Search results for: Abstract Machine
875 SystemC Modeling of Adaptive Least Mean Square Filter
Authors: Kyu Han Kim, Soon Kyu Kwon, Heung Sun Yoon, Jong Tae Kim
Abstract:
In this paper, we demonstrate the adaptive least-mean-square (LMS) filter modeling using SystemC. SystemC is a modeling language that allows designer to model both hardware and software component and makes it possible to design from high level system of abstraction to low level system of abstraction. We produced five adaptive least-mean-square filter models that are classed as five abstraction levels using SystemC proceeding from the abstract model to the more concrete model.Keywords: Adaptive Filter, Least-Mean-Square Algorithm, SystemC, Transversal Fir Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2538874 Effect of Injection Moulding Process Parameter on Tensile Strength Using Taguchi Method
Authors: Gurjeet Singh, M. K. Pradhan, Ajay Verma
Abstract:
The plastic industry plays very important role in the economy of any country. It is generally among the leading share of the economy of the country. Since metals and their alloys are very rarely available on the earth. Therefore, to produce plastic products and components, which finds application in many industrial as well as household consumer products is beneficial. Since 50% plastic products are manufactured by injection moulding process. For production of better quality product, we have to control quality characteristics and performance of the product. The process parameters plays a significant role in production of plastic, hence the control of process parameter is essential. In this paper the effect of the parameters selection on injection moulding process has been described. It is to define suitable parameters in producing plastic product. Selecting the process parameter by trial and error is neither desirable nor acceptable, as it is often tends to increase the cost and time. Hence, optimization of processing parameter of injection moulding process is essential. The experiments were designed with Taguchi’s orthogonal array to achieve the result with least number of experiments. Plastic material polypropylene is studied. Tensile strength test of material is done on universal testing machine, which is produced by injection moulding machine. By using Taguchi technique with the help of MiniTab-14 software the best value of injection pressure, melt temperature, packing pressure and packing time is obtained. We found that process parameter packing pressure contribute more in production of good tensile plastic product.
Keywords: Injection moulding, tensile strength, Taguchi method, poly-propylene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3769873 The Effects of Shot and Grit Blasting Process Parameters on Steel Pipes Coating Adhesion
Authors: Saeed Khorasanizadeh
Abstract:
Adhesion strength of exterior or interior coating of steel pipes is too important. Increasing of coating adhesion on surfaces can increase the life time of coating, safety factor of transmitting line pipe and decreasing the rate of corrosion and costs. Preparation of steel pipe surfaces before doing the coating process is done by shot and grit blasting. This is a mechanical way to do it. Some effective parameters on that process, are particle size of abrasives, distance to surface, rate of abrasive flow, abrasive physical properties, shapes, selection of abrasive, kind of machine and its power, standard of surface cleanness degree, roughness, time of blasting and weather humidity. This search intended to find some better conditions which improve the surface preparation, adhesion strength and corrosion resistance of coating. So, this paper has studied the effect of varying abrasive flow rate, changing the abrasive particle size, time of surface blasting on steel surface roughness and over blasting on it by using the centrifugal blasting machine. After preparation of numbers of steel samples (according to API 5L X52) and applying epoxy powder coating on them, to compare strength adhesion of coating by Pull-Off test. The results have shown that, increasing the abrasive particles size and flow rate, can increase the steel surface roughness and coating adhesion strength but increasing the blasting time can do surface over blasting and increasing surface temperature and hardness too, change, decreasing steel surface roughness and coating adhesion strength.Keywords: surface preparation, abrasive particles, adhesionstrength
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9080872 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling. The research proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling. The paper concludes the challenges and improvement directions for Deep Reinforcement Learning-based resource scheduling algorithms.
Keywords: Resource scheduling, deep reinforcement learning, distributed system, artificial intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 499871 Evaluation of Total Cross Section of Photo-Ionization of Helium in Weak Field on Base of Trajectory Method
Authors: Alexander B. Bichkov, Valery V. Smirnov
Abstract:
Total cross section of helium atom photo-ionization by weak short pulse is calculated using the variant of trajectory method, developed in our earlier work. The method enables simple estimation of total ionization probability (or cross section) without integration of differential one.
Keywords: Evaluation of Photo-Ionization, Helium, Trajectory Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886870 Virtual Science Hub: An Open Source Platform to Enrich Science Teaching
Authors: Enrique Barra, Aldo Gordillo, Juan Quemada
Abstract:
This paper presents the Virtual Science Hub platform. It is an open source platform that combines a social network, an e-learning authoring tool, a videoconference service and a learning object repository for science teaching enrichment. These four main functionalities fit very well together. The platform was released in April 2012 and since then it has not stopped growing. Finally we present the results of the surveys conducted and the statistics gathered to validate this approach.
Keywords: E-learning, platform, authoring tool, science teaching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3525869 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values
Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi
Abstract:
A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.
Keywords: eXtreme Gradient Boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impairment, multiclass classification, ADNI, support vector machine, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961868 Education and Assessment of Civil Employees in e-Government: The Case of a Moodle Based Platform
Authors: Stamatios A. Theocharis, George A. Tsihrintzis
Abstract:
One of the most important factors for the success of e-government is training and preparing the workforce of the public sector. As changes and innovation in the public sector progress at a very slow pace and more slowly than in the private sector, issues related to human resources require special care. This is because the workforce will eventually seize the opportunities of the technological solutions used in e-Government. Thus, the central administration should provide employees with continuous and focused training not only on new technologies but also on a wide range of subjects and also improve interdepartmental interaction.
To achieve all this, new methods and training tools need to be implemented in addition to assessment of the employees. In this spirit, we propose the development of an educational platform with user personalization features. We propose the development of this platform using Moodle as the basic tool. Incorporating a personalization mechanism is very important since different employees have different backgrounds, education levels, computer skills, or different capability to develop further. Key features of the proposed platform include, besides typical e-learning tools, communities organized in order to exchange experiences and knowledge, groups of users based on certain criteria, automatic evaluation of users and potential self-education and self-assessment. In its fully developed form, this platform can be part of a more comprehensive knowledge management system for the public sector.
Keywords: e-Government, civil employees education, education technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943867 Knowledge Modelling for a Hotel Recommendation System
Authors: B. A. Gobin, R. K. Subramanian
Abstract:
Knowledge modelling, a main activity for the development of Knowledge Based Systems, have no set standards and are mostly done in an ad hoc way. There is a lack of support for the transition from abstract level to implementation. In this paper, a methodology for the development of the knowledge model, which is inspired by both Software and Knowledge Engineering, is proposed. Use of UML which is the de-facto standard for modelling in the software engineering arena is explored for knowledge modelling. The methodology proposed, is used to develop a knowledge model of a knowledge based system for recommending suitable hotels for tourists visiting Mauritius.Keywords: Domain Modelling, Knowledge Based Systems, Knowledge Modelling, UML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3766866 Effect of High Injection Pressure on Mixture Formation, Burning Process and Combustion Characteristics in Diesel Combustion
Authors: Amir Khalid, B. Manshoor
Abstract:
The mixture formation prior to the ignition process plays as a key element in the diesel combustion. Parametric studies of mixture formation and ignition process in various injection parameter has received considerable attention in potential for reducing emissions. Purpose of this study is to clarify the effects of injection pressure on mixture formation and ignition especially during ignition delay period, which have to be significantly influences throughout the combustion process and exhaust emissions. This study investigated the effects of injection pressure on diesel combustion fundamentally using rapid compression machine. The detail behavior of mixture formation during ignition delay period was investigated using the schlieren photography system with a high speed camera. This method can capture spray evaporation, spray interference, mixture formation and flame development clearly with real images. Ignition process and flame development were investigated by direct photography method using a light sensitive high-speed color digital video camera. The injection pressure and air motion are important variable that strongly affect to the fuel evaporation, endothermic and prolysis process during ignition delay. An increased injection pressure makes spray tip penetration longer and promotes a greater amount of fuel-air mixing occurs during ignition delay. A greater quantity of fuel prepared during ignition delay period thus predominantly promotes more rapid heat release.Keywords: Mixture Formation, Diesel Combustion, Ignition Process, Spray, Rapid Compression Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2845865 Age and Second Language Acquisition: A Case Study from Maldives
Authors: Aaidha Hammad
Abstract:
The age a child to be exposed to a second language is a controversial issue in communities such as the Maldives where English is taught as a second language. It has been observed that different stakeholders have different viewpoints towards the issue. Some believe that the earlier children are exposed to a second language, the better they learn, while others disagree with the notion. Hence, this case study investigates whether children learn a second language better when they are exposed at an earlier age or not. The spoken and written data collected confirm that earlier exposure helps in mastering the sound pattern and speaking fluency with more native-like accent, while a later age is better for learning more abstract and concrete aspects such as grammar and syntactic rules.Keywords: Age, development of language skills, fluency, second language acquisition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3642864 A New Version of Annotation Method with a XML-based Knowledge Base
Authors: Mohammad Yasrebi, Somayeh Khosravi
Abstract:
Machine-understandable data when strongly interlinked constitutes the basis for the SemanticWeb. Annotating web documents is one of the major techniques for creating metadata on the Web. Annotating websitexs defines the containing data in a form which is suitable for interpretation by machines. In this paper, we present a better and improved approach than previous [1] to annotate the texts of the websites depends on the knowledge base.Keywords: Knowledge base, ontology, semantic annotation, XML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573863 Improvement of Overall Equipment Effectiveness through Total Productive Maintenance
Abstract:
Frequent machine breakdowns, low plant availability and increased overtime are a great threat to a manufacturing plant as they increase operating costs of an industry. The main aim of this study was to improve Overall Equipment Effectiveness (OEE) at a manufacturing company through the implementation of innovative maintenance strategies. A case study approach was used. The paper focuses on improving the maintenance in a manufacturing set up using an innovative maintenance regime mix to improve overall equipment effectiveness. Interviews, reviewing documentation and historical records, direct and participatory observation were used as data collection methods during the research. Usually production is based on the total kilowatt of motors produced per day. The target kilowatt at 91% availability is 75 Kilowatts a day. Reduced demand and lack of raw materials particularly imported items are adversely affecting the manufacturing operations. The company had to reset its targets from the usual figure of 250 Kilowatt per day to mere 75 per day due to lower availability of machines as result of breakdowns as well as lack of raw materials. The price reductions and uncertainties as well as general machine breakdowns further lowered production. Some recommendations were given. For instance, employee empowerment in the company will enhance responsibility and authority to improve and totally eliminate the six big losses. If the maintenance department is to realise its proper function in a progressive, innovative industrial society, then its personnel must be continuously trained to meet current needs as well as future requirements. To make the maintenance planning system effective, it is essential to keep track of all the corrective maintenance jobs and preventive maintenance inspections. For large processing plants these cannot be handled manually. It was therefore recommended that the company implement (Computerised Maintenance Management System) CMMS.
Keywords: Maintenance, Manufacturing, Overall Equipment Effectiveness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3991862 Throughput Optimization on Wireless Networks by Increasing the Maximum Transmission Unit
Authors: Edward Guillén, Stephanne Rodríguez, Jhordany Rodríguez
Abstract:
Throughput enhancement can be achieved with two main approaches. The first one is by the increase of transmission rate and the second one is reducing the control traffic. This paper focuses on how the throughput can be enhanced by increasing Maximum Transmission Unit -MTU. Transmission of larger packets can cause a throughput improvement by reducing IP overhead. Analysis results are obtained by a mathematical model and simulation tools with a main focus on wireless channels.
Keywords: 802.11, Maximum Transfer Unit, throughput enhancement, wireless networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3578861 Experimental Simulation Set-Up for Validating Out-Of-The-Loop Mitigation when Monitoring High Levels of Automation in Air Traffic Control
Authors: Oliver Ohneiser, Francesca De Crescenzio, Gianluca Di Flumeri, Jan Kraemer, Bruno Berberian, Sara Bagassi, Nicolina Sciaraffa, Pietro Aricò, Gianluca Borghini, Fabio Babiloni
Abstract:
An increasing degree of automation in air traffic will also change the role of the air traffic controller (ATCO). ATCOs will fulfill significantly more monitoring tasks compared to today. However, this rather passive role may lead to Out-Of-The-Loop (OOTL) effects comprising vigilance decrement and less situation awareness. The project MINIMA (Mitigating Negative Impacts of Monitoring high levels of Automation) has conceived a system to control and mitigate such OOTL phenomena. In order to demonstrate the MINIMA concept, an experimental simulation set-up has been designed. This set-up consists of two parts: 1) a Task Environment (TE) comprising a Terminal Maneuvering Area (TMA) simulator as well as 2) a Vigilance and Attention Controller (VAC) based on neurophysiological data recording such as electroencephalography (EEG) and eye-tracking devices. The current vigilance level and the attention focus of the controller are measured during the ATCO’s active work in front of the human machine interface (HMI). The derived vigilance level and attention trigger adaptive automation functionalities in the TE to avoid OOTL effects. This paper describes the full-scale experimental set-up and the component development work towards it. Hence, it encompasses a pre-test whose results influenced the development of the VAC as well as the functionalities of the final TE and the two VAC’s sub-components.
Keywords: Automation, human factors, air traffic controller, MINIMA, OOTL, Out-Of-The-Loop, EEG, electroencephalography, HMI, human machine interface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457860 Enhanced Efficiency for Propagation of Phalaenopsis cornu-cervi (Breda) Blume & Rchb. F. Using Trimmed Leaf Technique
Authors: Suphat Rittirat, Sutha Klaocheed, Kanchit Thammasiri
Abstract:
The effects of thidiazuron (TDZ) and benzyladenine (BA) on protocorm-like bodies (PLBs) induction from leaf explants was investigated. It was found that TDZ was superior to BA. The highest percentage and number of PLBs per leaf explant at 30 and 5.3, respectively were obtained on ½ MS medium supplemented with 9µM TDZ. The regenerated plantlets were potted and acclimatized in the greenhouse. These plants grew well and developed into normal plants after 3 month of transplantation. The 100% survival of plantlets was achieved when planted on pots containing sphagnum moss.
Keywords: Orchid, PLBs, sphagnum moss, thidiazuron.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2803859 Making Data Structures and Algorithms more Understandable by Programming Sudoku the Human Way
Authors: Roelien Goede
Abstract:
Data Structures and Algorithms is a module in most Computer Science or Information Technology curricula. It is one of the modules most students identify as being difficult. This paper demonstrates how programming a solution for Sudoku can make abstract concepts more concrete. The paper relates concepts of a typical Data Structures and Algorithms module to a step by step solution for Sudoku in a human type as opposed to a computer oriented solution.Keywords: Data Structures, Algorithms, Sudoku, ObjectOriented Programming, Programming Teaching, Education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3099858 Do Students Really Understand Topology in the Lesson? A Case Study
Authors: Serkan Narli
Abstract:
This study aims to specify to what extent students understand topology during the lesson and to determine possible misconceptions. 14 teacher trainees registered at Secondary School Mathematics education department were observed in the topology lessons throughout a semester and data collected at the first topology lesson is presented here. Students- knowledge was evaluated using a written test right before and after the topology lesson. Thus, what the students learnt in terms of the definition and examples of topologic space were specified as well as possible misconceptions. The findings indicated that students did not fully comprehend the topic and misunderstandings were due to insufficient pre-requisite knowledge of abstract mathematical topics and mathematical notation.Keywords: Mathematics Education, Teacher Education, Topology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450857 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics
Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur
Abstract:
Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.Keywords: Human machine interface, industrial internet of things, internet of things, optical character recognition, video analytic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742856 Contingent Presences in Architecture: Vitruvian Theory as a Beginning
Authors: Zelal Çinar
Abstract:
This paper claims that architecture is a contingent discipline, despite the fact that its contingency has long been denied through a retreat to Vitruvian writing. It is evident that contingency is rejected not only by architecture but also by modernity as a whole. Vitruvius attempted to cover the entire field of architecture in a systematic form in order to bring the whole body of this great discipline to a complete order. The legacy of his theory hitherto lasted not only that it is the only major work on the architecture of Classical Antiquity to have survived, but also that its conformity with the project of modernity. In the scope of the paper, it will be argued that contingency should be taken into account rather than avoided as a potential threat.
Keywords: Architecture, contingency, modernity, Vitruvius.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2604855 Industrial Compressor Anti-Surge Computer Control
Authors: Ventzas Dimitrios, Petropoulos George
Abstract:
The paper presents a compressor anti-surge control system, that results in maximizing compressor throughput with pressure standard deviation reduction, increased safety margin between design point and surge limit line and avoiding possible machine surge. Alternative control strategies are presented.Keywords: Anti-surge, control, compressor, PID control, safety, fault tolerance, start-up, ESD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8969854 Relational Framework and its Applications
Authors: Lidia Obojska
Abstract:
This paper has, as its point of departure, the foundational axiomatic theory of E. De Giorgi (1996, Scuola Normale Superiore di Pisa, Preprints di Matematica 26, 1), based on two primitive notions of quality and relation. With the introduction of a unary relation, we develop a system totally based on the sole primitive notion of relation. Such a modification enables a definition of the concept of dynamic unary relation. In this way we construct a simple language capable to express other well known theories such as Robinson-s arithmetic or a piece of a theory of concatenation. A key role in this system plays an abstract relation designated by “( )", which can be interpreted in different ways, but in this paper we will focus on the case when we can perform computations and obtain results.Keywords: language, unary relations, arithmetic, computability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1261853 A Robotic Cube to Preschool Children for Acquiring the Mathematical and Colours Concepts
Authors: Ahmed Amin Mousa, Tamer M. Ismail, M. Abd El Salam
Abstract:
This work presents a robot called Conceptual Robotic Cube, CR-Cube. The robot can be used as an educational tool for children from the age of three. It has a cube shape attached with a camera colours sensor. In addition, it contains four wheels to move smoothly. The researchers prepared a questionnaire to measure the efficiency of the robot. The design and the questionnaire was presented to 11 experts who agreed that the robot is appropriate for learning numbering and colours for preschool children.
Keywords: CR-Cube, robotic cube, conceptual robot, conceptual cube, colour concept, early childhood education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1195852 New Adaptive Linear Discriminante Analysis for Face Recognition with SVM
Authors: Mehdi Ghayoumi
Abstract:
We have applied new accelerated algorithm for linear discriminate analysis (LDA) in face recognition with support vector machine. The new algorithm has the advantage of optimal selection of the step size. The gradient descent method and new algorithm has been implemented in software and evaluated on the Yale face database B. The eigenfaces of these approaches have been used to training a KNN. Recognition rate with new algorithm is compared with gradient.Keywords: lda, adaptive, svm, face recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427851 Predictive Semi-Empirical NOx Model for Diesel Engine
Authors: Saurabh Sharma, Yong Sun, Bruce Vernham
Abstract:
Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model. Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.
Keywords: Diesel engine, machine learning, NOx emission, semi-empirical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 859850 Contextual Distribution for Textual Alignment
Authors: Yuri Bizzoni, Marianne Reboul
Abstract:
Our program compares French and Italian translations of Homer’s Odyssey, from the XVIth to the XXth century. We focus on the third point, showing how distributional semantics systems can be used both to improve alignment between different French translations as well as between the Greek text and a French translation. Although we focus on French examples, the techniques we display are completely language independent.
Keywords: Translation studies, machine translation, computational linguistics, distributional semantics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1040849 Soccer Video Edition Using a Multimodal Annotation
Authors: Fendri Emna, Ben-Abdallah Hanêne, Ben-Hamadou Abdelmajid
Abstract:
In this paper, we present an approach for soccer video edition using a multimodal annotation. We propose to associate with each video sequence of a soccer match a textual document to be used for further exploitation like search, browsing and abstract edition. The textual document contains video meta data, match meta data, and match data. This document, generated automatically while the video is analyzed, segmented and classified, can be enriched semi automatically according to the user type and/or a specialized recommendation system.Keywords: XML, Multimodal Annotation, recommendation system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445848 CBIR Using Multi-Resolution Transform for Brain Tumour Detection and Stages Identification
Authors: H. Benjamin Fredrick David, R. Balasubramanian, A. Anbarasa Pandian
Abstract:
Image retrieval is the most interesting technique which is being used today in our digital world. CBIR, commonly expanded as Content Based Image Retrieval is an image processing technique which identifies the relevant images and retrieves them based on the patterns that are extracted from the digital images. In this paper, two research works have been presented using CBIR. The first work provides an automated and interactive approach to the analysis of CBIR techniques. CBIR works on the principle of supervised machine learning which involves feature selection followed by training and testing phase applied on a classifier in order to perform prediction. By using feature extraction, the image transforms such as Contourlet, Ridgelet and Shearlet could be utilized to retrieve the texture features from the images. The features extracted are used to train and build a classifier using the classification algorithms such as Naïve Bayes, K-Nearest Neighbour and Multi-class Support Vector Machine. Further the testing phase involves prediction which predicts the new input image using the trained classifier and label them from one of the four classes namely 1- Normal brain, 2- Benign tumour, 3- Malignant tumour and 4- Severe tumour. The second research work includes developing a tool which is used for tumour stage identification using the best feature extraction and classifier identified from the first work. Finally, the tool will be used to predict tumour stage and provide suggestions based on the stage of tumour identified by the system. This paper presents these two approaches which is a contribution to the medical field for giving better retrieval performance and for tumour stages identification.
Keywords: Brain tumour detection, content based image retrieval, classification of tumours, image retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777847 Lexical Based Method for Opinion Detection on Tripadvisor Collection
Authors: Faiza Belbachir, Thibault Schienhinski
Abstract:
The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.Keywords: Tripadvisor, Opinion detection, SentiWordNet, trust score.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754846 Effects of Network Dynamics on Routing Efficiency in P2P Networks
Authors: Mojca Ciglaric, Andrej Krevl, Matjaž Pancur, Tone Vidmar
Abstract:
P2P Networks are highly dynamic structures since their nodes – peer users keep joining and leaving continuously. In the paper, we study the effects of network change rates on query routing efficiency. First we describe some background and an abstract system model. The chosen routing technique makes use of cached metadata from previous answer messages and also employs a mechanism for broken path detection and metadata maintenance. Several metrics are used to show that the protocol behaves quite well even with high rate of node departures, but above a certain threshold it literally breaks down and exhibits considerable efficiency degradation.Keywords: Network dynamics, overlay network, P2P system, routing efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1361