Search results for: Artificial animal intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1239

Search results for: Artificial animal intelligence

639 Application of Neural Network in Portfolio Product Companies: Integration of Boston Consulting Group Matrix and Ansoff Matrix

Authors: M. Khajezadeh, M. Saied Fallah Niasar, S. Ali Asli, D. Davani Davari, M. Godarzi, Y. Asgari

Abstract:

This study aims to explore the joint application of both Boston and Ansoff matrices in the operational development of the product. We conduct deep analysis, by utilizing the Artificial Neural Network, to predict the position of the product in the market while the company is interested in increasing its share. The data are gathered from two industries, called hygiene and detergent. In doing so, the effort is being made by investigating the behavior of top player companies and, recommend strategic orientations. In conclusion, this combination analysis is appropriate for operational development; as well, it plays an important role in providing the position of the product in the market for both hygiene and detergent industries. More importantly, it will elaborate on the company’s strategies to increase its market share related to a combination of the Boston Consulting Group (BCG) Matrix and Ansoff Matrix.

Keywords: Artificial neural network, portfolio analysis, BCG matrix, Ansoff matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1958
638 A Performance Appraisal of Neural Networks Developed for Response Prediction across Heterogeneous Domains

Authors: H. Soleimanjahi, M. J. Nategh, S. Falahi

Abstract:

Deciding the numerous parameters involved in designing a competent artificial neural network is a complicated task. The existence of several options for selecting an appropriate architecture for neural network adds to this complexity, especially when different applications of heterogeneous natures are concerned. Two completely different applications in engineering and medical science were selected in the present study including prediction of workpiece's surface roughness in ultrasonic-vibration assisted turning and papilloma viruses oncogenicity. Several neural network architectures with different parameters were developed for each application and the results were compared. It was illustrated in this paper that some applications such as the first one mentioned above are apt to be modeled by a single network with sufficient accuracy, whereas others such as the second application can be best modeled by different expert networks for different ranges of output. Development of knowledge about the essentials of neural networks for different applications is regarded as the cornerstone of multidisciplinary network design programs to be developed as a means of reducing inconsistencies and the burden of the user intervention.

Keywords: Artificial Neural Network, Malignancy Diagnosis, Papilloma Viruses Oncogenicity, Surface Roughness, UltrasonicVibration-Assisted Turning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515
637 Intelligent Modeling of the Electrical Activity of the Human Heart

Authors: Lambros V. Skarlas, Grigorios N. Beligiannis, Efstratios F. Georgopoulos, Adam V. Adamopoulos

Abstract:

The aim of this contribution is to present a new approach in modeling the electrical activity of the human heart. A recurrent artificial neural network is being used in order to exhibit a subset of the dynamics of the electrical behavior of the human heart. The proposed model can also be used, when integrated, as a diagnostic tool of the human heart system. What makes this approach unique is the fact that every model is being developed from physiological measurements of an individual. This kind of approach is very difficult to apply successfully in many modeling problems, because of the complexity and entropy of the free variables describing the complex system. Differences between the modeled variables and the variables of an individual, measured at specific moments, can be used for diagnostic purposes. The sensor fusion used in order to optimize the utilization of biomedical sensors is another point that this paper focuses on. Sensor fusion has been known for its advantages in applications such as control and diagnostics of mechanical and chemical processes.

Keywords: Artificial Neural Networks, Diagnostic System, Health Condition Modeling Tool, Heart Diagnostics Model, Heart Electricity Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
636 Comparative Study on Swarm Intelligence Techniques for Biclustering of Microarray Gene Expression Data

Authors: R. Balamurugan, A. M. Natarajan, K. Premalatha

Abstract:

Microarray gene expression data play a vital in biological processes, gene regulation and disease mechanism. Biclustering in gene expression data is a subset of the genes indicating consistent patterns under the subset of the conditions. Finding a biclustering is an optimization problem. In recent years, swarm intelligence techniques are popular due to the fact that many real-world problems are increasingly large, complex and dynamic. By reasons of the size and complexity of the problems, it is necessary to find an optimization technique whose efficiency is measured by finding the near optimal solution within a reasonable amount of time. In this paper, the algorithmic concepts of the Particle Swarm Optimization (PSO), Shuffled Frog Leaping (SFL) and Cuckoo Search (CS) algorithms have been analyzed for the four benchmark gene expression dataset. The experiment results show that CS outperforms PSO and SFL for 3 datasets and SFL give better performance in one dataset. Also this work determines the biological relevance of the biclusters with Gene Ontology in terms of function, process and component.

Keywords: Particle swarm optimization, Shuffled frog leaping, Cuckoo search, biclustering, gene expression data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2663
635 Power System Voltage Control using LP and Artificial Neural Network

Authors: A. Sina, A. Aeenmehr, H. Mohamadian

Abstract:

Optimization and control of reactive power distribution in the power systems leads to the better operation of the reactive power resources. Reactive power control reduces considerably the power losses and effective loads and improves the power factor of the power systems. Another important reason of the reactive power control is improving the voltage profile of the power system. In this paper, voltage and reactive power control using Neural Network techniques have been applied to the 33 shines- Tehran Electric Company. In this suggested ANN, the voltages of PQ shines have been considered as the input of the ANN. Also, the generators voltages, tap transformers and shunt compensators have been considered as the output of ANN. Results of this techniques have been compared with the Linear Programming. Minimization of the transmission line power losses has been considered as the objective function of the linear programming technique. The comparison of the results of the ANN technique with the LP shows that the ANN technique improves the precision and reduces the computation time. ANN technique also has a simple structure and this causes to use the operator experience.

Keywords: voltage control, linear programming, artificial neural network, power systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
634 Identification of Single Nucleotide Polymorphism in 5'-UTR of CYP11B1 Gene in Pakistani Sahiwal Cattle

Authors: S. Manzoor, A. Nadeem, M. Javed, ME. Babar

Abstract:

A major goal in animal genetics is to understand the role of common genetic variants in diseases susceptibility and production traits. Sahiwal cattle can be considered as a global animal genetic resource due to its relatively high milk producing ability, resistance against tropical diseases and heat tolerant. CYP11B1 gene provides instructions for making a mitochondrial enzyme called steroid 11-beta-hydroxylase. It catalyzes the 11deoxy-cortisol to cortisol and 11deoxycorticosterone to corticosterone in cattle. The bovine CYP11B1 gene is positioned on BTA14q12 comprises of eight introns and nine exons and protein is associated with mitochondrial epithelium. The present study was aimed to identify the single-nucleotide polymorphisms in CYP11B1 gene in Sahiwal cattle breed of Pakistan. Four polymorphic sites were identified in exon one of CYP11B1 gene through sequencing approach. Significant finding was the incidence of the C→T polymorphism in 5'-UTR, causing amino acid substitution from alanine to valine (A30V) in Sahiwal cattle breed. That Ala/Val polymorphism may serve as a powerful genetic tool for the development of DNA markers that can be used for the particular traits for different local cattle breeds.

Keywords: CYP11B1, single nucleotide polymorphism, sahiwal cattle, Pakistan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333
633 A Medical Resource Forecasting Model for Emergency Room Patients with Acute Hepatitis

Authors: R. J. Kuo, W. C. Cheng, W. C. Lien, T. J. Yang

Abstract:

Taiwan is a hyper endemic area for the Hepatitis B virus (HBV). The estimated total number of HBsAg carriers in the general population who are more than 20 years old is more than 3 million. Therefore, a case record review is conducted from January 2003 to June 2007 for all patients with a diagnosis of acute hepatitis who were admitted to the Emergency Department (ED) of a well-known teaching hospital. The cost for the use of medical resources is defined as the total medical fee. In this study, principal component analysis (PCA) is firstly employed to reduce the number of dimensions. Support vector regression (SVR) and artificial neural network (ANN) are then used to develop the forecasting model. A total of 117 patients meet the inclusion criteria. 61% patients involved in this study are hepatitis B related. The computational result shows that the proposed PCA-SVR model has superior performance than other compared algorithms. In conclusion, the Child-Pugh score and echogram can both be used to predict the cost of medical resources for patients with acute hepatitis in the ED.

Keywords: Acute hepatitis, Medical resource cost, Artificial neural network, Support vector regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
632 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples

Authors: Wullapa Wongsinlatam

Abstract:

Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.

Keywords: Artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1094
631 Argon/Oxygen Plasma Surface Modification of Biopolymers for Improvement of Wettability and Wear Resistance

Authors: Binnur Sagbas

Abstract:

Artificial joint replacements such as total knee and total hip prosthesis have been applied to the patients who affected by osteoarthritis. Although different material combinations are used for these joints, biopolymers are most commonly preferred materials especially for acetabular cup and tibial component of hip and knee joints respectively. The main limitation that shortens the service life of these prostheses is wear. Wear is complicated phenomena and it must be considered with friction and lubrication. In this study, micro wave (MW) induced argon+oxygen plasma surface modification were applied on ultra-high molecular weight polyethylene (UHMWPE) and vitamin E blended UHMWPE (VE-UHMWPE) biopolymer surfaces to improve surface wettability and wear resistance of the surfaces. Contact angel measurement method was used for determination of wettability. Ball-on-disc wear test was applied under 25% bovine serum lubrication conditions. The results show that surface wettability and wear resistance of both material samples were increased by plasma surface modification.

Keywords: Artificial joints, plasma surface modification, UHMWPE, vitamin E, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
630 Anomaly Detection with ANN and SVM for Telemedicine Networks

Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos

Abstract:

In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.

Keywords: Anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
629 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network

Authors: Marcio Leal, Marta Villamil

Abstract:

Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.

Keywords: Sign language recognition, computer vision, infrared, artificial neural network, dynamic time warping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 881
628 Reducing the Imbalance Penalty through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey

Authors: H. Anıl, G. Kar

Abstract:

In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations, since the geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning and time series methods, the total generation of the power plants belonging to Zorlu Doğal Electricity Generation, which has a high installed capacity in terms of geothermal, was predicted for the first one-week and first two-weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.

Keywords: Machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 204
627 Handwriting Velocity Modeling by Artificial Neural Networks

Authors: Mohamed Aymen Slim, Afef Abdelkrim, Mohamed Benrejeb

Abstract:

The handwriting is a physical demonstration of a complex cognitive process learnt by man since his childhood. People with disabilities or suffering from various neurological diseases are facing so many difficulties resulting from problems located at the muscle stimuli (EMG) or signals from the brain (EEG) and which arise at the stage of writing. The handwriting velocity of the same writer or different writers varies according to different criteria: age, attitude, mood, writing surface, etc. Therefore, it is interesting to reconstruct an experimental basis records taking, as primary reference, the writing speed for different writers which would allow studying the global system during handwriting process. This paper deals with a new approach of the handwriting system modeling based on the velocity criterion through the concepts of artificial neural networks, precisely the Radial Basis Functions (RBF) neural networks. The obtained simulation results show a satisfactory agreement between responses of the developed neural model and the experimental data for various letters and forms then the efficiency of the proposed approaches.

Keywords: ElectroMyoGraphic (EMG) signals, Experimental approach, Handwriting process, Radial Basis Functions (RBF) neural networks, Velocity Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315
626 Comparison Ageing Deterioration of Silicone Rubber Outdoor Polymer Insulators in Artificial Accelerated Salt Fog Ageing Test

Authors: S.Thong-Om, W. Payakcho, J. Grasaesom, A. Oonsivilai, B. Marungsri

Abstract:

This paper presents the experimental results of silicone rubber outdoor polymer insulators in salt fog ageing test based on IEC 61109. Specimens made ofHTV silicone rubber with ATH content having three different configurations, straight shedsalternated sheds, and incline and alternate sheds, were tested continuously 1000 hrs.in artificial salt fog chamber. Contamination level, reduction of hydrophobicity and hardness measurement were used as physical damaged inspection techniques to evaluate degree of surface deterioration. In addition, chemical changing of tested specimen surface was evaluated by ATR-FTIRto confirm physical damaged inspection. After 1000 hrs.of salt fog test, differences in degree of surface deterioration were observed on all tested specimens. Physical damaged inspection and chemical analysis results confirmed the experimental results as well.

Keywords: Ageing deterioration, Silicone rubber, Polymer Insulator, Salt fog ageing test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2537
625 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics

Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur

Abstract:

Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.

Keywords: Human machine interface, industrial internet of things, internet of things, optical character recognition, video analytic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
624 Neural Network Control of a Biped Robot Model with Composite Adaptation Low

Authors: Ahmad Forouzantabar

Abstract:

this paper presents a novel neural network controller with composite adaptation low to improve the trajectory tracking problems of biped robots comparing with classical controller. The biped model has 5_link and 6 degrees of freedom and actuated by Plated Pneumatic Artificial Muscle, which have a very high power to weight ratio and it has large stoke compared to similar actuators. The proposed controller employ a stable neural network in to approximate unknown nonlinear functions in the robot dynamics, thereby overcoming some limitation of conventional controllers such as PD or adaptive controllers and guarantee good performance. This NN controller significantly improve the accuracy requirements by retraining the basic PD/PID loop, but adding an inner adaptive loop that allows the controller to learn unknown parameters such as friction coefficient, therefore improving tracking accuracy. Simulation results plus graphical simulation in virtual reality show that NN controller tracking performance is considerably better than PD controller tracking performance.

Keywords: Biped robot, Neural network, Plated Pneumatic Artificial Muscle, Composite adaptation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
623 Application of Neural Networks for 24-Hour-Ahead Load Forecasting

Authors: Fatemeh Mosalman Yazdi

Abstract:

One of the most important requirements for the operation and planning activities of an electrical utility is the prediction of load for the next hour to several days out, known as short term load forecasting. This paper presents the development of an artificial neural network based short-term load forecasting model. The model can forecast daily load profiles with a load time of one day for next 24 hours. In this method can divide days of year with using average temperature. Groups make according linearity rate of curve. Ultimate forecast for each group obtain with considering weekday and weekend. This paper investigates effects of temperature and humidity on consuming curve. For forecasting load curve of holidays at first forecast pick and valley and then the neural network forecast is re-shaped with the new data. The ANN-based load models are trained using hourly historical. Load data and daily historical max/min temperature and humidity data. The results of testing the system on data from Yazd utility are reported.

Keywords: Artificial neural network, Holiday forecasting, pickand valley load forecasting, Short-term load-forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2193
622 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant

Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan

Abstract:

The most important process of the water treatment plant process is coagulation, which uses alum and poly aluminum chloride (PACL). Therefore, determining the dosage of alum and PACL is the most important factor to be prescribed. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for chemical dose prediction, as used for coagulation, such as alum and PACL, with input data consisting of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of the Bangkhen Water Treatment Plant (BKWTP), under the authority of the Metropolitan Waterworks Authority of Thailand. The data were collected from 1 January 2019 to 31 December 2019 in order to cover the changing seasons of Thailand. The input data of ANN are divided into three groups: training set, test set, and validation set. The coefficient of determination and the mean absolute errors of the alum model are 0.73, 3.18 and the PACL model are 0.59, 3.21, respectively.

Keywords: Soft jar test, jar test, water treatment plant process, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665
621 MIMO-OFDM Channel Tracking Using a Dynamic ANN Topology

Authors: Manasjyoti Bhuyan, Kandarpa Kumar Sarma

Abstract:

All the available algorithms for blind estimation namely constant modulus algorithm (CMA), Decision-Directed Algorithm (DDA/DFE) suffer from the problem of convergence to local minima. Also, if the channel drifts considerably, any DDA looses track of the channel. So, their usage is limited in varying channel conditions. The primary limitation in such cases is the requirement of certain overhead bits in the transmit framework which leads to wasteful use of the bandwidth. Also such arrangements fail to use channel state information (CSI) which is an important aid in improving the quality of reception. In this work, the main objective is to reduce the overhead imposed by the pilot symbols, which in effect reduces the system throughput. Also we formulate an arrangement based on certain dynamic Artificial Neural Network (ANN) topologies which not only contributes towards the lowering of the overhead but also facilitates the use of the CSI. A 2×2 Multiple Input Multiple Output (MIMO) system is simulated and the performance variation with different channel estimation schemes are evaluated. A new semi blind approach based on dynamic ANN is proposed for channel tracking in varying channel conditions and the performance is compared with perfectly known CSI and least square (LS) based estimation.

Keywords: MIMO, Artificial Neural Network (ANN), CMA, LS, CSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372
620 Investigations of Free-to-Roll Motions and its Active Control under Pitch-up Maneuvers

Authors: Tanveer A. Khan, Xue Y. Deng, Yan K. Wang, Xu Si-Wen

Abstract:

Experiments have been carried out at sub-critical Reynolds number to investigate free-to-roll motions induced by forebody and/or wings complex flow on a 30° swept back nonslender wings-slender body-model for static and dynamic (pitch-up) cases. For the dynamic (pitch-up) case it has been observed that roll amplitude decreases and lag increases with increase in pitching speed. Decrease in roll amplitude with increase in pitch rate is attributed to low disturbing rolling moment due to weaker interaction between forebody and wing flow components. Asymmetric forebody vortices dominate and control the roll motion of the model in dynamic case when non-dimensional pitch rate ≥ 1x10-2. Effectiveness of the active control scheme utilizing rotating nose with artificial tip perturbation is observed to be low in the angle of attack region where the complex flow over the wings has contributions from both forebody and wings.

Keywords: Artificial Tip Perturbation, ExperimentalInvestigations, Forebody Asymmetric Vortices, Non-slender Wings-Body Model, Wing Rock

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1520
619 Teachers’ Perceptions of Their Principals’ Interpersonal Emotionally Intelligent Behaviours Affecting Their Job Satisfaction

Authors: Prakash Singh

Abstract:

For schools to be desirable places in which to work, it is necessary for principals to recognise their teachers’ emotions, and be sensitive to their needs. This necessitates that principals are capable to correctly identify their emotionally intelligent behaviours (EIBs) they need to use in order to be successful leaders. They also need to have knowledge of their emotional intelligence and be able to identify the factors and situations that evoke emotion at an interpersonal level. If a principal is able to do this, then the control and understanding of emotions and behaviours of oneself and others could improve vastly. This study focuses on the interpersonal EIBS of principals affecting the job satisfaction of teachers. The correlation coefficients in this quantitative study strongly indicate that there is a statistical significance between the respondents’ level of job satisfaction, the rating of their principals’ EIBs and how they believe their principals’ EIBs will affect their sense of job satisfaction. It can be concluded from the data obtained in this study that there is a significant correlation between the sense of job satisfaction of teachers and their principals’ interpersonal EIBs. This means that the more satisfied a teacher is at school, the more appropriate and meaningful a principal’s EIBs will be. Conversely, the more dissatisfied a teacher is at school the less appropriate and less meaningful a principal’s interpersonal EIBs will be. This implies that the leaders’ EIBs can be construed as one of the major factors affecting the job satisfaction of employees.

Keywords: Emotional intelligence, teachers’ emotions, teachers’ job satisfaction, principals’ emotionally intelligent behaviours.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
618 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network

Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy

Abstract:

This paper aims to provide an interpretation of artificial neural networks (ANNs) and explore some of its implications. The interpretation views ANNs as a memory which encodes instances of experience. An experiment explores the behavior of encoding and retrieval of instances from memory. A localised representation ANN is created that allows control over encoding and retrieved memory sample size and is experimented with using the MNIST digits dataset. The relationship between input familiarity, conflict within retrieved samples, and error rates is described and demonstrated to be an effective driver for memory encoding. Results indicate that selective encoding and retrieval samples that allow detection of memory conflicts produce optimal performance, and that error rates are normally distributed with input familiarity and conflict. By using input familiarity and sample consistency to guide memory encoding, the number of encoding trials on the dataset were reduced to 18.33% of the training data while maintaining good recognition performance on the test data.

Keywords: Artificial Neural Networks, ANNs, representation, memory, conflict monitoring, confidence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 507
617 Speech Recognition Using Scaly Neural Networks

Authors: Akram M. Othman, May H. Riadh

Abstract:

This research work is aimed at speech recognition using scaly neural networks. A small vocabulary of 11 words were established first, these words are “word, file, open, print, exit, edit, cut, copy, paste, doc1, doc2". These chosen words involved with executing some computer functions such as opening a file, print certain text document, cutting, copying, pasting, editing and exit. It introduced to the computer then subjected to feature extraction process using LPC (linear prediction coefficients). These features are used as input to an artificial neural network in speaker dependent mode. Half of the words are used for training the artificial neural network and the other half are used for testing the system; those are used for information retrieval. The system components are consist of three parts, speech processing and feature extraction, training and testing by using neural networks and information retrieval. The retrieve process proved to be 79.5-88% successful, which is quite acceptable, considering the variation to surrounding, state of the person, and the microphone type.

Keywords: Feature extraction, Liner prediction coefficients, neural network, Speech Recognition, Scaly ANN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
616 Clustering for Detection of Population Groups at Risk from Anticholinergic Medication

Authors: Amirali Shirazibeheshti, Tarik Radwan, Alireza Ettefaghian, Farbod Khanizadeh, George Wilson, Cristina Luca

Abstract:

Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. This work evaluates the association between the average risk score and measures of socioeconomic status (index of multiple deprivation) and health (index of health and disability). The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, suggesting that females are more at risk from this kind of multiple medication. The risk may be monitored and controlled in a healthcare management system that is well-equipped with tools implementing appropriate techniques of artificial intelligence.

Keywords: Anticholinergic medication, socioeconomic status, deprivation, clustering, risk analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1071
615 Curriculum Development of Successful Intelligence Promoting for Nursing Students

Authors: Saranya Chularee, Tawa Chularee

Abstract:

Successful intelligence (SI) is the integrated set of the ability needed to attain success in life, within individual-s sociocultural context. People are successfully intelligent by recognizing their strengths and weaknesses. They will find ways to strengthen their weakness and maintain their strength or even improve it. SI people can shape, select, and adapt to the environments by using balance of higher-ordered thinking abilities including; critical, creative, and applicative. Aims: The purposes of this study were to; 1) develop curriculum that promotes SI for nursing students, and 2) study the effectiveness of the curriculum development. Method: Research and Development was a method used for this study. The design was divided into two phases; 1) the curriculum development which composed of three steps (needs assessment, curriculum development and curriculum field trail), and 2) the curriculum implementation. In this phase, a pre-experimental research design (one group pretest-posttest design) was conducted. The sample composed of 49 sophomore nursing students of Boromarajonani College of Nursing, Surin, Thailand who enrolled in Nursing care of Health problem course I in 2011 academic year. Data were carefully collected using 4 instruments; 1) Modified essay questions test (MEQ) 2) Nursing Care Plan evaluation form 3) Group processing observation form (α = 0.74) and 4) Satisfied evaluation form of learning (α = 0.82). Data were analyzed using descriptive statistics and content analysis. Results: The results revealed that the sample had post-test average score of SI higher than pre-test average score (mean difference was 5.03, S.D. = 2.84). Fifty seven percentages of the sample passed the MEQ posttest at the criteria of 60 percentages. Students demonstrated the strategies of how to develop nursing care plan. Overall, students- satisfaction on teaching performance was at high level (mean = 4.35, S.D. = 0.46). Conclusion: This curriculum can promote the attribute of characteristic of SI person and was highly required to be continued.

Keywords: Curriculum Development, Nursing Education, Successful Intelligence, Thinking ability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2210
614 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: Pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284
613 Optimum Time Coordination of Overcurrent Relays using Two Phase Simplex Method

Authors: Prashant P. Bedekar, Sudhir R. Bhide, Vijay S. Kale

Abstract:

Overcurrent (OC) relays are the major protection devices in a distribution system. The operating time of the OC relays are to be coordinated properly to avoid the mal-operation of the backup relays. The OC relay time coordination in ring fed distribution networks is a highly constrained optimization problem which can be stated as a linear programming problem (LPP). The purpose is to find an optimum relay setting to minimize the time of operation of relays and at the same time, to keep the relays properly coordinated to avoid the mal-operation of relays. This paper presents two phase simplex method for optimum time coordination of OC relays. The method is based on the simplex algorithm which is used to find optimum solution of LPP. The method introduces artificial variables to get an initial basic feasible solution (IBFS). Artificial variables are removed using iterative process of first phase which minimizes the auxiliary objective function. The second phase minimizes the original objective function and gives the optimum time coordination of OC relays.

Keywords: Constrained optimization, LPP, Overcurrent relaycoordination, Two-phase simplex method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3007
612 Statistical Analysis and Predictive Learning of Mechanical Parameters for TiO2 Filled GFRP Composite

Authors: S. Srinivasa Moorthy, K. Manonmani

Abstract:

The new, polymer composites consisting of e-glass fiber reinforcement with titanium oxide filler in the double bonded unsaturated polyester resin matrix were made. The glass fiber and titanium oxide reinforcement composites were made in three different fiber lengths (3cm, 5cm, and 7cm), filler content (2 wt%, 4 wt%, and 6 wt%) and fiber content (20 wt%, 40 wt%, and 60 wt%). 27 different compositions were fabricated and a sequence of experiments were carried out to determine tensile strength and impact strength. The vital influencing factors fiber length, fiber content and filler content were chosen as 3 factors in 3 levels of Taguchi’s L9 orthogonal array. The influences of parameters were determined for tensile strength and impact strength by Analysis of variance (ANOVA) and S/N ratio. Using Artificial Neural Network (ANN) an expert system was devised to predict the properties of hybrid reinforcement GFRP composites. The predict models were experimentally proved with the maximum coincidence.

Keywords: Analysis of variance (ANOVA), Artificial neural network (ANN), Polymer composites, Taguchi’s orthogonal array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2400
611 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting

Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas

Abstract:

The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.

Keywords: Artificial neural network, low series manufacturing, polymer cutting, setup period estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976
610 Dynamic Modeling of Underwater Manipulator and Its Simulation

Authors: Ruiheng Li, Amir Parsa Anvar, Amir M. Anvar, Tien-Fu Lu

Abstract:

High redundancy and strong uncertainty are two main characteristics for underwater robotic manipulators with unlimited workspace and mobility, but they also make the motion planning and control difficult and complex. In order to setup the groundwork for the research on control schemes, the mathematical representation is built by using the Denavit-Hartenberg (D-H) method [9]&[12]; in addition to the geometry of the manipulator which was studied for establishing the direct and inverse kinematics. Then, the dynamic model is developed and used by employing the Lagrange theorem. Furthermore, derivation and computer simulation is accomplished using the MATLAB environment. The result obtained is compared with mechanical system dynamics analysis software, ADAMS. In addition, the creation of intelligent artificial skin using Interlink Force Sensing ResistorTM technology is presented as groundwork for future work

Keywords: Manipulator System, Robot, AUV, Denavit- Hartenberg method Lagrange theorem, MALTAB, ADAMS, Direct and Inverse Kinematics, Dynamics, PD Control-law, Interlink Force Sensing ResistorTM, intelligent artificial skin system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3499