Search results for: hypertension patients
83 Optimal Sliding Mode Controller for Knee Flexion During Walking
Authors: Gabriel Sitler, Yousef Sardahi, Asad Salem
Abstract:
This paper presents an optimal and robust sliding mode controller (SMC) to regulate the position of the knee joint angle for patients suffering from knee injuries. The controller imitates the role of active orthoses that produce the joint torques required to overcome gravity and loading forces and regain natural human movements. To this end, a mathematical model of the shank, the lower part of the leg, is derived first and then used for the control system design and computer simulations. The design of the controller is carried out in optimal and multi-objective settings. Four objectives are considered: minimization of the control effort and tracking error; and maximization of the control signal smoothness and closed-loop system’s speed of response. Optimal solutions in terms of the Pareto set and its image, the Pareto front, are obtained. The results show that there are trade-offs among the design objectives and many optimal solutions from which the decision-maker can choose to implement. Also, computer simulations conducted at different points from the Pareto set and assuming knee squat movement demonstrate competing relationships among the design goals. In addition, the proposed control algorithm shows robustness in tracking a standard gait signal when accounting for uncertainty in the shank’s parameters.
Keywords: Optimal control, multi-objective optimization, sliding mode control, wearable knee exoskeletons.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18082 Iterative Estimator-Based Nonlinear Backstepping Control of a Robotic Exoskeleton
Authors: Brahmi Brahim, Mohammad Habibur Rahman, Maarouf Saad, Cristóbal Ochoa Luna
Abstract:
A repetitive training movement is an efficient method to improve the ability and movement performance of stroke survivors and help them to recover their lost motor function and acquire new skills. The ETS-MARSE is seven degrees of freedom (DOF) exoskeleton robot developed to be worn on the lateral side of the right upper-extremity to assist and rehabilitate the patients with upper-extremity dysfunction resulting from stroke. Practically, rehabilitation activities are repetitive tasks, which make the assistive/robotic systems to suffer from repetitive/periodic uncertainties and external perturbations induced by the high-order dynamic model (seven DOF) and interaction with human muscle which impact on the tracking performance and even on the stability of the exoskeleton. To ensure the robustness and the stability of the robot, a new nonlinear backstepping control was implemented with designed tests performed by healthy subjects. In order to limit and to reject the periodic/repetitive disturbances, an iterative estimator was integrated into the control of the system. The estimator does not need the precise dynamic model of the exoskeleton. Experimental results confirm the robustness and accuracy of the controller performance to deal with the external perturbation, and the effectiveness of the iterative estimator to reject the repetitive/periodic disturbances.Keywords: Backstepping control, iterative control, rehabilitation, ETS-MARSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136881 Transmission Model for Plasmodium Vivax Malaria: Conditions for Bifurcation
Authors: P. Pongsumpun, I.M. Tang
Abstract:
Plasmodium vivax malaria differs from P. falciparum malaria in that a person suffering from P. vivax infection can suffer relapses of the disease. This is due the parasite being able to remain dormant in the liver of the patients where it is able to re-infect the patient after a passage of time. During this stage, the patient is classified as being in the dormant class. The model to describe the transmission of P. vivax malaria consists of a human population divided into four classes, the susceptible, the infected, the dormant and the recovered. The effect of a time delay on the transmission of this disease is studied. The time delay is the period in which the P. vivax parasite develops inside the mosquito (vector) before the vector becomes infectious (i.e., pass on the infection). We analyze our model by using standard dynamic modeling method. Two stable equilibrium states, a disease free state E0 and an endemic state E1, are found to be possible. It is found that the E0 state is stable when a newly defined basic reproduction number G is less than one. If G is greater than one the endemic state E1 is stable. The conditions for the endemic equilibrium state E1 to be a stable spiral node are established. For realistic values of the parameters in the model, it is found that solutions in phase space are trajectories spiraling into the endemic state. It is shown that the limit cycle and chaotic behaviors can only be achieved with unrealistic parameter values.
Keywords: Equilibrium states, Hopf bifurcation, limit cyclebehavior, local stability, Plasmodium Vivax, time delay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224280 Computational Design of Inhibitory Agents of BMP-Noggin Interaction to Promote Osteogenesis
Authors: Shaila Ahmed, Raghu Prasad Rao Metpally, Sreedhara Sangadala, Boojala Vijay B Reddy
Abstract:
Bone growth factors, such as Bone Morphogenic Protein-2 (BMP-2) have been approved by the FDA to replace grafting for some surgical interventions, but the high dose requirement limits its use in patients. Noggin, an extracellular protein, blocks the effect of BMP-2 by binding to BMP. Preventing the BMP-2/noggin interaction will help increase the free concentration of BMP-2 and therefore should enhance its efficacy to induce bone formation. The work presented here involves computational design of novel small molecule inhibitory agents of BMP-2/noggin interaction, based on our current understanding of BMP-2, and its known putative ligands (receptors and antagonists). A successful acquisition of such an inhibitory agent of BMP-2/noggin interaction would allow clinicians to reduce the dose required of BMP-2 protein in clinical applications to promote osteogenesis. The available crystal structures of the BMPs, its receptors, and the binding partner noggin were analyzed to identify the critical residues involved in their interaction. In presenting this study, LUDI de novo design method was utilized to perform virtual screening of a large number of compounds from a commercially available library against the binding sites of noggin to identify the lead chemical compounds that could potentially block BMP-noggin interaction with a high specificity.Keywords: Transforming growth factor-beta, Bone morphogenic proteins, Noggin, LUDI de novo design method, CAP small molecules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191879 VHL, PBRM1 and SETD2 Genes in Kidney Cancer: A Molecular Investigation
Authors: Rozhgar A. Khailany, Mehri Igci, Emine Bayraktar, Sakip Erturhan, Metin Karakok, Ahmet Arslan
Abstract:
Kidney cancer is the most lethal urological cancer accounting for 3% of adult malignancies. VHL, a tumor-suppressor gene, is best known to be associated with renal cell carcinoma (RCC). The VHL functions as negative regulator of hypoxia inducible factors. Recent sequencing efforts have identified several novel frequent mutations of histone modifying and chromatin remodeling genes in ccRCC (clear cell RCC) including PBRM1 and SETD2. The PBRM1 gene encodes the BAF180 protein, which involved in transcriptional activation and repression of selected genes. SETD2 encodes a histone methyltransferase, which may play a role in suppressing tumor development. In this study, RNAs of 30 paired tumor and normal samples that were grouped according to the types of kidney cancer and clinical characteristics of patients, including gender and average age were examined by RT-PCR, SSCP and sequencing techniques. VHL, PBRM1 and SETD2 expressions were relatively down-regulated. However, statistically no significance was found (Wilcoxon signed rank test, p>0.05). Interestingly, no mutation was observed on the contrary of previous studies. Understanding the molecular mechanisms involved in the pathogenesis of RCC has aided the development of molecular-targeted drugs for kidney cancer. Further analysis is required to identify the responsible genes rather than VHL, PBRM1 and SETD2 in kidney cancer.Keywords: Kidney cancer, molecular biomarker, expression analysis, mutation screening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201078 Bone Mineral Density and Quality, Body Composition of Women in the Postmenopausal Period
Authors: Vladyslav Povoroznyuk, Oksana Ivanyk, Nataliia Dzerovych
Abstract:
In the diagnostics of osteoporosis, the gold standard is considered to be bone mineral density; however, X-ray densitometry is not an accurate indicator of osteoporotic fracture risk under all circumstances. In this regard, the search for new methods that could determine the indicators not only of the mineral density, but of the bone tissue quality, is a logical step for diagnostic optimization. One of these methods is the evaluation of trabecular bone quality. The aim of this study was to examine the quality and mineral density of spine bone tissue, femoral neck, and body composition of women depending on the duration of the postmenopausal period, to determine the correlation of body fat with indicators of bone mineral density and quality. The study examined 179 women in premenopausal and postmenopausal periods. The patients were divided into the following groups: Women in the premenopausal period and women in the postmenopausal period at various stages (early, middle, late postmenopause). A general examination and study of the above parameters were conducted with General Electric X-ray densitometer. The results show that bone quality and mineral density probably deteriorate with advancing of postmenopausal period. Total fat and lean mass ratio is not likely to change with age. In the middle and late postmenopausal periods, the bone tissue mineral density of the spine and femoral neck increases along with total fat mass.
Keywords: Osteoporosis, bone tissue mineral density, bone quality, fat mass, lean mass, postmenopausal osteoporosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93977 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.
Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31776 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks
Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone
Abstract:
Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.
Keywords: Artificial Neural Network, Data Mining, Electroencephalogram, Epilepsy, Feature Extraction, Seizure Detection, Signal Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 131275 Knowledge of Operation Rooms’ Staff Toward Sources, Prevention and Control of Fires at Governmental Hospitals in Sana'a, Yemen
Authors: A. Ahmed Haza’a, M. Ali Odhah, S. Ahmed Al-Ahdal, A. Saleh Al-Jaradi, G. Ghaleb Alrubaiee
Abstract:
Patient safety in hospitals is an essential professional indicator that should be noticed. The threat of fires is potentially the most dangerous risk that could harm patients and personnel. The aim of the study is to assess the knowledge of operating room (OR) staff toward prevention and control sources of fires. Data collection was done between March 1 and March 30, 2022. A descriptive cross-sectional study was conducted. The sample of the study consisted of 89 OR staff from different governmental hospitals. Convenient sampling was applied to select the sample size. Official approvals were obtained from selected settings for start collection data. Data were collected using a close-ended questionnaire and tested for knowledge. This study was conducted in four governmental hospitals in Sana'a, Yemen. Most of the OR staff were male. Of these, 50.6% of them were operation technician professionals. More than two-thirds of OR staff have less than ten years of experience; 93% of OR staff had inadequate knowledge of sources of fires, and inadequate knowledge toward control and prevention of fires (73%, 79.8%), respectively; 77.5% of OR staff had inadequate knowledge of prevention and control sources of fires. The study concluded that most of OR staff had inadequate knowledge of sources, controls, and prevention of fires, while 22.5% of them had adequate knowledge of prevention and control sources of fires. We recommended the implementation of training programs toward sources, controls, and prevention of fires or related workshops in their educational planning for OR staff of hospitals.
Keywords: Staff, fire source, operation room safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18074 Pre-Operative Tool for Facial-Post-Surgical Estimation and Detection
Authors: Ayat E. Ali, Christeen R. Aziz, Merna A. Helmy, Mohammed M. Malek, Sherif H. El-Gohary
Abstract:
Goal: Purpose of the project was to make a plastic surgery prediction by using pre-operative images for the plastic surgeries’ patients and to show this prediction on a screen to compare between the current case and the appearance after the surgery. Methods: To this aim, we implemented a software which used data from the internet for facial skin diseases, skin burns, pre-and post-images for plastic surgeries then the post- surgical prediction is done by using K-nearest neighbor (KNN). So we designed and fabricated a smart mirror divided into two parts a screen and a reflective mirror so patient's pre- and post-appearance will be showed at the same time. Results: We worked on some skin diseases like vitiligo, skin burns and wrinkles. We classified the three degrees of burns using KNN classifier with accuracy 60%. We also succeeded in segmenting the area of vitiligo. Our future work will include working on more skin diseases, classify them and give a prediction for the look after the surgery. Also we will go deeper into facial deformities and plastic surgeries like nose reshaping and face slim down. Conclusion: Our project will give a prediction relates strongly to the real look after surgery and decrease different diagnoses among doctors. Significance: The mirror may have broad societal appeal as it will make the distance between patient's satisfaction and the medical standards smaller.
Keywords: K-nearest neighbor, face detection, vitiligo, bone deformity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69973 Vitamin D Deficiency and Insufficiency in Postmenopausal Women with Obesity
Authors: Vladyslav Povoroznyuk, Anna Musiienko, Nataliia Dzerovych, Roksolana Povoroznyuk, Oksana Ivanyk
Abstract:
Deficiency and insufficiency of Vitamin D is a pandemic of the 21st century. Obesity patients have a lower level of vitamin D, but the literature data are contradictory. The purpose of this study is to investigate deficiency and insufficiency vitamin D in postmenopausal women with obesity. We examined 1007 women aged 50-89 years. Mean age was 65.74±8.61 years; mean height was 1.61±0.07 m; mean weight was 70.65±13.50 kg; mean body mass index was 27.27±4.86 kg/m2, and mean 25(OH) D levels in serum was 26.00±12.00 nmol/l. The women were divided into the following six groups depending on body mass index: I group – 338 women with normal body weight, II group – 16 women with insufficient body weight, III group – 382 women with excessive body weight, IV group – 199 women with obesity of class I, V group – 60 women with obesity of class II, and VI group – 12 women with obesity of class III. Level of 25(OH)D in serum was measured by means of an electrochemiluminescent method - Elecsys 2010 analyzer (Roche Diagnostics, Germany) and cobas test-systems. 34.4% of the examined women have deficiency of vitamin D and 31.4% insufficiency. Women with obesity of class I (23.60±10.24 ng/ml) and obese of class II (22.38±10.34 ng/ml) had significantly lower levels of 25 (OH) D compared to women with normal body weight (28.24±12.99 ng/ml), p=0.00003. In women with obesity, BMI significantly influences vitamin D level, and this influence does not depend on the season.
Keywords: Obesity, body mass index, vitamin D deficiency/insufficiency, postmenopausal women, age.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 105872 Breast Cancer Survivability Prediction via Classifier Ensemble
Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia
Abstract:
This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.Keywords: Classifier ensemble, breast cancer survivability, data mining, SEER.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167071 A Study on Fuzzy Adaptive Control of Enteral Feeding Pump
Authors: Seungwoo Kim, Hyojune Chae, Yongrae Jung, Jongwook Kim
Abstract:
Recent medical studies have investigated the importance of enteral feeding and the use of feeding pumps for recovering patients unable to feed themselves or gain nourishment and nutrients by natural means. The most of enteral feeding system uses a peristaltic tube pump. A peristaltic pump is a form of positive displacement pump in which a flexible tube is progressively squeezed externally to allow the resulting enclosed pillow of fluid to progress along it. The squeezing of the tube requires a precise and robust controller of the geared motor to overcome parametric uncertainty of the pumping system which generates due to a wide variation of friction and slip between tube and roller. So, this paper proposes fuzzy adaptive controller for the robust control of the peristaltic tube pump. This new adaptive controller uses a fuzzy multi-layered architecture which has several independent fuzzy controllers in parallel, each with different robust stability area. Out of several independent fuzzy controllers, the most suited one is selected by a system identifier which observes variations in the controlled system parameter. This paper proposes a design procedure which can be carried out mathematically and systematically from the model of a controlled system. Finally, the good control performance, accurate dose rate and robust system stability, of the developed feeding pump is confirmed through experimental and clinic testing.
Keywords: Enteral Feeding Pump, Peristaltic Tube Pump, Fuzzy Adaptive Control, Fuzzy Multi-layered Controller, Look-up Table..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164470 Electroencephalography Activity during Sensory Organization Balance Test
Authors: Tariq Ali Gujar, Anita Hökelmann
Abstract:
Postural balance plays essential role throughout life in daily activities. Somatosensory, visual and vestibular inputs play the fundamental role in maintaining body equilibrium to balance the posture. The aim of this study was to find out electroencephalography (EEG) responses during balance activity of young people during Sensory Organization Balance Test. The outcome of this study will help to create the fitness and neurorehabilitation plan. 25 young people (25 ± 3.1 years) have been analyzed on Balance Master NeuroCom® with the coupling of Brain Vision 32 electrode wireless EEG system during the Sensory Organization Test. From the results it has been found that the balance score of samples is significantly higher under the influence of somatosensory input as compared to visual and vestibular input (p < 0.05). The EEG between somatosensory and visual input to balance the posture showed significantly higher (p < 0.05) alpha and beta activities during somatosensory input in somatosensory, attention and visual functions of the cortex whereas executive and motor functions of the cerebral cortex showed significantly higher (p < 0.05) alpha EEG activity during the visual input. The results suggest that somatosensory and attention function of the cerebral cortex has alpha and beta activity, respectively high during somatosensory and vestibular input in maintaining balance. In patients with balance impairments both physical and cognitive training, including neurofeedback will be helpful to improve balance abilities.
Keywords: Balance, electroencephalography activity, somatosensory, visual, vestibular.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60869 Diabetes Mellitus and Food Balance in the Kingdom of Saudi Arabia
Authors: Aljabryn Dalal Hamad
Abstract:
The present explanatory study concerns with the relation between Diabetes Mellitus and Food Balance in the Kingdom of Saudi Arabia during 2005-2010, using published data. Results illustrated that Saudi citizen daily protein consumption (DPC) during 2005-2007 (g/capita/day) is higher than the average global consumption level of protein with 15.27%, daily fat consumption (DFC) with 24.56% and daily energy consumption (DEC) with 16.93% and increases than recommended level by International Nutrition Organizations (INO) with 56% for protein, 60.49% for fat and 27.37% for energy. On the other hand, DPC per capita in Saudi Arabia decreased during the period 2008-2010 from 88.3 to 82.36 gram/ day. Moreover, DFC per capita in Saudi Arabia decreased during the period 2008-2010 from 3247.90 to 3176.43 Cal/capita/ day, and daily energy consumption (DEC) of Saudi citizen increases than world consumption with 16.93%, whereas increases with 27.37% than INO. Despite this, DPC, DFC and DEC per capita in Saudi Arabia still higher than world mean. On the other side, results illustrated that the number of diabetic patients in Saudi Arabia during the same period (2005-2010). The curve of diabetic patient’s number in Saudi Arabia during 2005-2010 is regular ascending with increasing level ranged between 7.10% in 2005 and 12.44% in 2010. It is essential to devise Saudi National programs to educate the public about the relation of food balances and diabetes so it could be avoided, and provide citizens with healthy dietary balances tables.Keywords: Diabetes Mellitus, Food Balance, Energy, Fat, Protein, Saudi Arabia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152068 Quantitative Assessment of Different Formulations of Antimalarials in Sentinel Sites of India
Authors: Taruna Katyal Arora, Geeta Kumari, Hari Shankar, Neelima Mishra
Abstract:
Substandard and counterfeit antimalarials is a major problem in malaria endemic areas. The availability of counterfeit/ substandard medicines is not only decreasing the efficacy in patients, but it is also one of the contributing factors for developing antimalarial drug resistance. Owing to this, a pilot study was conducted to survey quality of drugs collected from different malaria endemic areas of India. Artesunate+Sulphadoxine-Pyrimethamine (AS+SP), Artemether-Lumefantrine (AL), Chloroquine (CQ) tablets were randomly picked from public health facilities in selected states of India. The quality of antimalarial drugs from these areas was assessed by using Global Pharma Health Fund Minilab test kit. This includes physical/visual inspection and disintegration test. Thin-layer chromatography (TLC) was carried out for semi-quantitative assessment of active pharmaceutical ingredients. A total of 45 brands, out of which 21 were for CQ, 14 for AL and 10 for AS+SP were tested from Uttar Pradesh (U.P.), Mizoram, Meghalaya and Gujrat states. One out of 45 samples showed variable disintegration and retension factor. The variable disintegration and retention factor which would have been due to substandard quality or other factors including storage. However, HPLC analysis confirms standard active pharmaceutical ingredient, but may be due to humid temperature and moisture in storage may account for the observed result.
Keywords: Antimalarial medicines, counterfeit, substandard, thin layer chromatography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 152067 Cross Signal Identification for PSG Applications
Authors: Carmen Grigoraş, Victor Grigoraş, Daniela Boişteanu
Abstract:
The standard investigational method for obstructive sleep apnea syndrome (OSAS) diagnosis is polysomnography (PSG), which consists of a simultaneous, usually overnight recording of multiple electro-physiological signals related to sleep and wakefulness. This is an expensive, encumbering and not a readily repeated protocol, and therefore there is need for simpler and easily implemented screening and detection techniques. Identification of apnea/hypopnea events in the screening recordings is the key factor for the diagnosis of OSAS. The analysis of a solely single-lead electrocardiographic (ECG) signal for OSAS diagnosis, which may be done with portable devices, at patient-s home, is the challenge of the last years. A novel artificial neural network (ANN) based approach for feature extraction and automatic identification of respiratory events in ECG signals is presented in this paper. A nonlinear principal component analysis (NLPCA) method was considered for feature extraction and support vector machine for classification/recognition. An alternative representation of the respiratory events by means of Kohonen type neural network is discussed. Our prospective study was based on OSAS patients of the Clinical Hospital of Pneumology from Iaşi, Romania, males and females, as well as on non-OSAS investigated human subjects. Our computed analysis includes a learning phase based on cross signal PSG annotation.Keywords: Artificial neural networks, feature extraction, obstructive sleep apnea syndrome, pattern recognition, signalprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153966 Linear Prediction System in Measuring Glucose Level in Blood
Authors: Intan Maisarah Abd Rahim, Herlina Abdul Rahim, Rashidah Ghazali
Abstract:
Diabetes is a medical condition that can lead to various diseases such as stroke, heart disease, blindness and obesity. In clinical practice, the concern of the diabetic patients towards the blood glucose examination is rather alarming as some of the individual describing it as something painful with pinprick and pinch. As for some patient with high level of glucose level, pricking the fingers multiple times a day with the conventional glucose meter for close monitoring can be tiresome, time consuming and painful. With these concerns, several non-invasive techniques were used by researchers in measuring the glucose level in blood, including ultrasonic sensor implementation, multisensory systems, absorbance of transmittance, bio-impedance, voltage intensity, and thermography. This paper is discussing the application of the near-infrared (NIR) spectroscopy as a non-invasive method in measuring the glucose level and the implementation of the linear system identification model in predicting the output data for the NIR measurement. In this study, the wavelengths considered are at the 1450 nm and 1950 nm. Both of these wavelengths showed the most reliable information on the glucose presence in blood. Then, the linear Autoregressive Moving Average Exogenous model (ARMAX) model with both un-regularized and regularized methods was implemented in predicting the output result for the NIR measurement in order to investigate the practicality of the linear system in this study. However, the result showed only 50.11% accuracy obtained from the system which is far from the satisfying results that should be obtained.
Keywords: Diabetes, glucose level, linear, near-infrared (NIR), non-invasive, prediction system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87265 The Low-Cost Design and 3D Printing of Structural Knee Orthotics for Athletic Knee Injury Patients
Authors: Alexander Hendricks, Sean Nevin, Clayton Wikoff, Melissa Dougherty, Jacob Orlita, Rafiqul Noorani
Abstract:
Knee orthotics play an important role in aiding in the recovery of those with knee injuries, especially athletes. However, structural knee orthotics is often very expensive, ranging between $300 and $800. The primary reason for this project was to answer the question: can 3D printed orthotics represent a viable and cost-effective alternative to present structural knee orthotics? The primary objective for this research project was to design a knee orthotic for athletes with knee injuries for a low-cost under $100 and evaluate its effectiveness. The initial design for the orthotic was done in SolidWorks, a computer-aided design (CAD) software available at Loyola Marymount University. After this design was completed, finite element analysis (FEA) was utilized to understand how normal stresses placed upon the knee affected the orthotic. The knee orthotic was then adjusted and redesigned to meet a specified factor-of-safety of 3.25 based on the data gathered during FEA and literature sources. Once the FEA was completed and the orthotic was redesigned based from the data gathered, the next step was to move on to 3D-printing the first design of the knee brace. Subsequently, physical therapy movement trials were used to evaluate physical performance. Using the data from these movement trials, the CAD design of the brace was refined to accommodate the design requirements. The final goal of this research means to explore the possibility of replacing high-cost, outsourced knee orthotics with a readily available low-cost alternative.
Keywords: Knee Orthotics, 3D printing, finite element analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 103664 Realistic Simulation Methodology in Brazil’s New Medical Education Curriculum: Potentialities
Authors: Cleto J. Sauer Jr
Abstract:
Introduction: Brazil’s new national curriculum guidelines (NCG) for medical education were published in 2014, presenting active learning methodologies as a cornerstone. Simulation was initially applied for aviation pilots’ training and is currently applied in health sciences. The high-fidelity simulator replicates human body anatomy in detail, also reproducing physiological functions and its use is increasing in medical schools. Realistic Simulation (RS) has pedagogical aspects that are aligned with Brazil’s NCG teaching concepts. The main objective of this study is to carry on a narrative review on RS’s aspects that are aligned with Brazil’s new NCG teaching concepts. Methodology: A narrative review was conducted, with search in three databases (PubMed, Embase and BVS) of studies published between 2010 and 2020. Results: After systematized search, 49 studies were selected and divided into four thematic groups. RS is aligned with new Brazilian medical curriculum as it is an active learning methodology, providing greater patient safety, uniform teaching, and student's emotional skills enhancement. RS is based on reflective learning, a teaching concept developed for adult’s education. Conclusion: RS is a methodology aligned with NCG teaching concepts and has potential to assist in the implementation of new Brazilian medical school’s curriculum. It is an immersive and interactive methodology, which provides reflective learning in a safe environment for students and patients.
Keywords: Curriculum, high-fidelity simulator, medical education, realistic simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56763 Bayes Net Classifiers for Prediction of Renal Graft Status and Survival Period
Authors: Jiakai Li, Gursel Serpen, Steven Selman, Matt Franchetti, Mike Riesen, Cynthia Schneider
Abstract:
This paper presents the development of a Bayesian belief network classifier for prediction of graft status and survival period in renal transplantation using the patient profile information prior to the transplantation. The objective was to explore feasibility of developing a decision making tool for identifying the most suitable recipient among the candidate pool members. The dataset was compiled from the University of Toledo Medical Center Hospital patients as reported to the United Network Organ Sharing, and had 1228 patient records for the period covering 1987 through 2009. The Bayes net classifiers were developed using the Weka machine learning software workbench. Two separate classifiers were induced from the data set, one to predict the status of the graft as either failed or living, and a second classifier to predict the graft survival period. The classifier for graft status prediction performed very well with a prediction accuracy of 97.8% and true positive values of 0.967 and 0.988 for the living and failed classes, respectively. The second classifier to predict the graft survival period yielded a prediction accuracy of 68.2% and a true positive rate of 0.85 for the class representing those instances with kidneys failing during the first year following transplantation. Simulation results indicated that it is feasible to develop a successful Bayesian belief network classifier for prediction of graft status, but not the graft survival period, using the information in UNOS database.Keywords: Bayesian network classifier, renal transplantation, graft survival period, United Network for Organ Sharing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 210862 Evaluation of Sensitometric Properties of Radiographic Films at Different Processing Solutions
Authors: Mojiri M, Ghazi Khanloo Sani K, Moghim Beigi A
Abstract:
The aim of this study was to compare the sensitometric properties of commonly used radiographic films processed with chemical solutions in different workload hospitals. The effect of different processing conditions on induced densities on radiologic films was investigated. Two accessible double emulsions Fuji and Kodak films were exposed with 11-step wedge and processed with Champion and CPAC processing solutions. The mentioned films provided in both workloads centers, high and low. Our findings displays that the speed and contrast of Kodak filmscreen in both work load (high and low) is higher than Fuji filmscreen for both processing solutions. However there was significant differences in films contrast for both workloads when CPAC solution had been used (p=0.000 and 0.028). The results showed base plus fog density for Kodak film was lower than Fuji. Generally Champion processing solution caused more speed and contrast for investigated films in different conditions and there was significant differences in 95% confidence level between two used processing solutions (p=0.01). Low base plus fog density for Kodak films provide more visibility and accuracy and higher contrast results in using lower exposure factors to obtain better quality in resulting radiographs. In this study we found an economic advantages since Champion solution and Kodak film are used while it makes lower patient dose. Thus, in a radiologic facility any change in film processor/processing cycle or chemistry should be carefully investigated before radiological procedures of patients are acquired.Keywords: Sensitometry, densitometry, Radiographic film, processing solution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162661 Noninvasive Disease Diagnosis through Breath Analysis Using DNA-Functionalized SWNT Sensor Array
Authors: Wenjun Zhang, Yunqing Du, Ming L. Wang
Abstract:
Noninvasive diagnostics of diseases via breath analysis has attracted considerable scientific and clinical interest for many years and become more and more promising with the rapid advancements in nanotechnology and biotechnology. The volatile organic compounds (VOCs) in exhaled breath, which are mainly blood borne, particularly provide highly valuable information about individuals’ physiological and pathophysiological conditions. Additionally, breath analysis is noninvasive, real-time, painless, and agreeable to patients. We have developed a wireless sensor array based on single-stranded DNA (ssDNA)-functionalized single-walled carbon nanotubes (SWNT) for the detection of a number of physiological indicators in breath. Seven DNA sequences were used to functionalize SWNT sensors to detect trace amount of methanol, benzene, dimethyl sulfide, hydrogen sulfide, acetone, and ethanol, which are indicators of heavy smoking, excessive drinking, and diseases such as lung cancer, breast cancer, and diabetes. Our test results indicated that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, and repeatability; and different molecules can be distinguished through pattern recognition enabled by this sensor array. Furthermore, the experimental sensing results are consistent with the Molecular Dynamics simulated ssDNAmolecular target interaction rankings. Thus, the DNA-SWNT sensor array has great potential to be applied in chemical or biomolecular detection for the noninvasive diagnostics of diseases and personal health monitoring.
Keywords: Breath analysis, DNA-SWNT sensor array, diagnosis, noninvasive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 283660 Evaluation of the Impact of Dataset Characteristics for Classification Problems in Biological Applications
Authors: Kanthida Kusonmano, Michael Netzer, Bernhard Pfeifer, Christian Baumgartner, Klaus R. Liedl, Armin Graber
Abstract:
Availability of high dimensional biological datasets such as from gene expression, proteomic, and metabolic experiments can be leveraged for the diagnosis and prognosis of diseases. Many classification methods in this area have been studied to predict disease states and separate between predefined classes such as patients with a special disease versus healthy controls. However, most of the existing research only focuses on a specific dataset. There is a lack of generic comparison between classifiers, which might provide a guideline for biologists or bioinformaticians to select the proper algorithm for new datasets. In this study, we compare the performance of popular classifiers, which are Support Vector Machine (SVM), Logistic Regression, k-Nearest Neighbor (k-NN), Naive Bayes, Decision Tree, and Random Forest based on mock datasets. We mimic common biological scenarios simulating various proportions of real discriminating biomarkers and different effect sizes thereof. The result shows that SVM performs quite stable and reaches a higher AUC compared to other methods. This may be explained due to the ability of SVM to minimize the probability of error. Moreover, Decision Tree with its good applicability for diagnosis and prognosis shows good performance in our experimental setup. Logistic Regression and Random Forest, however, strongly depend on the ratio of discriminators and perform better when having a higher number of discriminators.
Keywords: Classification, High dimensional data, Machine learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 238359 A Pilot Study of Robot Reminiscence in Dementia Care
Authors: Ryuji Yamazaki, Masahiro Kochi, Weiran Zhu, Hiroko Kase
Abstract:
In care for older adults, behavioral and psychological symptoms of dementia (BPSD) like agitation and aggression are distressing for patients and their caretakers, often resulting in premature institutionalization with increased costs of care. To improve mood and mitigate symptoms, as a non-pharmaceutical approach, emotion-oriented therapy like reminiscence work is adopted in face-to-face communication. Telecommunication support is expected to be provided by robotic media as a bridge for digital divide for those with dementia and facilitate social interaction both verbally and nonverbally. The purpose of this case study is to explore the conditions in which robotic media can effectively attract attention from older adults with dementia and promote their well-being. As a pilot study, we introduced the pillow-phone Hugvie®, a huggable humanly shaped communication medium to five residents with dementia at a care facility, to investigate how the following conditions work for the elderly when they use the medium; 1) no sound, 2) radio, non-interactive, 3) daily conversation, and 4) reminiscence work. As a result, under condition 4, reminiscence work, the five participants kept concentration in interacting with the medium for a longer duration than other conditions. In condition 4, they also showed larger amount of utterances than under other conditions. These results indicate that providing topics related to personal histories through robotic media could affect communication positively and should, therefore, be further investigated. In addition, the issue of ethical implications by using persuasive technology that affects emotions and behaviors of older adults is also discussed.
Keywords: BPSD, reminiscence, tactile telecommunication, utterances.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115758 Hardiness vs Alienation Personality Construct Essentially Explains Burnout Proclivity and Erroneous Computer Entry Problems in Rural Hellenic Hospital Labs
Authors: Angela–M. Paleologou, Aphrodite Dellaporta
Abstract:
Erroneous computer entry problems [here: 'e'errors] in hospital labs threaten the patients-–health carers- relationship, undermining the health system credibility. Are e-errors random, and do lab professionals make them accidentally, or may they be traced through meaningful determinants? Theories on internal causality of mistakes compel to seek specific causal ascriptions of hospital lab eerrors instead of accepting some inescapability. Undeniably, 'To Err is Human'. But in view of rapid global health organizational changes, e-errors are too expensive to lack in-depth considerations. Yet, that efunction might supposedly be entrenched in the health carers- job description remains under dispute – at least for Hellenic labs, where e-use falls behind generalized(able) appreciation and application. In this study: i) an empirical basis of a truly high annual cost of e-errors at about €498,000.00 per rural Hellenic hospital was established, hence interest in exploring the issue was sufficiently substantiated; ii) a sample of 270 lab-expert nurses, technicians and doctors were assessed on several personality, burnout and e-error measures, and iii) the hypothesis that the Hardiness vs Alienation personality construct disposition explains resistance vs proclivity to e-errors was tested and verified: Hardiness operates as a resilience source in the encounter of high pressures experienced in the hospital lab, whereas its 'opposite', i.e., Alienation, functions as a predictor, not only of making e-errors, but also of leading to burn-out. Implications for apt interventions are discussed.
Keywords: Hospital lab, personality hardiness/alienation, e-errors' cost, burnout.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193357 Actual Nursing Competency among Nurses in Hospital in Vietnam
Authors: Do Thi Ha, Khanitta Nuntaboot
Abstract:
Background: Competency of nurses is vital to safe nursing practice as well as essential component to drive quality of nursing services. There exists little up to date information concerning actual competency among Vietnamese nurses. Purposes: The purpose of this study is to identify the actual nursing competency among nurses in clinical settings in Vietnam. Methods: A qualitative study, ethnographic method, comprised of the participant-observation, in-depth interview, and focus group discussion with multidisciplinary groups of nurses employing in Cho Ray hospital, Vietnam, managers/administrators, nurse teachers, medical doctors, other health care providers, patients and family members which derived from purposeful sampling technique. Content analysis was used for data analysis. Results: Five essential themes of nursing competencies among nurses were identified include (1) knowledge, (2) skills, (3) attitude and value-based nursing practice, (4) legal and ethical competencies, and (5) transcultural competencies. Basic and advanced knowledge were identified as further two dimensions of knowledge. There were five sub themes identified as further dimensions of skills include technical skills, communication skills, organizing and management skills, teamwork and interrelationship, and critical thinking skills. Conclusions: The findings from this study provide valuable information and understanding of the actual competency among nurses in clinical settings in Vietnam. It is expected that this understanding would assist in developing a guide to nursing education and training, nursing practice and relevant policy regulation used for promoting nursing competency among nurses.
Keywords: Nursing competency, qualitative design, ethnographic method, Vietnam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 248156 Self-Care Behavior and Performance Level Associated with Algerian Chronically Ill Patients
Authors: S. Aberkane, N. Djabali, S. Fafi, A. Baghezza
Abstract:
Chronic illnesses affect many Algerians. It is possible to investigate the impact of illness representations and coping on quality of life and whether illness representations are indirectly associated with quality of life through their influence on coping. This study aims at investigating the relationship between illness perception, coping strategies and quality of life with chronic illness. Illness perceptions are indirectly associated with the quality of life through their influence on coping mediation. A sample of 316 participants with chronic illness living in the region of Batna, Algeria, has been adopted in this study. A correlation statistical analysis is used to determine the relationship between illness perception, coping strategies, and quality of life. Multiple regression analysis was employed to highlight the predictive ability of the dimensions of illness perception and coping strategies on the dependent variables of quality of life, where mediation analysis is considered in the exploration of the indirect effect significance of the mediator. This study provides insights about the relationship between illness perception, coping strategies and quality of life in the considered sample (r = 0.39, p < 0.01). Therefore, it proves that there is an effect of illness identity perception, external and medical attributions related to emotional role, physical functioning, and mental health perceived, and these were fully mediated by the asking for assistance (c’= 0.04, p < 0.05), the guarding (c’= 0.00, p < 0.05), and the task persistence strategy (c’= 0.05, p < 0.05). The findings imply partial support for the common-sense model of illness representations in a chronic illness population. Directions for future research are highlighted, as well as implications for psychotherapeutic interventions which target unhelpful beliefs and maladaptive coping strategies (e.g., cognitive behavioral therapy).
Keywords: Chronic illness, coping, illness perception, quality of life, self-regulation model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 78255 Development of Affordable and Reliable Diagnostic Tools to Record Vital Parameters for Improving Health Care in Low Resources Settings
Authors: Mannan Mridha, Usama Gazay, Kosovare V. Aslani, Hugo Linder, Alice Ravizza, Carmelo de Maria
Abstract:
In most developing countries, although the vast majority of the people are living in the rural areas, the qualified medical doctors are not available there. Health care workers and paramedics, called village doctors, informal healthcare providers, are largely responsible for the rural medical care. Mishaps due to wrong diagnosis and inappropriate medication have been causing serious suffering that is preventable. While innovators have created many devices, the vast majority of these technologies do not find applications to address the needs and conditions in low-resource settings. The primary motive is to address the acute lack of affordable medical technologies for the poor people in low-resource settings. A low cost smart medical device that is portable, battery operated and can be used at any point of care has been developed to detect breathing rate, electrocardiogram (ECG) and arterial pulse rate to improve diagnosis and monitoring of patients and thus improve care and safety. This simple and easy to use smart medical device can be used, managed and maintained effectively and safely by any health worker with some training. In order to empower the health workers and village doctors, our device is being further developed to integrate with ICT tools like smart phones and connect to the medical experts wherever available, to manage the serious health problems.
Keywords: Healthcare for low resources settings, health awareness education, improve patient care and safety, smart and affordable medical device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85354 Methods and Algorithms of Ensuring Data Privacy in AI-Based Healthcare Systems and Technologies
Authors: Omar Farshad Jeelani, Makaire Njie, Viktoriia M. Korzhuk
Abstract:
Recently, the application of AI-powered algorithms in healthcare continues to flourish. Particularly, access to healthcare information, including patient health history, diagnostic data, and PII (Personally Identifiable Information) is paramount in the delivery of efficient patient outcomes. However, as the exchange of healthcare information between patients and healthcare providers through AI-powered solutions increases, protecting a person’s information and their privacy has become even more important. Arguably, the increased adoption of healthcare AI has resulted in a significant concentration on the security risks and protection measures to the security and privacy of healthcare data, leading to escalated analyses and enforcement. Since these challenges are brought by the use of AI-based healthcare solutions to manage healthcare data, AI-based data protection measures are used to resolve the underlying problems. Consequently, these projects propose AI-powered safeguards and policies/laws to protect the privacy of healthcare data. The project present the best-in-school techniques used to preserve data privacy of AI-powered healthcare applications. Popular privacy-protecting methods like Federated learning, cryptography techniques, differential privacy methods, and hybrid methods are discussed together with potential cyber threats, data security concerns, and prospects. Also, the project discusses some of the relevant data security acts/laws that govern the collection, storage, and processing of healthcare data to guarantee owners’ privacy is preserved. This inquiry discusses various gaps and uncertainties associated with healthcare AI data collection procedures, and identifies potential correction/mitigation measures.
Keywords: Data privacy, artificial intelligence, healthcare AI, data sharing, healthcare organizations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113