Search results for: "Power system voltage control using lp and artificial neural network"
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14055

Search results for: "Power system voltage control using lp and artificial neural network"

13455 Microgrid: Low Power Network Topology and Control

Authors: Amit Sachan

Abstract:

The network designing and data modeling developments which are the two significant research tasks in direction to tolerate power control of Microgrid concluded using IEC 61850 data models and facilities. The current casing areas of IEC 61580 include infrastructures in substation automation systems, among substations and to DERs. So, for LV microgrid power control, previously using the IEC 61850 amenities to control the smart electrical devices, we have to model those devices as IEC 61850 data models and design a network topology to maintenance all-in-one communiqué amid those devices. In adding, though IEC 61850 assists modeling a portion by open-handed several object models for common functions similar measurement, metering, monitoring…etc., there are motionless certain missing smithereens for building a multiplicity of functions for household appliances like tuning the temperature of an electric heater or refrigerator.

Keywords: IEC 61850, RCMC, HCMC, DER Unit Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2498
13454 Analysis of Lightning Surge Condition Effect on Surge Arrester in Electrical Power System by using ATP/EMTP Program

Authors: N. Mungkung, S. Wongcharoen., Tanes Tanitteerapan, C. Saejao, D. Arunyasot

Abstract:

The condition of lightning surge causes the traveling waves and the temporary increase in voltage in the transmission line system. Lightning is the most harmful for destroying the transmission line and setting devices so it is necessary to study and analyze the temporary increase in voltage for designing and setting the surge arrester. This analysis describes the figure of the lightning wave in transmission line with 115 kV voltage level in Thailand by using ATP/EMTP program to create the model of the transmission line and lightning surge. Because of the limit of this program, it must be calculated for the geometry of the transmission line and surge parameter and calculation in the manual book for the closest value of the parameter. On the other hand, for the effects on surge protector when the lightning comes, the surge arrester model must be right and standardized as metropolitan electrical authority's standard. The candidate compared the real information to the result from calculation, also. The results of the analysis show that the temporary increase in voltage value will be rise to 326.59 kV at the line which is done by lightning when the surge arrester is not set in the system. On the other hand, the temporary increase in voltage value will be 182.83 kV at the line which is done by lightning when the surge arrester is set in the system and the period of the traveling wave is reduced, also. The distance for setting the surge arrester must be as near to the transformer as possible. Moreover, it is necessary to know the right distance for setting the surge arrester and the size of the surge arrester for preventing the temporary increase in voltage, effectively.

Keywords: Lightning surge, surge arrester, electrical power system, ATP/EMTP program.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766
13453 Development of Neural Network Prediction Model of Energy Consumption

Authors: Maryam Jamela Ismail, Rosdiazli Ibrahim, Idris Ismail

Abstract:

In the oil and gas industry, energy prediction can help the distributor and customer to forecast the outgoing and incoming gas through the pipeline. It will also help to eliminate any uncertainties in gas metering for billing purposes. The objective of this paper is to develop Neural Network Model for energy consumption and analyze the performance model. This paper provides a comprehensive review on published research on the energy consumption prediction which focuses on structures and the parameters used in developing Neural Network models. This paper is then focused on the parameter selection of the neural network prediction model development for energy consumption and analysis on the result. The most reliable model that gives the most accurate result is proposed for the prediction. The result shows that the proposed neural network energy prediction model is able to demonstrate an adequate performance with least Root Mean Square Error.

Keywords: Energy Prediction, Multilayer Feedforward, Levenberg-Marquardt, Root Mean Square Error (RMSE)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643
13452 A Digital Pulse-Width Modulation Controller for High-Temperature DC-DC Power Conversion Application

Authors: Jingjing Lan, Jun Yu, Muthukumaraswamy Annamalai Arasu

Abstract:

This paper presents a digital non-linear pulse-width modulation (PWM) controller in a high-voltage (HV) buck-boost DC-DC converter for the piezoelectric transducer of the down-hole acoustic telemetry system. The proposed design controls the generation of output signal with voltage higher than the supply voltage and is targeted to work under high temperature. To minimize the power consumption and silicon area, a simple and efficient design scheme is employed to develop the PWM controller. The proposed PWM controller consists of serial to parallel (S2P) converter, data assign block, a mode and duty cycle controller (MDC), linearly PWM (LPWM) and noise shaper, pulse generator and clock generator. To improve the reliability of circuit operation at higher temperature, this design is fabricated with the 1.0-μm silicon-on-insulator (SOI) CMOS process. The implementation results validated that the proposed design has the advantages of smaller size, lower power consumption and robust thermal stability.

Keywords: DC-DC power conversion, digital control, high temperatures, pulse-width modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
13451 Performance Evaluation of Distributed Deep Learning Frameworks in Cloud Environment

Authors: Shuen-Tai Wang, Fang-An Kuo, Chau-Yi Chou, Yu-Bin Fang

Abstract:

2016 has become the year of the Artificial Intelligence explosion. AI technologies are getting more and more matured that most world well-known tech giants are making large investment to increase the capabilities in AI. Machine learning is the science of getting computers to act without being explicitly programmed, and deep learning is a subset of machine learning that uses deep neural network to train a machine to learn  features directly from data. Deep learning realizes many machine learning applications which expand the field of AI. At the present time, deep learning frameworks have been widely deployed on servers for deep learning applications in both academia and industry. In training deep neural networks, there are many standard processes or algorithms, but the performance of different frameworks might be different. In this paper we evaluate the running performance of two state-of-the-art distributed deep learning frameworks that are running training calculation in parallel over multi GPU and multi nodes in our cloud environment. We evaluate the training performance of the frameworks with ResNet-50 convolutional neural network, and we analyze what factors that result in the performance among both distributed frameworks as well. Through the experimental analysis, we identify the overheads which could be further optimized. The main contribution is that the evaluation results provide further optimization directions in both performance tuning and algorithmic design.

Keywords: Artificial Intelligence, machine learning, deep learning, convolutional neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
13450 H∞ Fuzzy Integral Power Control for DFIG Wind Energy System

Authors: N. Chayaopas, W. Assawinchaichote

Abstract:

In order to maximize energy capturing from wind energy, controlling the doubly fed induction generator to have optimal power from the wind, generator speed and output electrical power control in wind energy system have a great importance due to the nonlinear behavior of wind velocities. In this paper purposes the design of a control scheme is developed for power control of wind energy system via H∞ fuzzy integral controller. Firstly, the nonlinear system is represented in term of a TS fuzzy control design via linear matrix inequality approach to find the optimal controller to have an H∞ performance are derived. The proposed control method extract the maximum energy from the wind and overcome the nonlinearity and disturbances problems of wind energy system which give good tracking performance and high efficiency power output of the DFIG.

Keywords: H∞ fuzzy integral control, linear matrix inequality, wind energy system, doubly fed induction generator (DFIG).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153
13449 Development of a Comprehensive Electricity Generation Simulation Model Using a Mixed Integer Programming Approach

Authors: Erik Delarue, David Bekaert, Ronnie Belmans, William D'haeseleer

Abstract:

This paper presents the development of an electricity simulation model taking into account electrical network constraints, applied on the Belgian power system. The base of the model is optimizing an extensive Unit Commitment (UC) problem through the use of Mixed Integer Linear Programming (MILP). Electrical constraints are incorporated through the implementation of a DC load flow. The model encloses the Belgian power system in a 220 – 380 kV high voltage network (i.e., 93 power plants and 106 nodes). The model features the use of pumping storage facilities as well as the inclusion of spinning reserves in a single optimization process. Solution times of the model stay below reasonable values.

Keywords: Electricity generation modeling, Unit Commitment(UC), Mixed Integer Linear Programming (MILP), DC load flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043
13448 Analysis of Transformer Reactive Power Fluctuations during Adverse Space Weather

Authors: Patience Muchini, Electdom Matandiroya, Emmanuel Mashonjowa

Abstract:

A ground-end manifestation of space weather phenomena is known as geomagnetically induced currents (GICs). GICs flow along the electric power transmission cables connecting the transformers and between the grounding points of power transformers during significant geomagnetic storms. Zimbabwe has no study that notes if grid failures have been caused by GICs. Research and monitoring are needed to investigate this possible relationship purpose of this paper is to characterize GICs with a power grid network. This paper analyses data collected, which are geomagnetic data, which include the Kp index, Disturbance storm time (DST) index, and the G-Scale from geomagnetic storms and also analyses power grid data, which includes reactive power, relay tripping, and alarms from high voltage substations and then correlates the data. This research analysis was first theoretically analyzed by studying geomagnetic parameters and then experimented upon. To correlate, MATLAB was used as the basic software to analyze the data. Latitudes of the substations were also brought into scrutiny to note if they were an impact due to the location as low latitudes areas like most parts of Zimbabwe, there are less severe geomagnetic variations. Based on theoretical and graphical analysis, it has been proven that there is a slight relationship between power system failures and GICs. Further analyses can be done by implementing measuring instruments to measure any currents in the grounding of high-voltage transformers when geomagnetic storms occur. Mitigation measures can then be developed to minimize the susceptibility of the power network to GICs.

Keywords: Adverse space weather, DST index, geomagnetically induced currents, Kp index, reactive power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161
13447 Low Power Low Voltage Current Mode Pipelined A/D Converters

Authors: Krzysztof Wawryn, Robert Suszyński, Bogdan Strzeszewski

Abstract:

This paper presents two prototypes of low power low voltage current mode 9 bit pipelined a/d converters. The first and the second converters are configured of 1.5 bit and 2.5 bit stages, respectively. The a/d converter structures are composed of current mode building blocks and final comparator block which converts the analog current signal into digital voltage signal. All building blocks have been designed in CMOS AMS 0.35μm technology, then simulated to verify proposed concept. The performances of both converters are compared to performances of known current mode and voltage mode switched capacitance converter structures. Low power consumption and small chip area are advantages of the proposed converters.

Keywords: Pipelined converter, a/d converter, low power, lowvoltage, current mode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
13446 Technique for Grounding System Design in Distribution Substation

Authors: N. Rugthaicharoencheep, A. Charlangsut, B. Ainsuk, A. Phayomhom

Abstract:

This paper presents the significant factor and give some suggestion that should know before design. The main objective of this paper is guide the first step for someone who attends to design of grounding system before study in details later. The overview of grounding system can protect damage from fault such as can save a human life and power system equipment. The unsafe conditions have three cases. Case 1) maximum touch voltage exceeds the safety criteria. In this case, the conductor compression ratio of the ground gird should be first adjusted to have optimal spacing of ground grid conductors. If it still over limit, earth resistivity should be consider afterward. Case 2) maximum step voltage exceeds the safety criteria. In this case, increasing the number of ground grid conductors around the boundary can solve this problem. Case 3) both of maximum touch and step voltage exceed the safety criteria. In this case, follow the solutions explained in case 1 and case 2. Another suggestion, vary depth of ground grid until maximum step and touch voltage do not exceed the safety criteria.

Keywords: Grounding System, Touch Voltage, Step Voltage, Safety Criteria.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3530
13445 Signature Recognition Using Conjugate Gradient Neural Networks

Authors: Jamal Fathi Abu Hasna

Abstract:

There are two common methodologies to verify signatures: the functional approach and the parametric approach. This paper presents a new approach for dynamic handwritten signature verification (HSV) using the Neural Network with verification by the Conjugate Gradient Neural Network (NN). It is yet another avenue in the approach to HSV that is found to produce excellent results when compared with other methods of dynamic. Experimental results show the system is insensitive to the order of base-classifiers and gets a high verification ratio.

Keywords: Signature Verification, MATLAB Software, Conjugate Gradient, Segmentation, Skilled Forgery, and Genuine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
13444 MarginDistillation: Distillation for Face Recognition Neural Networks with Margin-Based Softmax

Authors: Svitov David, Alyamkin Sergey

Abstract:

The usage of convolutional neural networks (CNNs) in conjunction with the margin-based softmax approach demonstrates the state-of-the-art performance for the face recognition problem. Recently, lightweight neural network models trained with the margin-based softmax have been introduced for the face identification task for edge devices. In this paper, we propose a distillation method for lightweight neural network architectures that outperforms other known methods for the face recognition task on LFW, AgeDB-30 and Megaface datasets. The idea of the proposed method is to use class centers from the teacher network for the student network. Then the student network is trained to get the same angles between the class centers and face embeddings predicted by the teacher network.

Keywords: ArcFace, distillation, face recognition, margin-based softmax.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 631
13443 Automated Textile Defect Recognition System Using Computer Vision and Artificial Neural Networks

Authors: Atiqul Islam, Shamim Akhter, Tumnun E. Mursalin

Abstract:

Least Development Countries (LDC) like Bangladesh, whose 25% revenue earning is achieved from Textile export, requires producing less defective textile for minimizing production cost and time. Inspection processes done on these industries are mostly manual and time consuming. To reduce error on identifying fabric defects requires more automotive and accurate inspection process. Considering this lacking, this research implements a Textile Defect Recognizer which uses computer vision methodology with the combination of multi-layer neural networks to identify four classifications of textile defects. The recognizer, suitable for LDC countries, identifies the fabric defects within economical cost and produces less error prone inspection system in real time. In order to generate input set for the neural network, primarily the recognizer captures digital fabric images by image acquisition device and converts the RGB images into binary images by restoration process and local threshold techniques. Later, the output of the processed image, the area of the faulty portion, the number of objects of the image and the sharp factor of the image, are feed backed as an input layer to the neural network which uses back propagation algorithm to compute the weighted factors and generates the desired classifications of defects as an output.

Keywords: Computer vision, image acquisition device, machine vision, multi-layer neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3300
13442 A Maximum Power Point Tracker for PV Panels Using SEPIC Converter

Authors: S. Ganesh, J. Janani, G. Besliya Angel

Abstract:

Photovoltaic (PV) energy is one of the most important renewable energy sources. Maximum Power Point Tracking (MPPT) techniques should be used in photovoltaic systems to maximize the PV panel output power by tracking continuously the maximum power point which depends on panel’s temperature and on irradiance conditions. Incremental conductance control method has been used as MPPT algorithm. The methodology is based on connecting a pulse width modulated dc/dc SEPIC converter, which is controlled by a microprocessor based unit. The SEPIC converter is one of the buck-boost converters which maintain the output voltage as constant irrespective of the solar isolation level. By adjusting the switching frequency of the converter the maximum power point has been achieved. The main difference between the method used in the proposed MPPT systems and other technique used in the past is that PV array output power is used to directly control the dc/dc converter thus reducing the complexity of the system. The resulting system has high efficiency, low cost and can be easily modified. The tracking capability has been verified experimentally with a 10 W solar panel under a controlled experimental setup. The SEPIC converter and their control strategies has been analyzed and simulated using Simulink/Matlab software.

Keywords: Maximum Power Point Tracking, Microprocessor, PV Module, SEPIC Converter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5969
13441 Fault Classification of a Doubly FED Induction Machine Using Neural Network

Authors: A. Ourici

Abstract:

Rapid progress in process automation and tightening quality standards result in a growing demand being placed on fault detection and diagnostics methods to provide both speed and reliability of motor quality testing. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator and an open phase faults, in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect these faults, is based on Park-s Vector Approach, using a neural network.

Keywords: Doubly fed induction machine, inter turn stator fault, neural network, open phase fault, Park's vector approach, PWMinverter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
13440 Capacitor Placement in Distribution Systems Using Simulating Annealing (SA)

Authors: Esmail Limouzade, Mahmood.Joorabian, Najaf Hedayat

Abstract:

This paper undertakes the problem of optimal capacitor placement in a distribution system. The problem is how to optimally determine the locations to install capacitors, the types and sizes of capacitors to he installed and, during each load level,the control settings of these capacitors in order that a desired objective function is minimized while the load constraints,network constraints and operational constraints (e.g. voltage profile) at different load levels are satisfied. The problem is formulated as a combinatorial optimization problem with a nondifferentiable objective function. Four solution mythologies based on algorithms (GA),tabu search (TS), and hybrid GA-SA algorithms are presented.The solution methodologies are preceded by a sensitivity analysis to select the candidate capacitor installation locations.

Keywords: Genetic Algorithm (GA) , capacitor placement, voltage profile, network losses, Simulated Annealing, distribution network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
13439 Hybrid Model Based on Artificial Immune System and Cellular Automata

Authors: Ramin Javadzadeh, Zahra Afsahi, MohammadReza Meybodi

Abstract:

The hybridization of artificial immune system with cellular automata (CA-AIS) is a novel method. In this hybrid model, the cellular automaton within each cell deploys the artificial immune system algorithm under optimization context in order to increase its fitness by using its neighbor-s efforts. The hybrid model CA-AIS is introduced to fix the standard artificial immune system-s weaknesses. The credibility of the proposed approach is evaluated by simulations and it shows that the proposed approach achieves better results compared to standard artificial immune system.

Keywords: Artificial Immune System, Cellular Automat, neighborhood

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1603
13438 Using Combination of Optimized Recurrent Neural Network with Design of Experiments and Regression for Control Chart Forecasting

Authors: R. Behmanesh, I. Rahimi

Abstract:

recurrent neural network (RNN) is an efficient tool for modeling production control process as well as modeling services. In this paper one RNN was combined with regression model and were employed in order to be checked whether the obtained data by the model in comparison with actual data, are valid for variable process control chart. Therefore, one maintenance process in workshop of Esfahan Oil Refining Co. (EORC) was taken for illustration of models. First, the regression was made for predicting the response time of process based upon determined factors, and then the error between actual and predicted response time as output and also the same factors as input were used in RNN. Finally, according to predicted data from combined model, it is scrutinized for test values in statistical process control whether forecasting efficiency is acceptable. Meanwhile, in training process of RNN, design of experiments was set so as to optimize the RNN.

Keywords: RNN, DOE, regression, control chart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
13437 Direct Torque Control - DTC of Induction Motor Used for Piloting a Centrifugal Pump Supplied by a Photovoltaic Generator

Authors: S. Abouda, F. Nollet, A. Chaari, N. Essounbouli, Y. Koubaa

Abstract:

In this paper we propose the study of a centrifugal pump control system driven by a three-phase induction motor, which is supplied by a PhotoVoltaic PV generator. The system includes solar panel, a DC / DC converter equipped with its MPPT control, a voltage inverter to three-phase Pulse Width Modulation - PWM and a centrifugal pump driven by a three phase induction motor. In order to control the flow of the centrifugal pump, a Direct Torque Control - DTC of the induction machine is used. To illustrate the performances of the control, simulation results are carried out using Matlab/Simulink.

Keywords: Photovoltaic generators, Maximum power point tracking (MPPT), DC/DC converters, Induction motor, Direct torque control (DTC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3164
13436 Role-based Access Control Model in Home Network Environments

Authors: Do-Woo Kim, Geon Woo Kim, Jun-Ho Lee, Jong-Wook Han

Abstract:

The home in these days has not one computer connected to the Internet but rather a network of many devices within the home, and that network might be connected to the Internet. In such an environment, the potential for attacks is greatly increased. The general security technology can not apply because of the use of various wired and wireless network, middleware and protocol in digital home environment and a restricted system resource of home information appliances. To offer secure home services home network environments have need of access control for various home devices and information when users want to access. Therefore home network access control for user authorization is a very important issue. In this paper we propose access control model using RBAC in home network environments to provide home users with secure home services.

Keywords: Home network, access control, RBAC, security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
13435 Compensation Method Eliminating Voltage Distortions in PWM Inverter

Authors: H. Sediki, S. Djennoune

Abstract:

The switching lag-time and the voltage drop across the power devices cause serious waveform distortions and fundamental voltage drop in pulse width-modulated inverter output. These phenomenons are conspicuous when both the output frequency and voltage are low. To estimate the output voltage from the PWM reference signal it is essential to take account of these imperfections and to correct them. In this paper, on-line compensation method is presented. It needs three simple blocs to add at the ideal reference voltages. This method does not require any additional hardware circuit and off- line experimental measurement. The paper includes experimental results to demonstrate the validity of the proposed method. It is applied, finally, in case of indirect vector controlled induction machine and implemented using dSpace card.

Keywords: Dead time, field-oriented control, Induction motor, PWM inverter, voltage drop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4583
13434 Prediction of Optimum Cutting Parameters to obtain Desired Surface in Finish Pass end Milling of Aluminium Alloy with Carbide Tool using Artificial Neural Network

Authors: Anjan Kumar Kakati, M. Chandrasekaran, Amitava Mandal, Amit Kumar Singh

Abstract:

End milling process is one of the common metal cutting operations used for machining parts in manufacturing industry. It is usually performed at the final stage in manufacturing a product and surface roughness of the produced job plays an important role. In general, the surface roughness affects wear resistance, ductility, tensile, fatigue strength, etc., for machined parts and cannot be neglected in design. In the present work an experimental investigation of end milling of aluminium alloy with carbide tool is carried out and the effect of different cutting parameters on the response are studied with three-dimensional surface plots. An artificial neural network (ANN) is used to establish the relationship between the surface roughness and the input cutting parameters (i.e., spindle speed, feed, and depth of cut). The Matlab ANN toolbox works on feed forward back propagation algorithm is used for modeling purpose. 3-12-1 network structure having minimum average prediction error found as best network architecture for predicting surface roughness value. The network predicts surface roughness for unseen data and found that the result/prediction is better. For desired surface finish of the component to be produced there are many different combination of cutting parameters are available. The optimum cutting parameter for obtaining desired surface finish, to maximize tool life is predicted. The methodology is demonstrated, number of problems are solved and algorithm is coded in Matlab®.

Keywords: End milling, Surface roughness, Neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
13433 A Compact Pi Network for Reducing Bit Error Rate in Dispersive FIR Channel Noise Model

Authors: Kavita Burse, R.N. Yadav, S.C. Shrivastava, Vishnu Pratap Singh Kirar

Abstract:

During signal transmission, the combined effect of the transmitter filter, the transmission medium, and additive white Gaussian noise (AWGN) are included in the channel which distort and add noise to the signal. This causes the well defined signal constellation to spread causing errors in bit detection. A compact pi neural network with minimum number of nodes is proposed. The replacement of summation at each node by multiplication results in more powerful mapping. The resultant pi network is tested on six different channels.

Keywords: Additive white Gaussian noise, digitalcommunication system, multiplicative neuron, Pi neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
13432 The Study on the Wireless Power Transfer System for Mobile Robots

Authors: Hyung-Nam Kim, Won-Yong Chae, Dong-Sul Shin, Ho-Sung Kim, Hee-Je Kim

Abstract:

A wireless power transfer system can attribute to the fields in robot, aviation and space in which lightening the weight of device and improving the movement play an important role. A wireless power transfer system was investigated to overcome the inconvenience of using power cable. Especially a wireless power transfer technology is important element for mobile robots. We proposed the wireless power transfer system of the half-bridge resonant converter with the frequency tracking and optimized power transfer control unit. And the possibility of the application and development system was verified through the experiment with LED loads.

Keywords: Wireless Power Transmission (WPT), resonancefrequency, protection circuit. LED.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2697
13431 An Artificial Neural Network Model for Earthquake Prediction and Relations between Environmental Parameters and Earthquakes

Authors: S. Niksarlioglu, F. Kulahci

Abstract:

Earthquakes are natural phenomena that occur with influence of a lot of parameters such as seismic activity, changing in the ground waters' motion, changing in the water-s temperature, etc. On the other hand, the radon gas concentrations in soil vary as nonlinear generally with earthquakes. Continuous measurement of the soil radon gas is very important for determination of characteristic of the seismic activity. The radon gas changes as continuous with strain occurring within the Earth-s surface during an earthquake and effects from the physical and the chemical processes such as soil structure, soil permeability, soil temperature, the barometric pressure, etc. Therefore, at the modeling researches are notsufficient to knowthe concentration ofradon gas. In this research, we determined relationships between radon emissions based on the environmental parameters and earthquakes occurring along the East Anatolian Fault Zone (EAFZ), Turkiye and predicted magnitudes of some earthquakes with the artificial neural network (ANN) model.

Keywords: Earthquake, Modeling, Prediction, Radon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012
13430 Identification of Optimum Parameters of Deep Drawing of a Cylindrical Workpiece using Neural Network and Genetic Algorithm

Authors: D. Singh, R. Yousefi, M. Boroushaki

Abstract:

Intelligent deep-drawing is an instrumental research field in sheet metal forming. A set of 28 different experimental data have been employed in this paper, investigating the roles of die radius, punch radius, friction coefficients and drawing ratios for axisymmetric workpieces deep drawing. This paper focuses an evolutionary neural network, specifically, error back propagation in collaboration with genetic algorithm. The neural network encompasses a number of different functional nodes defined through the established principles. The input parameters, i.e., punch radii, die radii, friction coefficients and drawing ratios are set to the network; thereafter, the material outputs at two critical points are accurately calculated. The output of the network is used to establish the best parameters leading to the most uniform thickness in the product via the genetic algorithm. This research achieved satisfactory results based on demonstration of neural networks.

Keywords: Deep-drawing, Neural network, Genetic algorithm, Sheet metal forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
13429 Fuzzy PID based PSS Design Using Genetic Algorithm

Authors: Ermanu A. Hakim, Adi Soeprijanto, Mauridhi H.P

Abstract:

This paper presents PSS (Power system stabilizer) design based on optimal fuzzy PID (OFPID). OFPID based PSS design is considered for single-machine power systems. The main motivation for this design is to stabilize or to control low-frequency oscillation on power systems. Firstly, describing the linear PID control then to combine this PID control with fuzzy logic control mechanism. Finally, Fuzzy PID parameters (Kp. Kd, KI, Kupd, Kui) are tuned by Genetic Algorthm (GA) to reach optimal global stability. The effectiveness of the proposed PSS in increasing the damping of system electromechanical oscillation is demonstrated in a one-machine-infinite-bus system

Keywords: Fuzzy PID, Genetic Algorithm, power system stabilizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
13428 Determining Earthquake Performances of Existing Reinforced Concrete Buildings by Using ANN

Authors: Musa H. Arslan, Murat Ceylan, Tayfun Koyuncu

Abstract:

In this study, an Artificial Neural Network (ANN) analytical method has been developed for analyzing earthquake performances of the Reinforced Concrete (RC) buildings. 66 RC buildings with four to ten storeys were subjected to performance analysis according to the parameters which are the existing material, loading and geometrical characteristics of the buildings. The selected parameters have been thought to be effective on the performance of RC buildings. In the performance analyses stage of the study, level of performance possible to be shown by these buildings in case of an earthquake was determined on the basis of the 4-grade performance levels specified in Turkish Earthquake Code-2007 (TEC-2007). After obtaining the 4-grade performance level, selected 23 parameters of each building have been matched with the performance level. In this stage, ANN-based fast evaluation algorithm mentioned above made an economic and rapid evaluation of four to ten storey RC buildings. According to the study, the prediction accuracy of ANN has been found about 74%.

Keywords: Artificial neural network, earthquake, performance, reinforced concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2664
13427 Power Transformer Noise, Noise Tests, and Example Test Results

Authors: E. Doğan, B. Kekezoğlu

Abstract:

Voltage level must be raised in order to deliver the produced energy to the consumption zones with less loss and less cost. Power transformers used to raise or lower voltage are important parts of the energy transmission system. Power transformers used in switchgear and power generation plants stay in human's intensive habitat zones as a result of expanding cities. Accordingly, noise levels produced by power transformers have begun more and more important and they have established itself as one of the research field. In this research, the noise cause on transformers has been investigated, it's causes has been examined and noise measurement techniques have been introduced. Examples of transformer noise test results are submitted and precautions to be taken were discussed for the purpose of decreasing of the noise which will occurred by transformers.

Keywords: Power transformer, noise measurement, core noise, load noise, fan-pump noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5690
13426 Off-Policy Q-learning Technique for Intrusion Response in Network Security

Authors: Zheni S. Stefanova, Kandethody M. Ramachandran

Abstract:

With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.

Keywords: Intrusion prevention, network security, optimal policy, Q-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1022