Search results for: data integrity challenges
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8296

Search results for: data integrity challenges

7726 Comparative Study of Transformed and Concealed Data in Experimental Designs and Analyses

Authors: K. Chinda, P. Luangpaiboon

Abstract:

This paper presents the comparative study of coded data methods for finding the benefit of concealing the natural data which is the mercantile secret. Influential parameters of the number of replicates (rep), treatment effects (τ) and standard deviation (σ) against the efficiency of each transformation method are investigated. The experimental data are generated via computer simulations under the specified condition of the process with the completely randomized design (CRD). Three ways of data transformation consist of Box-Cox, arcsine and logit methods. The difference values of F statistic between coded data and natural data (Fc-Fn) and hypothesis testing results were determined. The experimental results indicate that the Box-Cox results are significantly different from natural data in cases of smaller levels of replicates and seem to be improper when the parameter of minus lambda has been assigned. On the other hand, arcsine and logit transformations are more robust and obviously, provide more precise numerical results. In addition, the alternate ways to select the lambda in the power transformation are also offered to achieve much more appropriate outcomes.

Keywords: Experimental Designs, Box-Cox, Arcsine, Logit Transformations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622
7725 Seismic Response of Reinforced Concrete Buildings: Field Challenges and Simplified Code Formulas

Authors: Michel Soto Chalhoub

Abstract:

Building code-related literature provides recommendations on normalizing approaches to the calculation of the dynamic properties of structures. Most building codes make a distinction among types of structural systems, construction material, and configuration through a numerical coefficient in the expression for the fundamental period. The period is then used in normalized response spectra to compute base shear. The typical parameter used in simplified code formulas for the fundamental period is overall building height raised to a power determined from analytical and experimental results. However, reinforced concrete buildings which constitute the majority of built space in less developed countries pose additional challenges to the ones built with homogeneous material such as steel, or with concrete under stricter quality control. In the present paper, the particularities of reinforced concrete buildings are explored and related to current methods of equivalent static analysis. A comparative study is presented between the Uniform Building Code, commonly used for buildings within and outside the USA, and data from the Middle East used to model 151 reinforced concrete buildings of varying number of bays, number of floors, overall building height, and individual story height. The fundamental period was calculated using eigenvalue matrix computation. The results were also used in a separate regression analysis where the computed period serves as dependent variable, while five building properties serve as independent variables. The statistical analysis shed light on important parameters that simplified code formulas need to account for including individual story height, overall building height, floor plan, number of bays, and concrete properties. Such inclusions are important for reinforced concrete buildings of special conditions due to the level of concrete damage, aging, or materials quality control during construction. Overall results of the present analysis show that simplified code formulas for fundamental period and base shear may be applied but they require revisions to account for multiple parameters. The conclusion above is confirmed by the analytical model where fundamental periods were computed using numerical techniques and eigenvalue solutions. This recommendation is particularly relevant to code upgrades in less developed countries where it is customary to adopt, and mildly adapt international codes. We also note the necessity of further research using empirical data from buildings in Lebanon that were subjected to severe damage due to impulse loading or accelerated aging. However, we excluded this study from the present paper and left it for future research as it has its own peculiarities and requires a different type of analysis.

Keywords: Seismic behavior, reinforced concrete, simplified code formulas, equivalent static analysis, base shear, response spectra.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2742
7724 The Effect of Glass Thickness on Stress in Vacuum Glazing

Authors: Farid Arya, Trevor Hyde, Andrea Trevisi, Paolo Basso, Danilo Bardaro

Abstract:

Heat transfer through multiple pane windows can be reduced by creating a vacuum pressure less than 0.1 Pa between the glass panes, with low emittance coatings on one or more of the internal surfaces. Fabrication of vacuum glazing (VG) requires the formation of a hermetic seal around the periphery of the glass panes together with an array of support pillars between the panes to prevent them from touching under atmospheric pressure. Atmospheric pressure and temperature differentials induce stress which can affect the integrity of the glazing. Several parameters define the stresses in VG including the glass thickness, pillar specifications, glazing dimensions and edge seal configuration. Inherent stresses in VG can result in fractures in the glass panes and failure of the edge seal. In this study, stress in VG with different glass thicknesses is theoretically studied using Finite Element Modelling (FEM). Based on the finding in this study, suggestions are made to address problems resulting from the use of thinner glass panes in the fabrication of VG. This can lead to the development of high performance, light and thin VG.

Keywords: ABAQUS, glazing, stress, vacuum glazing, vacuum insulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
7723 Design of a Low Cost Motion Data Acquisition Setup for Mechatronic Systems

Authors: Barış Can Yalçın

Abstract:

Motion sensors have been commonly used as a valuable component in mechatronic systems, however, many mechatronic designs and applications that need motion sensors cost enormous amount of money, especially high-tech systems. Design of a software for communication protocol between data acquisition card and motion sensor is another issue that has to be solved. This study presents how to design a low cost motion data acquisition setup consisting of MPU 6050 motion sensor (gyro and accelerometer in 3 axes) and Arduino Mega2560 microcontroller. Design parameters are calibration of the sensor, identification and communication between sensor and data acquisition card, interpretation of data collected by the sensor.

Keywords: Calibration of sensors, data acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4336
7722 Investigating the Contemporary Architecture Education Challenges in India

Authors: Vriddhi Prasad

Abstract:

The paper briefly outlines the nature of contemporary Architecture Education in India and its present challenges with theoretically feasible solutions. It explores in detail the arduous position of architecture education owing to, privatization of higher education institutes in India, every changing demand of the technology driven industry and discipline, along with regional and cultural resources that should be explored academically for the enrichment of graduates. With the government's education policy of supporting privatization, a comprehensive role for the regulating body of Architecture Education becomes imperative. The paper provides key insights through empirical research into the nature of these roles and the areas which need attention in light of the problems. With the aid of critically acclaimed education model like Design Build, contextual retrofits for Indian institutes can be stressed for inclusion in the curriculum. The pairing of a private institute and public industry/research body and vice versa can lead to pro-economic and pro-social research environment. These reforms if stressed by an autonomous nationwide regulating body rather than the state will lead to uniformity and flexibility of curriculum which promotes the creation of fresh graduates who are adaptable to the changing needs.

Keywords: Architecture education, building information modeling, design build, pedagogy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1111
7721 Conceptual Multidimensional Model

Authors: Manpreet Singh, Parvinder Singh, Suman

Abstract:

The data is available in abundance in any business organization. It includes the records for finance, maintenance, inventory, progress reports etc. As the time progresses, the data keep on accumulating and the challenge is to extract the information from this data bank. Knowledge discovery from these large and complex databases is the key problem of this era. Data mining and machine learning techniques are needed which can scale to the size of the problems and can be customized to the application of business. For the development of accurate and required information for particular problem, business analyst needs to develop multidimensional models which give the reliable information so that they can take right decision for particular problem. If the multidimensional model does not possess the advance features, the accuracy cannot be expected. The present work involves the development of a Multidimensional data model incorporating advance features. The criterion of computation is based on the data precision and to include slowly change time dimension. The final results are displayed in graphical form.

Keywords: Multidimensional, data precision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
7720 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou

Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: A classifier, Algorithms decision tree, knowledge extraction, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
7719 A Software Framework for Predicting Oil-Palm Yield from Climate Data

Authors: Mohd. Noor Md. Sap, A. Majid Awan

Abstract:

Intelligent systems based on machine learning techniques, such as classification, clustering, are gaining wide spread popularity in real world applications. This paper presents work on developing a software system for predicting crop yield, for example oil-palm yield, from climate and plantation data. At the core of our system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal with complex data. This work gets inspiration from the notion that a non-linear data transformation into some high dimensional feature space increases the possibility of linear separability of the patterns in the transformed space. Therefore, it simplifies exploration of the associated structure in the data. Kernel methods implicitly perform a non-linear mapping of the input data into a high dimensional feature space by replacing the inner products with an appropriate positive definite function. In this paper we present a robust weighted kernel k-means algorithm incorporating spatial constraints for clustering the data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data, and thus can be used for predicting oil-palm yield by analyzing various factors affecting the yield.

Keywords: Pattern analysis, clustering, kernel methods, spatial data, crop yield

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
7718 A Proposal for U-City (Smart City) Service Method Using Real-Time Digital Map

Authors: SangWon Han, MuWook Pyeon, Sujung Moon, DaeKyo Seo

Abstract:

Recently, technologies based on three-dimensional (3D) space information are being developed and quality of life is improving as a result. Research on real-time digital map (RDM) is being conducted now to provide 3D space information. RDM is a service that creates and supplies 3D space information in real time based on location/shape detection. Research subjects on RDM include the construction of 3D space information with matching image data, complementing the weaknesses of image acquisition using multi-source data, and data collection methods using big data. Using RDM will be effective for space analysis using 3D space information in a U-City and for other space information utilization technologies.

Keywords: RDM, multi-source data, big data, U-City.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 805
7717 Blockchain Based Hydrogen Market: A Paradigm-Shifting Innovative Solution for Climate-Friendly and Sustainable Structural Change

Authors: Volker Wannack

Abstract:

Regional and global strategies focusing on hydrogen (H2) and blockchain technologies are fueling remarkable advancements. These strategies underpin the revolutionary 'Blockchain Based Hydrogen Market (BBH2)' project, with the primary objective of creating a Blockchain Minimum Viable Product (B-MVP) tailored to the hydrogen market. The B-MVP harnesses blockchain's capabilities, establishing a unified platform for secure, automated transactions via smart contracts. This innovation promises to reshape hydrogen logistics, trade, and transactions. The B-MVP carries transformative potential across diverse sectors, benefiting renewable energy producers, surplus energy-based hydrogen manufacturers, grid operators, and consumers. By implementing standardized, automated, tamper-proof processes, it bolsters cost-efficiency and enables transparent, traceable transactions. Its core mission is to verify the integrity of 'green' hydrogen, tracing its journey from renewable producers to end-users. This emphasis on transparency fosters economic, ecological, and social sustainability within a secure, transparent market. A standout feature of the B-MVP is its cross-border adaptability, obviating the need for nation-specific data storage, and broadening its global reach. This adaptability also spurs long-term job creation by establishing a dedicated blockchain operating firm. By attracting skilled labor and offering training, the B-MVP fortifies the hydrogen sector's workforce. Furthermore, it catalyzes innovative business models, luring more companies and startups, contributing to sustained job growth. For example, data analysis can tailor tariffs to offer demand-centric network capacities to producers and operators, providing tamper-proof pricing options to redistributors and end-customers. Beyond technological and economic progress, the B-MVP amplifies the prominence of national and international standards efforts. The region implementing the B-MVP becomes recognized as a pioneer in climate-friendly, sustainable, and forward-thinking practices, generating interest and attention beyond its geographic boundaries. Additionally, it fosters knowledge transfer between academia and industry, promoting scientific advancements, aligning with innovation management, and nurturing an innovation culture in the hydrogen sector. Through blockchain-hydrogen integration, the B-MVP champions comprehensive innovation, contributing to a sustainable future in the hydrogen industry. Implementation involves evaluating blockchain tech, developing smart contracts, and ensuring interoperability with existing systems. Scalability testing and data format development further validate the B-MVP's potential. BBH2 secures funding under the 'Technology Offensive Hydrogen,' a part of the Federal Ministry of Economics and Climate Protection's 7th Energy Research Program.

Keywords: Hydrogen, blockchain, sustainability, structural change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 158
7716 Integrating Blockchain and Internet of Things Platforms: An Empirical Study on Immunization Cold Chain

Authors: F. Abujalala, A. Elmangoush, M. Ashibani

Abstract:

The adoption of Blockchain technology introduces the possibility to decentralize cold chain systems. This adaptation enhances them to be more efficient, accessible, verifiable, and data security. Additionally, the Internet of Things (IoT) concept is considered as an added-value to various application domains. Cargo tracking and cold chain are a few to name. However, the security of the IoT transactions and integrated devices remains one of the key challenges to the IoT application’s success. Consequently, Blockchain technology and its consensus protocols have been used to solve many information security problems. In this paper, we discuss the advantages of integrating Blockchain technology into IoT platform to improve security and provide an overview of existing literature on integrating Blockchain and IoT platforms. Then, we present the immunization cold chain solution as a use-case that could be applied to any critical goods based on integrating Hyperledger fabric platform and IoT platform.

Keywords: Blockchain, Hyperledger fabric, internet of things, security, traceability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 748
7715 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-

Authors: Nieto Bernal Wilson, Carmona Suarez Edgar

Abstract:

The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects.  Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.

Keywords: Data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478
7714 Distributed Data-Mining by Probability-Based Patterns

Authors: M. Kargar, F. Gharbalchi

Abstract:

In this paper a new method is suggested for distributed data-mining by the probability patterns. These patterns use decision trees and decision graphs. The patterns are cared to be valid, novel, useful, and understandable. Considering a set of functions, the system reaches to a good pattern or better objectives. By using the suggested method we will be able to extract the useful information from massive and multi-relational data bases.

Keywords: Data-mining, Decision tree, Decision graph, Pattern, Relationship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
7713 K-Means for Spherical Clusters with Large Variance in Sizes

Authors: A. M. Fahim, G. Saake, A. M. Salem, F. A. Torkey, M. A. Ramadan

Abstract:

Data clustering is an important data exploration technique with many applications in data mining. The k-means algorithm is well known for its efficiency in clustering large data sets. However, this algorithm is suitable for spherical shaped clusters of similar sizes and densities. The quality of the resulting clusters decreases when the data set contains spherical shaped with large variance in sizes. In this paper, we introduce a competent procedure to overcome this problem. The proposed method is based on shifting the center of the large cluster toward the small cluster, and recomputing the membership of small cluster points, the experimental results reveal that the proposed algorithm produces satisfactory results.

Keywords: K-Means, Data Clustering, Cluster Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3281
7712 Representing Data without Lost Compression Properties in Time Series: A Review

Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.

Keywords: Compression properties, uncertainty, uncertain time series, mining technique, weather prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
7711 Are XBRL-based Financial Reports Better than Non-XBRL Reports? A Quality Assessment

Authors: Zhenkun Wang, Simon S. Gao

Abstract:

Using a scoring system, this paper provides a comparative assessment of the quality of data between XBRL formatted financial reports and non-XBRL financial reports. It shows a major improvement in the quality of data of XBRL formatted financial reports. Although XBRL formatted financial reports do not show much advantage in the quality at the beginning, XBRL financial reports lately display a large improvement in the quality of data in almost all aspects. With the improved XBRL web data managing, presentation and analysis applications, XBRL formatted financial reports have a much better accessibility, are more accurate and better in timeliness.

Keywords: Data Quality; Financial Report; Information; XBRL

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2566
7710 RV-YOLOX: Object Detection on Inland Waterways Based on Optimized YOLOX through Fusion of Vision and 3+1D Millimeter Wave Radar

Authors: Zixian Zhang, Shanliang Yao, Zile Huang, Zhaodong Wu, Xiaohui Zhu, Yong Yue, Jieming Ma

Abstract:

Unmanned Surface Vehicles (USVs) hold significant value for their capacity to undertake hazardous and labor-intensive operations over aquatic environments. Object detection tasks are significant in these applications. Nonetheless, the efficacy of USVs in object detection is impeded by several intrinsic challenges, including the intricate dispersal of obstacles, reflections emanating from coastal structures, and the presence of fog over water surfaces, among others. To address these problems, this paper provides a fusion method for USVs to effectively detect objects in the inland surface environment, utilizing vision sensors and 3+1D Millimeter-wave radar. The MMW radar is a complementary tool to vision sensors, offering reliable environmental data. This approach involves the conversion of the radar’s 3D point cloud into a 2D radar pseudo-image, thereby standardizing the format for radar and vision data by leveraging a point transformer. Furthermore, this paper proposes the development of a multi-source object detection network, named RV-YOLOX, which leverages radar-vision integration specifically tailored for inland waterway environments. The performance is evaluated on our self-recording waterways dataset. Compared with the YOLOX network, our fusion network significantly improves detection accuracy, especially for objects with bad light conditions.

Keywords: Inland waterways, object detection, YOLO, sensor fusion, self-attention, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 292
7709 Modeling of Random Variable with Digital Probability Hyper Digraph: Data-Oriented Approach

Authors: A. Habibizad Navin, M. Naghian Fesharaki, M. Mirnia, M. Kargar

Abstract:

In this paper we introduce Digital Probability Hyper Digraph for modeling random variable as the hierarchical data-oriented model.

Keywords: Data-Oriented Models, Data Structure, DigitalProbability Hyper Digraph, Random Variable, Statistic andProbability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
7708 FleGSens – Secure Area Monitoring Using Wireless Sensor Networks

Authors: Peter Rothenpieler, Daniela Kruger, Dennis Pfisterer, Stefan Fischer, Denise Dudek, Christian Haas, Martina Zitterbart

Abstract:

In the project FleGSens, a wireless sensor network (WSN) for the surveillance of critical areas and properties is currently developed which incorporates mechanisms to ensure information security. The intended prototype consists of 200 sensor nodes for monitoring a 500m long land strip. The system is focused on ensuring integrity and authenticity of generated alarms and availability in the presence of an attacker who may even compromise a limited number of sensor nodes. In this paper, two of the main protocols developed in the project are presented, a tracking protocol to provide secure detection of trespasses within the monitored area and a protocol for secure detection of node failures. Simulation results of networks containing 200 and 2000 nodes as well as the results of the first prototype comprising a network of 16 nodes are presented. The focus of the simulations and prototype are functional testing of the protocols and particularly demonstrating the impact and cost of several attacks.

Keywords: Wireless Sensor Network, Security, Trespass Detection, Testbed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
7707 Wireless Transmission of Big Data Using Novel Secure Algorithm

Authors: K. Thiagarajan, K. Saranya, A. Veeraiah, B. Sudha

Abstract:

This paper presents a novel algorithm for secure, reliable and flexible transmission of big data in two hop wireless networks using cooperative jamming scheme. Two hop wireless networks consist of source, relay and destination nodes. Big data has to transmit from source to relay and from relay to destination by deploying security in physical layer. Cooperative jamming scheme determines transmission of big data in more secure manner by protecting it from eavesdroppers and malicious nodes of unknown location. The novel algorithm that ensures secure and energy balance transmission of big data, includes selection of data transmitting region, segmenting the selected region, determining probability ratio for each node (capture node, non-capture and eavesdropper node) in every segment, evaluating the probability using binary based evaluation. If it is secure transmission resume with the two- hop transmission of big data, otherwise prevent the attackers by cooperative jamming scheme and transmit the data in two-hop transmission.

Keywords: Big data, cooperative jamming, energy balance, physical layer, two-hop transmission, wireless security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
7706 Effect of Load Ratio on Probability Distribution of Fatigue Crack Propagation Life in Magnesium Alloys

Authors: Seon Soon Choi

Abstract:

It is necessary to predict a fatigue crack propagation life for estimation of structural integrity. Because of an uncertainty and a randomness of a structural behavior, it is also required to analyze stochastic characteristics of the fatigue crack propagation life at a specified fatigue crack size. The essential purpose of this study is to find the effect of load ratio on probability distribution of the fatigue crack propagation life at a specified grown crack size and to confirm the good probability distribution in magnesium alloys under various fatigue load ratio conditions. To investigate a stochastic crack growth behavior, fatigue crack propagation experiments are performed in laboratory air under several conditions of fatigue load ratio using AZ31. By Anderson-Darling test, a goodness-of-fit test for probability distribution of the fatigue crack propagation life is performed. The effect of load ratio on variability of fatigue crack propagation life is also investigated.

Keywords: Load ratio, fatigue crack propagation life, Magnesium alloys, probability distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
7705 Management of Local Towns (Tambon) According to Philosophy of Sufficiency Economy

Authors: Wichian Sriprachan, Chutikarn Sriviboon

Abstract:

The objectives of this research were to study the management of local towns and to develop a better model of town management according to the Philosophy of Sufficiency Economy. This study utilized qualitative research, field research, as well as documentary research at the same time. A total of 10 local towns or Tambons of Supanburi province, Thailand were selected for an in-depth interview. The findings revealed that the model of local town management according to Philosophy of Sufficient Economy was in a level of “good” and the model of management has the five basic guidelines: 1) ability to manage budget information and keep it up-to-date, 2) ability to decision making according to democracy rules, 3) ability to use check and balance system, 4) ability to control, follow, and evaluation, and 5) ability to allow the general public to participate. In addition, the findings also revealed that the human resource management according to Philosophy of Sufficient Economy includes obeying laws, using proper knowledge, and having integrity in five areas: plan, recruit, select, train, and maintain human resources.  

Keywords: Management, Local Town (Tambon), Principles of Sufficiency Economy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
7704 Study of Efficiency and Capability LZW++ Technique in Data Compression

Authors: Yusof. Mohd Kamir, Mat Deris. Mohd Sufian, Abidin. Ahmad Faisal Amri

Abstract:

The purpose of this paper is to show efficiency and capability LZWµ in data compression. The LZWµ technique is enhancement from existing LZW technique. The modification the existing LZW is needed to produce LZWµ technique. LZW read one by one character at one time. Differ with LZWµ technique, where the LZWµ read three characters at one time. This paper focuses on data compression and tested efficiency and capability LZWµ by different data format such as doc type, pdf type and text type. Several experiments have been done by different types of data format. The results shows LZWµ technique is better compared to existing LZW technique in term of file size.

Keywords: Data Compression, Huffman Encoding, LZW, LZWµ, RLL, Size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
7703 Impact of Stack Caches: Locality Awareness and Cost Effectiveness

Authors: Abdulrahman K. Alshegaifi, Chun-Hsi Huang

Abstract:

Treating data based on its location in memory has received much attention in recent years due to its different properties, which offer important aspects for cache utilization. Stack data and non-stack data may interfere with each other’s locality in the data cache. One of the important aspects of stack data is that it has high spatial and temporal locality. In this work, we simulate non-unified cache design that split data cache into stack and non-stack caches in order to maintain stack data and non-stack data separate in different caches. We observe that the overall hit rate of non-unified cache design is sensitive to the size of non-stack cache. Then, we investigate the appropriate size and associativity for stack cache to achieve high hit ratio especially when over 99% of accesses are directed to stack cache. The result shows that on average more than 99% of stack cache accuracy is achieved by using 2KB of capacity and 1-way associativity. Further, we analyze the improvement in hit rate when adding small, fixed, size of stack cache at level1 to unified cache architecture. The result shows that the overall hit rate of unified cache design with adding 1KB of stack cache is improved by approximately, on average, 3.9% for Rijndael benchmark. The stack cache is simulated by using SimpleScalar toolset.

Keywords: Hit rate, Locality of program, Stack cache, and Stack data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1508
7702 Cross Project Software Fault Prediction at Design Phase

Authors: Pradeep Singh, Shrish Verma

Abstract:

Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. Earlier we predicted the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven datasets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.

Keywords: Software Metrics, Fault prediction, Cross project, Within project.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
7701 Exploration and Exploitation within Operations

Authors: D. Gåsvaer, L. Stålberg, A. Fundin, M. Jackson, P. Johansson

Abstract:

Exploration and exploitation capabilities are both important within Operations as means for improvement when managed separately, and for establishing dynamic improvement capabilities when combined in balance. However, it is unclear what exploration and exploitation capabilities imply in improvement and development work within an Operations context. So, in order to better understand how to develop exploration and exploitation capabilities within Operations, the main characteristics of these constructs needs to be identified and further understood. Thus, the objective of this research is to increase the understanding about exploitation and exploration characteristics, to concretize what they translates to within the context of improvement and development work in an Operations unit, and to identify practical challenges. A literature review and a case study are presented. In the literature review, different interpretations of exploration and exploitation are portrayed, key characteristics have been identified, and a deepened understanding of exploration and exploitation characteristics is described. The case in the study is an Operations unit, and the aim is to explore to what extent and in what ways exploration and exploitation activities are part of the improvement structures and processes. The contribution includes an identification of key characteristics of exploitation and exploration, as well as an interpretation of the constructs. Further, some practical challenges are identified. For instance, exploration activities tend to be given low priority, both in daily work as in the manufacturing strategy. Also, the overall understanding about the concepts of exploitation and exploration (or any similar aspect of dynamic improvement capabilities) is very low.

Keywords: Exploitation, Exploration, Improvement, Lean production, Manufacturing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2615
7700 Extreme Temperature Forecast in Mbonge, Cameroon through Return Level Analysis of the Generalized Extreme Value (GEV) Distribution

Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph

Abstract:

In this paper, temperature extremes are forecast by employing the block maxima method of the Generalized extreme value(GEV) distribution to analyse temperature data from the Cameroon Development Corporation (C.D.C). By considering two sets of data (Raw data and simulated data) and two (stationary and non-stationary) models of the GEV distribution, return levels analysis is carried out and it was found that in the stationary model, the return values are constant over time with the raw data while in the simulated data, the return values show an increasing trend but with an upper bound. In the non-stationary model, the return levels of both the raw data and simulated data show an increasing trend but with an upper bound. This clearly shows that temperatures in the tropics even-though show a sign of increasing in the future, there is a maximum temperature at which there is no exceedence. The results of this paper are very vital in Agricultural and Environmental research.

Keywords: Return level, Generalized extreme value (GEV), Meteorology, Forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
7699 Mining Multicity Urban Data for Sustainable Population Relocation

Authors: Xu Du, Aparna S. Varde

Abstract:

In this research, we propose to conduct diagnostic and predictive analysis about the key factors and consequences of urban population relocation. To achieve this goal, urban simulation models extract the urban development trends as land use change patterns from a variety of data sources. The results are treated as part of urban big data with other information such as population change and economic conditions. Multiple data mining methods are deployed on this data to analyze nonlinear relationships between parameters. The result determines the driving force of population relocation with respect to urban sprawl and urban sustainability and their related parameters. This work sets the stage for developing a comprehensive urban simulation model for catering to specific questions by targeted users. It contributes towards achieving sustainability as a whole.

Keywords: Data Mining, Environmental Modeling, Sustainability, Urban Planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
7698 An Ant-based Clustering System for Knowledge Discovery in DNA Chip Analysis Data

Authors: Minsoo Lee, Yun-mi Kim, Yearn Jeong Kim, Yoon-kyung Lee, Hyejung Yoon

Abstract:

Biological data has several characteristics that strongly differentiate it from typical business data. It is much more complex, usually large in size, and continuously changes. Until recently business data has been the main target for discovering trends, patterns or future expectations. However, with the recent rise in biotechnology, the powerful technology that was used for analyzing business data is now being applied to biological data. With the advanced technology at hand, the main trend in biological research is rapidly changing from structural DNA analysis to understanding cellular functions of the DNA sequences. DNA chips are now being used to perform experiments and DNA analysis processes are being used by researchers. Clustering is one of the important processes used for grouping together similar entities. There are many clustering algorithms such as hierarchical clustering, self-organizing maps, K-means clustering and so on. In this paper, we propose a clustering algorithm that imitates the ecosystem taking into account the features of biological data. We implemented the system using an Ant-Colony clustering algorithm. The system decides the number of clusters automatically. The system processes the input biological data, runs the Ant-Colony algorithm, draws the Topic Map, assigns clusters to the genes and displays the output. We tested the algorithm with a test data of 100 to1000 genes and 24 samples and show promising results for applying this algorithm to clustering DNA chip data.

Keywords: Ant colony system, biological data, clustering, DNA chip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974
7697 The Resource Description Framework (RDF) as a Modern Structure for Medical Data

Authors: Gabriela Lindemann, Danilo Schmidt, Thomas Schrader, Dietmar Keune

Abstract:

The amount and heterogeneity of data in biomedical research, notably in interdisciplinary fields, requires new methods for the collection, presentation and analysis of information. Important data from laboratory experiments as well as patient trials are available but come out of distributed resources. The Charité - University Hospital Berlin has established together with the German Research Foundation (DFG) a new information service centre for kidney diseases and transplantation (Open European Nephrology Science Centre - OpEN.SC). Beside a collaborative aspect to create new research groups every single partner or institution of this science information centre making his own data available is allowed to search the whole data pool of the various involved centres. A core task is the implementation of a non-restricting open data structure for the various different data sources. We decided to use a modern RDF model and in a first phase transformed original data coming from the web-based Electronic Patient Record database TBase©.

Keywords: Medical databases, Resource Description Framework (RDF), metadata repository.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031