerance. The Grid Information Service (GIS) directly influences quality of service for grid platforms. Most of the proposed solutions for decentralizing the GIS are based on completely flat overlays. The main contributions for this paper are: the investigation of a novel resource discovery framework for Grid implementations based on a hierarchy of structured peer-to-peer overlay networks, and introducing a discovery algorithm utilizing the proposed framework. Validation of the framework-s performance is done via simulation. Experimental results show that the proposed organization has the advantage of being scalable while providing fault-isolation, effective bandwidth utilization, and hierarchical access control. In addition, it will lead to a reliable, guaranteed sub-linear search which returns results within a bounded interval of time and with a smaller amount of generated traffic within each domain.

Keywords: Grid computing, grid information service, P2P, resource discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1976
151 Knowledge Spillovers from Patent Citations: Evidence from Swiss Manufacturing Industry

Authors: Racha Khairallah, Lamia Ben Hamida

Abstract:

Our paper attempts to examine how Swiss manufacturing firms manage to learn from patent citations to improve their innovation performance. We argue that the assessment of these effects needs a detailed analysis of spillovers according to the source of knowledge with respect to formal and informal patent citations made in European and internal search, the horizontal and vertical mechanisms by which knowledge spillovers take place, and the technological characteristics of innovative firms that able them to absorb external knowledge and integrate it in their existing innovation process. We use Organisation for Economic Co-operation and Development (OECD) data and find evidence that knowledge spillovers occur only from horizontal and backward linkages. The importance of these effects depends on the type of citation, in which the references to non-patent literature (informal citations made in European and international searches) have a greater impact. In addition, only firms with high technological capacities benefit from knowledge spillovers from formal and informal citations. Low-technology firms fail to catch up and efficiently learn external knowledge from patent citations.

Keywords: Innovation performance, patent citation, absorptive capacity, knowledge spillover mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48
150 Definition and Core Components of the Role-Partner Allocation Problem in Collaborative Networks

Authors: J. Andrade-Garda, A. Anguera, J. Ares-Casal, M. Hidalgo-Lorenzo, J.-A. Lara, D. Lizcano, S. Suárez-Garaboa

Abstract:

In the current constantly changing economic context, collaborative networks allow partners to undertake projects that would not be possible if attempted by them individually. These projects usually involve the performance of a group of tasks (named roles) that have to be distributed among the partners. Thus, an allocation/matching problem arises that will be referred to as Role-Partner Allocation problem. In real life this situation is addressed by negotiation between partners in order to reach ad hoc agreements. Besides taking a long time and being hard work, both historical evidence and economic analysis show that such approach is not recommended. Instead, the allocation process should be automated by means of a centralized matching scheme. However, as a preliminary step to start the search for such a matching mechanism (or even the development of a new one), the problem and its core components must be specified. To this end, this paper establishes (i) the definition of the problem and its constraints, (ii) the key features of the involved elements (i.e., roles and partners); and (iii) how to create preference lists both for roles and partners. Only this way it will be possible to conduct subsequent methodological research on the solution method.     

Keywords: Collaborative network, matching, partner, preference list, role.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818
149 Relation between Organizational Climate and Personnel Performance Assessment in a Tourist Service Company

Authors: Daniel A. Montoya, Marta L. Tostes

Abstract:

This investigation aims at analyzing and determining the relation between two very important variables in the human resource management: The organizational climate and the performance assessment. This study aims at contributing with knowledge in the search of the relation between the mentioned variables because the literature still does not provide solid evidence to this respect and the cases revised are incipient to reach conclusions enabling a typology about this relation.To this regard, a correlational and cross-sectional perspective was adopted in which quantitative and qualitative techniques were chosen with the total of the workers of the tourist service company PTS Peru. In order to measure the organizational climate, the OCQ (Organization Climate Questionnaire) from was used; it has 50 items and measures 9 dimensions of the Organizational Climate. Also, to assess performance, a questionnaire with 21 items and 6 dimensions was designed. As a means of assessment, a focus group was prepared and was applied to a worker in every area of the company. Additionally, interviews to human resources experts were conducted. The results of the investigation show a clear relation between the organizational climate and the personnel performance assessment as well as a relation between the nine dimensions of the organizational climate and the work performance in general and with some of its dimensions.

Keywords: Job performance, human resource management, organization climate, performance assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1046
148 Steepest Descent Method with New Step Sizes

Authors: Bib Paruhum Silalahi, Djihad Wungguli, Sugi Guritman

Abstract:

Steepest descent method is a simple gradient method for optimization. This method has a slow convergence in heading to the optimal solution, which occurs because of the zigzag form of the steps. Barzilai and Borwein modified this algorithm so that it performs well for problems with large dimensions. Barzilai and Borwein method results have sparked a lot of research on the method of steepest descent, including alternate minimization gradient method and Yuan method. Inspired by previous works, we modified the step size of the steepest descent method. We then compare the modification results against the Barzilai and Borwein method, alternate minimization gradient method and Yuan method for quadratic function cases in terms of the iterations number and the running time. The average results indicate that the steepest descent method with the new step sizes provide good results for small dimensions and able to compete with the results of Barzilai and Borwein method and the alternate minimization gradient method for large dimensions. The new step sizes have faster convergence compared to the other methods, especially for cases with large dimensions.

Keywords: Convergence, iteration, line search, running time, steepest descent, unconstrained optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3160
147 Consumer Online Shopping Behavior: The Effect of Internet Marketing Environment, Product Characteristics, Familiarity and Confidence, and Promotional Offer

Authors: Norazah Mohd Suki, Norbayah Mohd Suki

Abstract:

Online shopping enables consumers to search for information and purchase products or services through direct interaction with online store. This study aims to examine the effect of Internet marketing environment, product characteristics, familiarity and confidence, and promotional offers on consumer online shopping behavior. 200 questionnaires were distributed to the respondents, who are students and staff at a public university in the Federal Territory of Labuan, Malaysia, following simple random sampling as a means of data collection. Multiple regression analysis was used as a statistical measure to determine the strength of the relationship between one dependent variable and a series of other independent variables. Results revealed that familiarity and confidence was found to greatly influence consumer online shopping behavior followed by promotional offers. A clear understanding of consumer online shopping behavior can help marketing managers predict the online shopping rate and evaluate the future growth of online commerce.

Keywords: Internet Marketing Environment, Product Characteristics, Multiple Regression Analysis, Malaysia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12068
146 Model for Knowledge Representation using Sample Problems and Designing a Program for Automatically Solving Algebraic Problems

Authors: Nhon Do, Hien Nguyen

Abstract:

Nowadays there are many methods for representing knowledge such as semantic network, neural network, and conceptual graphs. Nonetheless, these methods are not sufficiently efficient when applied to perform and deduce on knowledge domains about supporting in general education such as algebra, analysis or plane geometry. This leads to the introduction of computational network which is a useful tool for representation knowledge base, especially for computational knowledge, especially knowledge domain about general education. However, when dealing with a practical problem, we often do not immediately find a new solution, but we search related problems which have been solved before and then proposing an appropriate solution for the problem. Besides that, when finding related problems, we have to determine whether the result of them can be used to solve the practical problem or not. In this paper, the extension model of computational network has been presented. In this model, Sample Problems, which are related problems, will be used like the experience of human about practical problem, simulate the way of human thinking, and give the good solution for the practical problem faster and more effectively. This extension model is applied to construct an automatic system for solving algebraic problems in middle school.

Keywords: educational software, artificial intelligence, knowledge base system, knowledge representation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
145 A Few Descriptive and Optimization Issues on the Material Flow at a Research-Academic Institution: The Role of Simulation

Authors: D. R. Delgado Sobrino, P. Košťál, J. Oravcová

Abstract:

Lately, significant work in the area of Intelligent Manufacturing has become public and mainly applied within the frame of industrial purposes. Special efforts have been made in the implementation of new technologies, management and control systems, among many others which have all evolved the field. Aware of all this and due to the scope of new projects and the need of turning the existing flexible ideas into more autonomous and intelligent ones, i.e.: Intelligent Manufacturing, the present paper emerges with the main aim of contributing to the design and analysis of the material flow in either systems, cells or work stations under this new “intelligent" denomination. For this, besides offering a conceptual basis in some of the key points to be taken into account and some general principles to consider in the design and analysis of the material flow, also some tips on how to define other possible alternative material flow scenarios and a classification of the states a system, cell or workstation are offered as well. All this is done with the intentions of relating it with the use of simulation tools, for which these have been briefly addressed with a special focus on the Witness simulation package. For a better comprehension, the previous elements are supported by a detailed layout, other figures and a few expressions which could help obtaining necessary data. Such data and others will be used in the future, when simulating the scenarios in the search of the best material flow configurations.

Keywords: Flexible/Intelligent Manufacturing System/Cell (F/IMS/C), material flow/design/configuration (MF/D/C), workstation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
144 A New Heuristic Approach for Large Size Zero-One Multi Knapsack Problem Using Intercept Matrix

Authors: K. Krishna Veni, S. Raja Balachandar

Abstract:

This paper presents a heuristic to solve large size 0-1 Multi constrained Knapsack problem (01MKP) which is NP-hard. Many researchers are used heuristic operator to identify the redundant constraints of Linear Programming Problem before applying the regular procedure to solve it. We use the intercept matrix to identify the zero valued variables of 01MKP which is known as redundant variables. In this heuristic, first the dominance property of the intercept matrix of constraints is exploited to reduce the search space to find the optimal or near optimal solutions of 01MKP, second, we improve the solution by using the pseudo-utility ratio based on surrogate constraint of 01MKP. This heuristic is tested for benchmark problems of sizes upto 2500, taken from literature and the results are compared with optimum solutions. Space and computational complexity of solving 01MKP using this approach are also presented. The encouraging results especially for relatively large size test problems indicate that this heuristic can successfully be used for finding good solutions for highly constrained NP-hard problems.

Keywords: 0-1 Multi constrained Knapsack problem, heuristic, computational complexity, NP-Hard problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
143 Characteristics of E-waste Recycling Systems in Japan and China

Authors: Bi Bo, Kayoko Yamamoto

Abstract:

This study aims to identify processes, current situations, and issues of recycling systems for four home appliances, namely, air conditioners, television receivers, refrigerators, and washing machines, among e-wastes in China and Japan for understanding and comparison of their characteristics. In accordance with results of a literature search, review of information disclosed online, and questionnaire survey conducted, conclusions of the study boil down to: (1)The results show that in Japan most of the home appliances mentioned above have been collected through home appliance recycling tickets, resulting in an issue of “requiring some effort" in treatment and recycling stages, and most plants have contracted out their e-waste recycling. (2)It is found out that advantages of the recycling system in Japan include easiness to monitor concrete data and thorough environmental friendliness ensured while its disadvantages include illegal dumping and export. It becomes apparent that advantages of the recycling system in China include a high reuse rate, low treatment cost, and fewer illegal dumping while its disadvantages include less safe reused products, environmental pollution caused by e-waste treatment, illegal import, and difficulty in obtaining data.

Keywords: E-waste, Recycling Systems, Home Appliances, Japan and China.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4831
142 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: Big data, k-NN, machine learning, traffic speed prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
141 A Hybrid Feature Selection by Resampling, Chi squared and Consistency Evaluation Techniques

Authors: Amir-Massoud Bidgoli, Mehdi Naseri Parsa

Abstract:

In this paper a combined feature selection method is proposed which takes advantages of sample domain filtering, resampling and feature subset evaluation methods to reduce dimensions of huge datasets and select reliable features. This method utilizes both feature space and sample domain to improve the process of feature selection and uses a combination of Chi squared with Consistency attribute evaluation methods to seek reliable features. This method consists of two phases. The first phase filters and resamples the sample domain and the second phase adopts a hybrid procedure to find the optimal feature space by applying Chi squared, Consistency subset evaluation methods and genetic search. Experiments on various sized datasets from UCI Repository of Machine Learning databases show that the performance of five classifiers (Naïve Bayes, Logistic, Multilayer Perceptron, Best First Decision Tree and JRIP) improves simultaneously and the classification error for these classifiers decreases considerably. The experiments also show that this method outperforms other feature selection methods.

Keywords: feature selection, resampling, reliable features, Consistency Subset Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2583
140 Support Vector Machine based Intelligent Watermark Decoding for Anticipated Attack

Authors: Syed Fahad Tahir, Asifullah Khan, Abdul Majid, Anwar M. Mirza

Abstract:

In this paper, we present an innovative scheme of blindly extracting message bits from an image distorted by an attack. Support Vector Machine (SVM) is used to nonlinearly classify the bits of the embedded message. Traditionally, a hard decoder is used with the assumption that the underlying modeling of the Discrete Cosine Transform (DCT) coefficients does not appreciably change. In case of an attack, the distribution of the image coefficients is heavily altered. The distribution of the sufficient statistics at the receiving end corresponding to the antipodal signals overlap and a simple hard decoder fails to classify them properly. We are considering message retrieval of antipodal signal as a binary classification problem. Machine learning techniques like SVM is used to retrieve the message, when certain specific class of attacks is most probable. In order to validate SVM based decoding scheme, we have taken Gaussian noise as a test case. We generate a data set using 125 images and 25 different keys. Polynomial kernel of SVM has achieved 100 percent accuracy on test data.

Keywords: Bit Correct Ratio (BCR), Grid Search, Intelligent Decoding, Jackknife Technique, Support Vector Machine (SVM), Watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
139 Fuzzy C-Means Clustering for Biomedical Documents Using Ontology Based Indexing and Semantic Annotation

Authors: S. Logeswari, K. Premalatha

Abstract:

Search is the most obvious application of information retrieval. The variety of widely obtainable biomedical data is enormous and is expanding fast. This expansion makes the existing techniques are not enough to extract the most interesting patterns from the collection as per the user requirement. Recent researches are concentrating more on semantic based searching than the traditional term based searches. Algorithms for semantic searches are implemented based on the relations exist between the words of the documents. Ontologies are used as domain knowledge for identifying the semantic relations as well as to structure the data for effective information retrieval. Annotation of data with concepts of ontology is one of the wide-ranging practices for clustering the documents. In this paper, indexing based on concept and annotation are proposed for clustering the biomedical documents. Fuzzy c-means (FCM) clustering algorithm is used to cluster the documents. The performances of the proposed methods are analyzed with traditional term based clustering for PubMed articles in five different diseases communities. The experimental results show that the proposed methods outperform the term based fuzzy clustering.

Keywords: MeSH Ontology, Concept Indexing, Annotation, semantic relations, Fuzzy c-means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2303
138 Optimizing Spatial Trend Detection By Artificial Immune Systems

Authors: M. Derakhshanfar, B. Minaei-Bidgoli

Abstract:

Spatial trends are one of the valuable patterns in geo databases. They play an important role in data analysis and knowledge discovery from spatial data. A spatial trend is a regular change of one or more non spatial attributes when spatially moving away from a start object. Spatial trend detection is a graph search problem therefore heuristic methods can be good solution. Artificial immune system (AIS) is a special method for searching and optimizing. AIS is a novel evolutionary paradigm inspired by the biological immune system. The models based on immune system principles, such as the clonal selection theory, the immune network model or the negative selection algorithm, have been finding increasing applications in fields of science and engineering. In this paper, we develop a novel immunological algorithm based on clonal selection algorithm (CSA) for spatial trend detection. We are created neighborhood graph and neighborhood path, then select spatial trends that their affinity is high for antibody. In an evolutionary process with artificial immune algorithm, affinity of low trends is increased with mutation until stop condition is satisfied.

Keywords: Spatial Data Mining, Spatial Trend Detection, Heuristic Methods, Artificial Immune System, Clonal Selection Algorithm (CSA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2046
137 How Efficiency of Password Attack Based on a Keyboard

Authors: Hsien-cheng Chou, Fei-pei Lai, Hung-chang Lee

Abstract:

At present, dictionary attack has been the basic tool for recovering key passwords. In order to avoid dictionary attack, users purposely choose another character strings as passwords. According to statistics, about 14% of users choose keys on a keyboard (Kkey, for short) as passwords. This paper develops a framework system to attack the password chosen from Kkeys and analyzes its efficiency. Within this system, we build up keyboard rules using the adjacent and parallel relationship among Kkeys and then use these Kkey rules to generate password databases by depth-first search method. According to the experiment results, we find the key space of databases derived from these Kkey rules that could be far smaller than the password databases generated within brute-force attack, thus effectively narrowing down the scope of attack research. Taking one general Kkey rule, the combinations in all printable characters (94 types) with Kkey adjacent and parallel relationship, as an example, the derived key space is about 240 smaller than those in brute-force attack. In addition, we demonstrate the method's practicality and value by successfully cracking the access password to UNIX and PC using the password databases created

Keywords: Brute-force attack, dictionary attack, depth-firstsearch, password attack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3474
136 In Search of High Growth: Mapping out Academic Spin-Off´s Performance in Catalonia

Authors: F. Guspi, E. García

Abstract:

This exploratory study gives an overview of the evolution of the main financial and performance indicators of the Academic Spin-Off’s and High Growth Academic Spin-Off’s in year 3 and year 6 after its creation in the region of Catalonia in Spain. The study compares and evaluates results of these different measures of performance and the degree of success of these companies for each University. We found that the average Catalonian Academic Spin-Off is small and have not achieved the sustainability stage at year 6. On the contrary, a small group of High Growth Academic Spin-Off’s exhibits robust performance with high profits in year 6. Our results support the need to increase selectivity and support for these companies especially near year 3, because are the ones that will bring wealth and employment. University role as an investor has rigid norms and habits that impede an efficient economic return from their ASO investment. Universities with high performance on sales and employment in year 3 not always could sustain this growth in year 6 because their ASO’s are not profitable. On the contrary, profitable ASO exhibit superior performance in all measurement indicators in year 6. We advocate the need of a balanced growth (with profits) as a way to obtain subsequent continuous growth.

Keywords: Academic Spin-Off (ASO), University Entrepreneurship, Entrepreneurial University, high growth, New Technology Based Companies (NTBC), University Spin-Off.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
135 A Novel Approach to Iris Localization for Iris Biometric Processing

Authors: Somnath Dey, Debasis Samanta

Abstract:

Iris-based biometric system is gaining its importance in several applications. However, processing of iris biometric is a challenging and time consuming task. Detection of iris part in an eye image poses a number of challenges such as, inferior image quality, occlusion of eyelids and eyelashes etc. Due to these problems it is not possible to achieve 100% accuracy rate in any iris-based biometric authentication systems. Further, iris detection is a computationally intensive task in the overall iris biometric processing. In this paper, we address these two problems and propose a technique to localize iris part efficiently and accurately. We propose scaling and color level transform followed by thresholding, finding pupil boundary points for pupil boundary detection and dilation, thresholding, vertical edge detection and removal of unnecessary edges present in the eye images for iris boundary detection. Scaling reduces the search space significantly and intensity level transform is helpful for image thresholding. Experimental results show that our approach is comparable with the existing approaches. Following our approach it is possible to detect iris part with 95-99% accuracy as substantiated by our experiments on CASIA Ver-3.0, ICE 2005, UBIRIS, Bath and MMU iris image databases.

Keywords: Iris recognition, iris localization, biometrics, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3191
134 The Search of Anomalous Higgs Boson Couplings at the Large Hadron Electron Collider and Future Circular Electron Hadron Collider

Authors: Ilkay Turk Cakir, Murat Altinli, Zekeriya Uysal, Abdulkadir Senol, Olcay Bolukbasi Yalcinkaya, Ali Yilmaz

Abstract:

The Higgs boson was discovered by the ATLAS and CMS experimental groups in 2012 at the Large Hadron Collider (LHC). Production and decay properties of the Higgs boson, Standard Model (SM) couplings, and limits on effective scale of the Higgs boson’s couplings with other bosons are investigated at particle colliders. Deviations from SM estimates are parametrized by effective Lagrangian terms to investigate Higgs couplings. This is a model-independent method for describing the new physics. In this study, sensitivity to neutral gauge boson anomalous couplings with the Higgs boson is investigated using the parameters of the Large Hadron electron Collider (LHeC) and the Future Circular electron-hadron Collider (FCC-eh) with a model-independent approach. By using MadGraph5_aMC@NLO multi-purpose event generator with the parameters of LHeC and FCC-eh, the bounds on the anomalous Hγγ, HγZ and HZZ couplings in e− p → e− q H process are obtained. Detector simulations are also taken into account in the calculations.

Keywords: Anomalous Couplings, Effective Lagrangian, Electron-Proton Colliders, Higgs Boson.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 861
133 A New DIDS Design Based on a Combination Feature Selection Approach

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original dataset. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 dataset is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.

Keywords: Distributed intrusion detection system, mobile agent, feature selection, Bees Algorithm, decision tree.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
132 Economic Evaluation of Bowland Shale Gas Wells Development in the UK

Authors: Elijah Acquah-Andoh

Abstract:

The UK has had its fair share of the shale gas revolutionary waves blowing across the global oil and gas industry at present. Although, its exploitation is widely agreed to have been delayed, shale gas was looked upon favorably by the UK Parliament when they recognized it as genuine energy source and granted licenses to industry to search and extract the resource. This, although a significant progress by industry, there yet remains another test the UK fracking resource must pass in order to render shale gas extraction feasible – it must be economically extractible and sustainably so. Developing unconventional resources is much more expensive and risky, and for shale gas wells, producing in commercial volumes is conditional upon drilling horizontal wells and hydraulic fracturing, techniques which increase CAPEX. Meanwhile, investment in shale gas development projects is sensitive to gas price and technical and geological risks. Using a Two-Factor Model, the economics of the Bowland shale wells were analyzed and the operational conditions under which fracking is profitable in the UK was characterized. We find that there is a great degree of flexibility about Opex spending; hence Opex does not pose much threat to the fracking industry in the UK. However, we discover Bowland shale gas wells fail to add value at gas price of $8/ Mmbtu. A minimum gas price of $12/Mmbtu at Opex of no more than $2/ Mcf and no more than $14.95M Capex are required to create value within the present petroleum tax regime, in the UK fracking industry.

Keywords: Capex, economical, investment, profitability, shale gas development, sustainable.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2718
131 Inverse Heat Conduction Analysis of Cooling on Run Out Tables

Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi

Abstract:

In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.

Keywords: Inverse Analysis, Function Specification, Neural Net Works, Particle Swarm, Run Out Table.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699