Search results for: Cancer Prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1291

Search results for: Cancer Prediction

721 Designing an Integrated Platform for Real-Time Recommendations Sharing among the Aged and People Living with Cancer

Authors: Adekunle O. Afolabi, Pekka Toivanen

Abstract:

The world is expected to experience growth in the number of ageing population, and this will bring about high cost of providing care for these valuable citizens. In addition, many of these live with chronic diseases that come with old age. Providing adequate care in the face of rising costs and dwindling personnel can be challenging. However, advances in technologies and emergence of the Internet of Things are providing a way to address these challenges while improving care giving. This study proposes the integration of recommendation systems into homecare to provide real-time recommendations for effective management of people receiving care at home and those living with chronic diseases. Using the simplified Training Logic Concept, stakeholders and requirements were identified. Specific requirements were gathered from people living with cancer. The solution designed has two components namely home and community, to enhance recommendations sharing for effective care giving. The community component of the design was implemented with the development of a mobile app called Recommendations Sharing Community for Aged and Chronically Ill People (ReSCAP). This component has illustrated the possibility of real-time recommendations, improved recommendations sharing among care receivers and between a physician and care receivers. Full implementation will increase access to health data for better care decision making.

Keywords: Recommendation systems, healthcare, internet of things, real-time, homecare.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 936
720 Transcritical CO2 Heat Pump Simulation Model and Validation for Simultaneous Cooling and Heating

Authors: Jahar Sarkar

Abstract:

In the present study, a steady-state simulation model has been developed to evaluate the system performance of a transcritical carbon dioxide heat pump system for simultaneous water cooling and heating. Both the evaporator (including both two-phase and superheated zone) and gas cooler models consider the highly variable heat transfer characteristics of CO2 and pressure drop. The numerical simulation model of transcritical CO2 heat pump has been validated by test data obtained from experiments on the heat pump prototype. Comparison between the test results and the model prediction for system COP variation with compressor discharge pressure shows a modest agreement with a maximum deviation of 15% and the trends are fairly similar. Comparison for other operating parameters also shows fairly similar deviation between the test results and the model prediction. Finally, the simulation results are presented to study the effects of operating parameters such as, temperature of heat exchanger fluid at the inlet, discharge pressure, compressor speed on system performance of CO2 heat pump, suitable in a dairy plant where simultaneous cooling at 4oC and heating at 73oC are required. Results show that good heat transfer properties of CO2 for both two-phase and supercritical region and efficient compression process contribute a lot for high system COPs.

Keywords: CO2 heat pump, dairy system, experiment, simulation model, validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1876
719 Web–Based Tools and Databases for Micro-RNA Analysis: A Review

Authors: Sitansu Kumar Verma, Soni Yadav, Jitendra Singh, Shraddha, Ajay Kumar

Abstract:

MicroRNAs (miRNAs), a class of approximately 22 nucleotide long non coding RNAs which play critical role in different biological processes. The mature microRNA is usually 19–27 nucleotides long and is derived from a bigger precursor that folds into a flawed stem-loop structure. Mature micro RNAs are involved in many cellular processes that encompass development, proliferation, stress response, apoptosis, and fat metabolism by gene regulation. Resent finding reveals that certain viruses encode their own miRNA that processed by cellular RNAi machinery. In recent research indicate that cellular microRNA can target the genetic material of invading viruses. Cellular microRNA can be used in the virus life cycle; either to up regulate or down regulate viral gene expression Computational tools use in miRNA target prediction has been changing drastically in recent years. Many of the methods have been made available on the web and can be used by experimental researcher and scientist without expert knowledge of bioinformatics. With the development and ease of use of genomic technologies and computational tools in the field of microRNA biology has superior tremendously over the previous decade. This review attempts to give an overview over the genome wide approaches that have allow for the discovery of new miRNAs and development of new miRNA target prediction tools and databases.

Keywords: MicroRNAs, computational tools, gene regulation, databases, RNAi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3184
718 Development of Precise Ephemeris Generation Module for Thaichote Satellite Operations

Authors: Manop Aorpimai, Ponthep Navakitkanok

Abstract:

In this paper, the development of the ephemeris generation module used for the Thaichote satellite operations is presented. It is a vital part of the flight dynamics system, which comprises, the orbit determination, orbit propagation, event prediction and station-keeping maneouvre modules. In the generation of the spacecraft ephemeris data, the estimated orbital state vector from the orbit determination module is used as an initial condition. The equations of motion are then integrated forward in time to predict the satellite states. The higher geopotential harmonics, as well as other disturbing forces, are taken into account to resemble the environment in low-earth orbit. Using a highly accurate numerical integrator based on the Burlish-Stoer algorithm the ephemeris data can be generated for long-term predictions, by using a relatively small computation burden and short calculation time. Some events occurring during the prediction course that are related to the mission operations, such as the satellite’s rise/set viewed from the ground station, Earth and Moon eclipses, the drift in groundtrack as well as the drift in the local solar time of the orbital plane are all detected and reported. When combined with other modules to form a flight dynamics system, this application is aimed to be applied for the Thaichote satellite and successive Thailand’s Earth-observation missions. 

Keywords: Flight Dynamics System, Orbit Propagation, Satellite Ephemeris, Thailand’s Earth Observation Satellite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3040
717 ANN based Multi Classifier System for Prediction of High Energy Shower Primary Energy and Core Location

Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta

Abstract:

Cosmic showers, during the transit through space, produce sub - products as a result of interactions with the intergalactic or interstellar medium which after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of High Energy Particle Showers involve a plethora of theoretical and experimental works with a host of constraints resulting in inaccuracies in measurements. Therefore, there exist a necessity to develop a readily available system based on soft-computational approaches which can be used for EAS analysis. This is due to the fact that soft computational tools such as Artificial Neural Network (ANN)s can be trained as classifiers to adapt and learn the surrounding variations. But single classifiers fail to reach optimality of decision making in many situations for which Multiple Classifier System (MCS) are preferred to enhance the ability of the system to make decisions adjusting to finer variations. This work describes the formation of an MCS using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN) with data inputs from correlation mapping Self Organizing Map (SOM) blocks and the output optimized by another SOM. The results show that the setup can be adopted for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.

Keywords: EAS, Shower, Core, ANN, Location.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
716 Signals from the Rocks

Authors: Ernst D. Schmitter

Abstract:

There is increasing evidence that earthquakes produce electromagnetic signals observable at the surface in the extremely low to very low freqency (ELF - VLF) range often in advance to the main event. These precursors are candidates for prediction purposes. Laboratory experiments con´¼ürm that material under load emits an electromagnetic signature, the detailed generation mechanisms how- ever are not well understood yet.

Keywords: Earthquakes, ELF, EM signals from material under load, signal propagation in conductors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
715 Dosimetric Analysis of Intensity Modulated Radiotherapy versus 3D Conformal Radiotherapy in Adult Primary Brain Tumors: Regional Cancer Centre, India

Authors: Ravi Kiran Pothamsetty, Radha Rani Ghosh, Baby Paul Thaliath

Abstract:

Radiation therapy has undergone many advancements and evloved from 2D to 3D. Recently, with rapid pace of drug discoveries, cutting edge technology, and clinical trials has made innovative advancements in computer technology and treatment planning and upgraded to intensity modulated radiotherapy (IMRT) which delivers in homogenous dose to tumor and normal tissues. The present study was a hospital-based experience comparing two different conformal radiotherapy techniques for brain tumors. This analytical study design has been conducted at Regional Cancer Centre, India from January 2014 to January 2015. Ten patients have been selected after inclusion and exclusion criteria. All the patients were treated on Artiste Siemens Linac Accelerator. The tolerance level for maximum dose was 6.0 Gyfor lenses and 54.0 Gy for brain stem, optic chiasm and optical nerves as per RTOG criteria. Mean and standard deviation values of PTV98%, PTV 95% and PTV 2% in IMRT were 93.16±2.9, 95.01±3.4 and 103.1±1.1 respectively; for 3DCRT were 91.4±4.7, 94.17±2.6 and 102.7±0.39 respectively. PTV max dose (%) in IMRT and 3D-CRT were 104.7±0.96 and 103.9±1.0 respectively. Maximum dose to the tumor can be delivered with IMRT with acceptable toxicity limits. Variables such as expertise, location of tumor, patient condition, and TPS influence the outcome of the treatment.

Keywords: IMRT, 3D CRT, Brain, tumors, OARs, RTOG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
714 Ellagic Acid Enhanced Apoptotic Radiosensitivity via G1 Cell Cycle Arrest and γ-H2AX Foci Formation in HeLa Cells in vitro

Authors: V. R. Ahire, A. Kumar, B. N. Pandey, K. P. Mishra, G. R. Kulkarni

Abstract:

Radiation therapy is an effective vital strategy used globally in the treatment of cervical cancer. However, radiation efficacy principally depends on the radiosensitivity of the tumor, and not all patient exhibit significant response to irradiation. A radiosensitive tumor is easier to cure than a radioresistant tumor which later advances to local recurrence and metastasis. Herbal polyphenols are gaining attention for exhibiting radiosensitization through various signaling. Current work focuses to study the radiosensitization effect of ellagic acid (EA), on HeLa cells. EA intermediated radiosensitization of HeLa cells was due to the induction γ-H2AX foci formation, G1 phase cell cycle arrest, and loss of reproductive potential, growth inhibition, drop in the mitochondrial membrane potential and protein expression studies that eventually induced apoptosis. Irradiation of HeLa in presence of EA (10 μM) to doses of 2 and 4 Gy γ-radiation produced marked tumor cytotoxicity. EA also demonstrated radio-protective effect on normal cell, NIH3T3 and aided recovery from the radiation damage. Our results advocate EA to be an effective adjuvant for improving cancer radiotherapy as it displays striking tumor cytotoxicity and reduced normal cell damage instigated by irradiation.

Keywords: Apoptotic radiosensitivity, ellagic acid, mitochondrial potential, cell-cycle arrest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 876
713 Linear Prediction System in Measuring Glucose Level in Blood

Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali

Abstract:

Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.

Keywords: Diabetes, glucose level, linear, near-infrared (NIR), non-invasive, prediction system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 875
712 Pre-Clinical Studying of Antitumor Ramon Preparation: Specific Activity

Authors: Raissa A. Muzychkina, Irina M. Korulkina, Dmitriy Yu. Korulkin

Abstract:

In article the data of pre-clinical researches of Ramon preparation is described. Antitumor activity of Ramon has been studied on 19 strains of transplantated tumors of different hystogenesis.

Keywords: Cancer, antitumor activity, pre-clinical testing, anthraquinones, phytopreparation, Ramon.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
711 Blockchain for Decentralized Finance: Impact, Challenges and Remediation

Authors: Rishabh Garg

Abstract:

Blockchain technology can allow remote, untrusted parties in the banking and financial sector to reach consensus on the state of databases without the involvement of gatekeepers. Like a bookkeeper, it can manage all financial transactions including payments, settlements, fundraising, securities management, loans, credits and trade finance. It can outperform existing systems in terms of identity verification, asset transfers, peer-to-peer transfers, hedge funds, security and auditability. Blockchain-based decentralized finance (DeFi) is a new financial protocol. Being open and programmable, it enables various DeFi use-cases, including asset management, tokenization, tokenized derivatives, decentralized autonomous organizations, data analysis and valuation, payments, lending and borrowing, insurance, margin trading, prediction market, gambling and yield-farming, etc. In addition, it can ease financial transactions, cash-flow, use of programmable currency, no-loss lotteries, etc. This paper aims to assess the potential of decentralized finance by leveraging the blockchain-enabled Ethereum platform as an alternative to traditional finance. The study also aims to find out the impact of decentralized finance on prediction markets, quadratic funding and crowd-funding, together with the potential challenges and solutions associated with its implementation.

Keywords: Advance trading, crowd funding, exchange tokens, fund aggregation, margin trading, quadratic funding, smart contracts, streaming money, token derivatives.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 343
710 Quadrotor Black-Box System Identification

Authors: Ionel Stanculeanu, Theodor Borangiu

Abstract:

This paper presents a new approach in the identification of the quadrotor dynamic model using a black-box system for identification. Also the paper considers the problems which appear during the identification in the closed-loop and offers a technical solution for overcoming the correlation between the input noise present in the output

Keywords: System identification, UAV, prediction error method, quadrotor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3459
709 Decision Support System for Flood Crisis Management using Artificial Neural Network

Authors: Muhammad Aqil, Ichiro Kita, Akira Yano, Nishiyama Soichi

Abstract:

This paper presents an alternate approach that uses artificial neural network to simulate the flood level dynamics in a river basin. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach and evolving graphical feature and can be adopted for any similar situation to predict the flood level. The main data processing includes the gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood level data, to train/test the model using various inputs and to visualize results. The program code consists of a set of files, which can as well be modified to match other purposes. This program may also serve as a tool for real-time flood monitoring and process control. The running results indicate that the decision support system applied to the flood level seems to have reached encouraging results for the river basin under examination. The comparison of the model predictions with the observed data was satisfactory, where the model is able to forecast the flood level up to 5 hours in advance with reasonable prediction accuracy. Finally, this program may also serve as a tool for real-time flood monitoring and process control.

Keywords: Decision Support System, Neural Network, Flood Level

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
708 User Pattern Learning Algorithm based MDSS(Medical Decision Support System) Framework under Ubiquitous

Authors: Insung Jung, Gi-Nam Wang

Abstract:

In this paper, we present user pattern learning algorithm based MDSS (Medical Decision support system) under ubiquitous. Most of researches are focus on hardware system, hospital management and whole concept of ubiquitous environment even though it is hard to implement. Our objective of this paper is to design a MDSS framework. It helps to patient for medical treatment and prevention of the high risk patient (COPD, heart disease, Diabetes). This framework consist database, CAD (Computer Aided diagnosis support system) and CAP (computer aided user vital sign prediction system). It can be applied to develop user pattern learning algorithm based MDSS for homecare and silver town service. Especially this CAD has wise decision making competency. It compares current vital sign with user-s normal condition pattern data. In addition, the CAP computes user vital sign prediction using past data of the patient. The novel approach is using neural network method, wireless vital sign acquisition devices and personal computer DB system. An intelligent agent based MDSS will help elder people and high risk patients to prevent sudden death and disease, the physician to get the online access to patients- data, the plan of medication service priority (e.g. emergency case).

Keywords: Neural network, U-healthcare, MDSS, CAP, DSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
707 Feature Analysis of Predictive Maintenance Models

Authors: Zhaoan Wang

Abstract:

Research in predictive maintenance modeling has improved in the recent years to predict failures and needed maintenance with high accuracy, saving cost and improving manufacturing efficiency. However, classic prediction models provide little valuable insight towards the most important features contributing to the failure. By analyzing and quantifying feature importance in predictive maintenance models, cost saving can be optimized based on business goals. First, multiple classifiers are evaluated with cross-validation to predict the multi-class of failures. Second, predictive performance with features provided by different feature selection algorithms are further analyzed. Third, features selected by different algorithms are ranked and combined based on their predictive power. Finally, linear explainer SHAP (SHapley Additive exPlanations) is applied to interpret classifier behavior and provide further insight towards the specific roles of features in both local predictions and global model behavior. The results of the experiments suggest that certain features play dominant roles in predictive models while others have significantly less impact on the overall performance. Moreover, for multi-class prediction of machine failures, the most important features vary with type of machine failures. The results may lead to improved productivity and cost saving by prioritizing sensor deployment, data collection, and data processing of more important features over less importance features.

Keywords: Automated supply chain, intelligent manufacturing, predictive maintenance machine learning, feature engineering, model interpretation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
706 Agreement between Basal Metabolic Rate Measured by Bioelectrical Impedance Analysis and Estimated by Prediction Equations in Obese Groups

Authors: Orkide Donma, Mustafa M. Donma

Abstract:

Basal metabolic rate (BMR) is widely used and an accepted measure of energy expenditure. Its principal determinant is body mass. However, this parameter is also correlated with a variety of other factors. The objective of this study is to measure BMR and compare it with the values obtained from predictive equations in adults classified according to their body mass index (BMI) values. 276 adults were included into the scope of this study. Their age, height and weight values were recorded. Five groups were designed based on their BMI values. First group (n = 85) was composed of individuals with BMI values varying between 18.5 and 24.9 kg/m2. Those with BMI values varying from 25.0 to 29.9 kg/m2 constituted Group 2 (n = 90). Individuals with 30.0-34.9 kg/m2, 35.0-39.9 kg/m2, > 40.0 kg/m2 were included in Group 3 (n = 53), 4 (n = 28) and 5 (n = 20), respectively. The most commonly used equations to be compared with the measured BMR values were selected. For this purpose, the values were calculated by the use of four equations to predict BMR values, by name, introduced by Food and Agriculture Organization (FAO)/World Health Organization (WHO)/United Nations University (UNU), Harris and Benedict, Owen and Mifflin. Descriptive statistics, ANOVA, post-Hoc Tukey and Pearson’s correlation tests were performed by a statistical program designed for Windows (SPSS, version 16.0). p values smaller than 0.05 were accepted as statistically significant. Mean ± SD of groups 1, 2, 3, 4 and 5 for measured BMR in kcal were 1440.3 ± 210.0, 1618.8 ± 268.6, 1741.1 ± 345.2, 1853.1 ± 351.2 and 2028.0 ± 412.1, respectively. Upon evaluation of the comparison of means among groups, differences were highly significant between Group 1 and each of the remaining four groups. The values were increasing from Group 2 to Group 5. However, differences between Group 2 and Group 3, Group 3 and Group 4, Group 4 and Group 5 were not statistically significant. These insignificances were lost in predictive equations proposed by Harris and Benedict, FAO/WHO/UNU and Owen. For Mifflin, the insignificance was limited only to Group 4 and Group 5. Upon evaluation of the correlations of measured BMR and the estimated values computed from prediction equations, the lowest correlations between measured BMR and estimated BMR values were observed among the individuals within normal BMI range. The highest correlations were detected in individuals with BMI values varying between 30.0 and 34.9 kg/m2. Correlations between measured BMR values and BMR values calculated by FAO/WHO/UNU as well as Owen were the same and the highest. In all groups, the highest correlations were observed between BMR values calculated from Mifflin and Harris and Benedict equations using age as an additional parameter. In conclusion, the unique resemblance of the FAO/WHO/UNU and Owen equations were pointed out. However, mean values obtained from FAO/WHO/UNU were much closer to the measured BMR values. Besides, the highest correlations were found between BMR calculated from FAO/WHO/UNU and measured BMR. These findings suggested that FAO/WHO/UNU was the most reliable equation, which may be used in conditions when the measured BMR values are not available.

Keywords: Adult, basal metabolic rate, FAO/WHO/UNU, obesity, prediction equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1010
705 Training on the Ceasing Intention of Betelnut Addiction

Authors: Shu-Mei Liu, Feng-Chuan Pan

Abstract:

According to the governmental data, the cases of oral cancers doubled in the past 10 years. This had brought heavy burden to the patients- family, the society, and the country. The literature generally evidenced the betel nut contained particular chemicals that can cause oral cancers. Research in Taiwan had also proofed that 90 percent of oral cancer patients had experience of betel nut chewing. It is thus important to educate the betel-nut hobbyists to cease such a hazardous behavior. A program was then organized to establish several training classes across different areas specific to help ceasing this particular habit. Purpose of this research was to explore the attitude and intention toward ceasing betel-nut chewing before and after attending the training classes. 50 samples were taken from a ceasing class with average age at 45 years old with high school education (54%). 74% of the respondents were male in service or agricultural industries. Experiences in betel-nut chewing were 5-20 years with a dose of 1-20 pieces per day. The data had shown that 60% of the respondents had cigarette smoking habit, and 30% of the respondents were concurrently alcoholic dependent. Research results indicated that the attitude, intentions, and the knowledge on oral cancers were found significant different between before and after attendance. This provided evidence for the effectiveness of the training class. However, we do not perform follow-up after the class. Noteworthy is the test result also shown that participants who were drivers as occupation, or habitual smokers or alcoholic dependents would be less willing to quit the betel-nut chewing. The test results indicated as well that the educational levels and the type of occupation may have significant impacts on an individual-s decisions in taking betel-nut or substance abuse.

Keywords: Oral cancer, betel-nut ceasing class, attitude, intention

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
704 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores

Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay

Abstract:

Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies  the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.

Keywords: Retail stores, Faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 584
703 Noninvasive Disease Diagnosis through Breath Analysis Using DNA-Functionalized SWNT Sensor Array

Authors: Wenjun Zhang, Yunqing Du, Ming L. Wang

Abstract:

Noninvasive diagnostics of diseases via breath analysis has attracted considerable scientific and clinical interest for many years and become more and more promising with the rapid advancements in nanotechnology and biotechnology. The volatile organic compounds (VOCs) in exhaled breath, which are mainly blood borne, particularly provide highly valuable information about individuals’ physiological and pathophysiological conditions. Additionally, breath analysis is noninvasive, real-time, painless, and agreeable to patients. We have developed a wireless sensor array based on single-stranded DNA (ssDNA)-functionalized single-walled carbon nanotubes (SWNT) for the detection of a number of physiological indicators in breath. Seven DNA sequences were used to functionalize SWNT sensors to detect trace amount of methanol, benzene, dimethyl sulfide, hydrogen sulfide, acetone, and ethanol, which are indicators of heavy smoking, excessive drinking, and diseases such as lung cancer, breast cancer, and diabetes. Our test results indicated that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, and repeatability; and different molecules can be distinguished through pattern recognition enabled by this sensor array. Furthermore, the experimental sensing results are consistent with the Molecular Dynamics simulated ssDNAmolecular target interaction rankings. Thus, the DNA-SWNT sensor array has great potential to be applied in chemical or biomolecular detection for the noninvasive diagnostics of diseases and personal health monitoring.

Keywords: Breath analysis, DNA-SWNT sensor array, diagnosis, noninvasive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2837
702 Formant Tracking Linear Prediction Model using HMMs for Noisy Speech Processing

Authors: Zaineb Ben Messaoud, Dorra Gargouri, Saida Zribi, Ahmed Ben Hamida

Abstract:

This paper presents a formant-tracking linear prediction (FTLP) model for speech processing in noise. The main focus of this work is the detection of formant trajectory based on Hidden Markov Models (HMM), for improved formant estimation in noise. The approach proposed in this paper provides a systematic framework for modelling and utilization of a time- sequence of peaks which satisfies continuity constraints on parameter; the within peaks are modelled by the LP parameters. The formant tracking LP model estimation is composed of three stages: (1) a pre-cleaning multi-band spectral subtraction stage to reduce the effect of residue noise on formants (2) estimation stage where an initial estimate of the LP model of speech for each frame is obtained (3) a formant classification using probability models of formants and Viterbi-decoders. The evaluation results for the estimation of the formant tracking LP model tested in Gaussian white noise background, demonstrate that the proposed combination of the initial noise reduction stage with formant tracking and LPC variable order analysis, results in a significant reduction in errors and distortions. The performance was evaluated with noisy natual vowels extracted from international french and English vocabulary speech signals at SNR value of 10dB. In each case, the estimated formants are compared to reference formants.

Keywords: Formants Estimation, HMM, Multi Band Spectral Subtraction, Variable order LPC coding, White Gauusien Noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
701 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning

Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park

Abstract:

The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.

Keywords: Structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 418
700 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network

Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala

Abstract:

There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.

Keywords: Artificial neural network, ANN, high performance concrete, rebound hammer, strength prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1210
699 Localization of Geospatial Events and Hoax Prediction in the UFO Database

Authors: Harish Krishnamurthy, Anna Lafontant, Ren Yi

Abstract:

Unidentified Flying Objects (UFOs) have been an interesting topic for most enthusiasts and hence people all over the United States report such findings online at the National UFO Report Center (NUFORC). Some of these reports are a hoax and among those that seem legitimate, our task is not to establish that these events confirm that they indeed are events related to flying objects from aliens in outer space. Rather, we intend to identify if the report was a hoax as was identified by the UFO database team with their existing curation criterion. However, the database provides a wealth of information that can be exploited to provide various analyses and insights such as social reporting, identifying real-time spatial events and much more. We perform analysis to localize these time-series geospatial events and correlate with known real-time events. This paper does not confirm any legitimacy of alien activity, but rather attempts to gather information from likely legitimate reports of UFOs by studying the online reports. These events happen in geospatial clusters and also are time-based. We look at cluster density and data visualization to search the space of various cluster realizations to decide best probable clusters that provide us information about the proximity of such activity. A random forest classifier is also presented that is used to identify true events and hoax events, using the best possible features available such as region, week, time-period and duration. Lastly, we show the performance of the scheme on various days and correlate with real-time events where one of the UFO reports strongly correlates to a missile test conducted in the United States.

Keywords: Time-series clustering, feature extraction, hoax prediction, geospatial events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851
698 A Three Elements Vector Valued Structure’s Ultimate Strength-Strong Motion-Intensity Measure

Authors: A. Nicknam, N. Eftekhari, A. Mazarei, M. Ganjvar

Abstract:

This article presents an alternative collapse capacity intensity measure in the three elements form which is influenced by the spectral ordinates at periods longer than that of the first mode period at near and far source sites. A parameter, denoted by β, is defined by which the spectral ordinate effects, up to the effective period (2T1), on the intensity measure are taken into account. The methodology permits to meet the hazard-levelled target extreme event in the probabilistic and deterministic forms. A MATLAB code is developed involving OpenSees to calculate the collapse capacities of the 8 archetype RC structures having 2 to 20 stories for regression process. The incremental dynamic analysis (IDA) method is used to calculate the structure’s collapse values accounting for the element stiffness and strength deterioration. The general near field set presented by FEMA is used in a series of performing nonlinear analyses. 8 linear relationships are developed for the 8structutres leading to the correlation coefficient up to 0.93. A collapse capacity near field prediction equation is developed taking into account the results of regression processes obtained from the 8 structures. The proposed prediction equation is validated against a set of actual near field records leading to a good agreement. Implementation of the proposed equation to the four archetype RC structures demonstrated different collapse capacities at near field site compared to those of FEMA. The reasons of differences are believed to be due to accounting for the spectral shape effects.

Keywords: Collapse capacity, fragility analysis, spectral shape effects, IDA method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
697 The Effects of TiO2 Nanoparticles on Tumor Cell Colonies: Fractal Dimension and Morphological Properties

Authors: T. Sungkaworn, W. Triampo, P. Nalakarn, D. Triampo, I. M. Tang, Y. Lenbury, P. Picha

Abstract:

Semiconductor nanomaterials like TiO2 nanoparticles (TiO2-NPs) approximately less than 100 nm in diameter have become a new generation of advanced materials due to their novel and interesting optical, dielectric, and photo-catalytic properties. With the increasing use of NPs in commerce, to date few studies have investigated the toxicological and environmental effects of NPs. Motivated by the importance of TiO2-NPs that may contribute to the cancer research field especially from the treatment prospective together with the fractal analysis technique, we have investigated the effect of TiO2-NPs on colony morphology in the dark condition using fractal dimension as a key morphological characterization parameter. The aim of this work is mainly to investigate the cytotoxic effects of TiO2-NPs in the dark on the growth of human cervical carcinoma (HeLa) cell colonies from morphological aspect. The in vitro studies were carried out together with the image processing technique and fractal analysis. It was found that, these colonies were abnormal in shape and size. Moreover, the size of the control colonies appeared to be larger than those of the treated group. The mean Df +/- SEM of the colonies in untreated cultures was 1.085±0.019, N= 25, while that of the cultures treated with TiO2-NPs was 1.287±0.045. It was found that the circularity of the control group (0.401±0.071) is higher than that of the treated group (0.103±0.042). The same tendency was found in the diameter parameters which are 1161.30±219.56 μm and 852.28±206.50 μm for the control and treated group respectively. Possible explanation of the results was discussed, though more works need to be done in terms of the for mechanism aspects. Finally, our results indicate that fractal dimension can serve as a useful feature, by itself or in conjunction with other shape features, in the classification of cancer colonies.

Keywords: Tumor growth, Cell colonies, TiO2, Nanoparticles, Fractal, Morphology, Aggregation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
696 On the Mathematical Model of Vascular Endothelial Growth Connected with a Tumor Proliferation

Authors: N. Khatiashvili, Ch. Pirumova, V. Akhobadze

Abstract:

In the paper the mathematical model of tumor growth is considered. New capillary network formation, which supply cancer cells with the nutrients, is taken into the account. A formula estimating a tumor growth in connection with the number of capillaries is obtained.

Keywords: Differential Equations, Mathematical Models, Vascular Endothelial, Tumor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1227
695 Studying the Temperature Field of Hypersonic Vehicle Structure with Aero-Thermo-Elasticity Deformation

Authors: Geng Xiangren, Liu Lei, Gui Ye-Wei, Tang Wei, Wang An-ling

Abstract:

The malfunction of thermal protection system (TPS) caused by aerodynamic heating is a latent trouble to aircraft structure safety. Accurately predicting the structure temperature field is quite important for the TPS design of hypersonic vehicle. Since Thornton’s work in 1988, the coupled method of aerodynamic heating and heat transfer has developed rapidly. However, little attention has been paid to the influence of structural deformation on aerodynamic heating and structural temperature field. In the flight, especially the long-endurance flight, the structural deformation, caused by the aerodynamic heating and temperature rise, has a direct impact on the aerodynamic heating and structural temperature field. Thus, the coupled interaction cannot be neglected. In this paper, based on the method of static aero-thermo-elasticity, considering the influence of aero-thermo-elasticity deformation, the aerodynamic heating and heat transfer coupled results of hypersonic vehicle wing model were calculated. The results show that, for the low-curvature region, such as fuselage or center-section wing, structure deformation has little effect on temperature field. However, for the stagnation region with high curvature, the coupled effect is not negligible. Thus, it is quite important for the structure temperature prediction to take into account the effect of elastic deformation. This work has laid a solid foundation for improving the prediction accuracy of the temperature distribution of aircraft structures and the evaluation capacity of structural performance.

Keywords: Aero-thermo-elasticity, elastic deformation, structural temperature, multi-field coupling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 894
694 Prediction of the Dynamic Characteristics of a Milling Machine Using the Integrated Model of Machine Frame and Spindle Unit

Authors: Jui P. Hung, Yuan L. Lai, Tzuo L. Luo, Hsi H. Hsiao

Abstract:

The machining performance is determined by the frequency characteristics of the machine-tool structure and the dynamics of the cutting process. Therefore, the prediction of dynamic vibration behavior of spindle tool system is of great importance for the design of a machine tool capable of high-precision and high-speed machining. The aim of this study is to develop a finite element model to predict the dynamic characteristics of milling machine tool and hence evaluate the influence of the preload of the spindle bearings. To this purpose, a three dimensional spindle bearing model of a high speed engraving spindle tool was created. In this model, the rolling interfaces with contact stiffness defined by Harris model were used to simulate the spindle bearing components. Then a full finite element model of a vertical milling machine was established by coupling the spindle tool unit with the machine frame structure. Using this model, the vibration mode that had a dominant influence on the dynamic stiffness was determined. The results of the finite element simulations reveal that spindle bearing with different preloads greatly affect the dynamic behavior of the spindle tool unit and hence the dynamic responses of the vertical column milling system. These results were validated by performing vibration on the individual spindle tool unit and the milling machine prototype, respectively. We conclude that preload of the spindle bearings is an important component affecting the dynamic characteristics and machining performance of the entire vertical column structure of the milling machine.

Keywords: Dynamic compliance, Milling machine, Spindle unit, Bearing preload.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3651
693 Preparation of Polymer-Stabilized Magnetic Iron Oxide as Selective Drug Nanocarriers to Human Acute Myeloid Leukemia

Authors: Kheireddine El-Boubbou

Abstract:

Drug delivery to target human acute myeloid leukemia (AML) using a nanoparticulate chemotherapeutic formulation that can deliver drugs selectively to AML cancer is hugely needed. In this work, we report the development of a nanoformulation made of polymeric-stabilized multifunctional magnetic iron oxide nanoparticles (PMNP) loaded with the anticancer drug Doxorubicin (Dox) as a promising drug carrier to treat AML. Dox@PMNP conjugates simultaneously exhibited high drug content, maximized fluorescence, and excellent release properties. Nanoparticulate uptake and cell death following addition of Dox@PMNPs were then evaluated in different types of human AML target cells, as well as on normal human cells. While the unloaded MNPs were not toxic to any of the cells, Dox@PMNPs were found to be highly toxic to the different AML cell lines, albeit at different inhibitory concentrations (IC50 values), but showed very little toxicity towards the normal cells. In comparison, free Dox showed significant potency concurrently to all the cell lines, suggesting huge potentials for the use of Dox@PMNPs as selective AML anticancer cargos. Live confocal imaging, fluorescence and electron microscopy confirmed that Dox is indeed delivered to the nucleus in relatively short periods of time, causing apoptotic cell death. Importantly, this targeted payload may potentially enhance the effectiveness of the drug in AML patients and may further allow physicians to image leukemic cells exposed to Dox@PMNPs using MRI.

Keywords: Magnetic nanoparticles, drug delivery, acute myeloid leukemia, iron oxide, cancer nanotherapy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1145
692 Stature Estimation Using Foot and Shoeprint Length of Malaysian Population

Authors: M. Khairulmazidah, A. B. Nurul Nadiah, A. R. Rumiza

Abstract:

Formulation of biological profile is one of the modern roles of forensic anthropologist. The present study was conducted to estimate height using foot and shoeprint length of Malaysian population. The present work can be very useful information in the process of identification of individual in forensic cases based on shoeprint evidence. It can help to narrow down suspects and ease the police investigation. Besides, stature is important parameters in determining the partial identify of unidentified and mutilated bodies. Thus, this study can help the problem encountered in cases of mass disaster, massacre, explosions and assault cases. This is because it is very hard to identify parts of bodies in these cases where people are dismembered and become unrecognizable. Samples in this research were collected from 200 Malaysian adults (100 males and 100 females) with age ranging from 20 to 45 years old. In this research, shoeprint length were measured based on the print of the shoes made from the flat shoes. Other information like gender, foot length and height of subject were also recorded. The data was analyzed using IBM® SPSS Statistics 19 software. Results indicated that, foot length has a strong correlation with stature than shoeprint length for both sides of the feet. However, in the unknown, where the gender was undetermined have shown a better correlation in foot length and shoeprint length parameter compared to males and females analyzed separately. In addition, prediction equations are developed to estimate the stature using linear regression analysis of foot length and shoeprint length. However, foot lengths give better prediction than shoeprint length. 

Keywords: Forensic anthropology, foot length, shoeprints, stature estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3056