Search results for: Learning Theory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3480

Search results for: Learning Theory

2940 Using Interval Trees for Approximate Indexing of Instances

Authors: Khalil el Hindi

Abstract:

This paper presents a simple and effective method for approximate indexing of instances for instance based learning. The method uses an interval tree to determine a good starting search point for the nearest neighbor. The search stops when an early stopping criterion is met. The method proved to be very effective especially when only the first nearest neighbor is required.

Keywords: Instance based learning, interval trees, the knn algorithm, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1509
2939 Meta-Learning for Hierarchical Classification and Applications in Bioinformatics

Authors: Fabio Fabris, Alex A. Freitas

Abstract:

Hierarchical classification is a special type of classification task where the class labels are organised into a hierarchy, with more generic class labels being ancestors of more specific ones. Meta-learning for classification-algorithm recommendation consists of recommending to the user a classification algorithm, from a pool of candidate algorithms, for a dataset, based on the past performance of the candidate algorithms in other datasets. Meta-learning is normally used in conventional, non-hierarchical classification. By contrast, this paper proposes a meta-learning approach for more challenging task of hierarchical classification, and evaluates it in a large number of bioinformatics datasets. Hierarchical classification is especially relevant for bioinformatics problems, as protein and gene functions tend to be organised into a hierarchy of class labels. This work proposes meta-learning approach for recommending the best hierarchical classification algorithm to a hierarchical classification dataset. This work’s contributions are: 1) proposing an algorithm for splitting hierarchical datasets into new datasets to increase the number of meta-instances, 2) proposing meta-features for hierarchical classification, and 3) interpreting decision-tree meta-models for hierarchical classification algorithm recommendation.

Keywords: Algorithm recommendation, meta-learning, bioinformatics, hierarchical classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
2938 The Practice of Teaching Chemistry by the Application of Online Tests

Authors: Nikolina Ribarić

Abstract:

E-learning is most commonly defined as a set of applications and processes, such as Web-based learning, computer-based learning, virtual classrooms and digital collaboration, that enable access to instructional content through a variety of electronic media. The main goal of an e-learning system is learning, and the way to evaluate the impact of an e-learning system is by examining whether students learn effectively with the help of that system. Testmoz is a program for online preparation of knowledge evaluation assignments. The program provides teachers with computer support during the design of assignments and evaluating them. Students can review and solve assignments and also check the correctness of their solutions. Research into the increase of motivation by the practice of providing teaching content by applying online tests prepared in the Testmoz program, was carried out with students of the 8th grade of Ljubo Babić Primary School in Jastrebarsko. The students took the tests in their free time, from home, for an unlimited number of times. SPSS was used to process the data obtained by the research instruments. The results of the research showed that students preferred to practice teaching content, and achieved better educational results in chemistry, when they had access to online tests for repetition and practicing in relation to subject content which was checked after repetition and practicing in "the classical way" – i.e., solving assignments in a workbook or writing assignments in worksheets.

Keywords: Chemistry class, e-learning, online test, Testmoz.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 558
2937 An Interactive e-Learning Management System (e-LMS): A Solution to Tanzanian Secondary Schools' Education

Authors: A. Ellen Kalinga, R. B. Burchard Bagile, Lena Trojer

Abstract:

Information and Communications Technologies (ICT) has been integrated in education in many developing and developed countries alike, but the use of ICT in Tanzanian schools is dismal. Many Tanzanian secondary schools have no computers. The few schools with computers use them primarily for secretarial services and computer literacy training. The Tanzanian education system at other levels like secondary school level has to undergo substantial transformation, underscored by the growing application of new information and communication technology. This paper presents the e-readiness survey result from secondary schools in Tanzania. The paper also suggests how Tanzania can make use of the few present ICT resources to support and improve teaching and learning functions to improve performance and acquisition of knowledge by using e-Learning Management System (e-LMS).

Keywords: e-Learning, ICT, Object-Oriented, Participatorydesign.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2770
2936 Bilingual Gaming Kit to Teach English Language through Collaborative Learning

Authors: Sarayu Agarwal

Abstract:

This paper aims to teach English (secondary language) by bridging the understanding between the Regional language (primary language) and the English Language (secondary language). Here primary language is the one a person has learned from birth or within the critical period, while secondary language would be any other language one learns or speaks. The paper also focuses on evolving old teaching methods to a contemporary participatory model of learning and teaching. Pilot studies were conducted to gauge an understanding of student’s knowledge of the English language. Teachers and students were interviewed and their academic curriculum was assessed as a part of the initial study. Extensive literature study and design thinking principles were used to devise a solution to the problem. The objective is met using a holistic learning kit/card game to teach children word recognition, word pronunciation, word spelling and writing words. Implication of the paper is a noticeable improvement in the understanding and grasping of English language. With increasing usage and applicability of English as a second language (ESL) world over, the paper becomes relevant due to its easy replicability to any other primary or secondary language. Future scope of this paper would be transforming the idea of participatory learning into self-regulated learning methods. With the upcoming govt. learning centres in rural areas and provision of smart devices such as tablets, the development of the card games into digital applications seems very feasible.

Keywords: English as a second language, vocabulary-building, learning through gamification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1356
2935 Genetic Algorithms for Feature Generation in the Context of Audio Classification

Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes

Abstract:

Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.

Keywords: Feature generation, feature learning, genetic algorithm, music information retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076
2934 The Impact of E-Learning on Medication Administration of Nursing Students: What Recent Studies Say?

Authors: Z. Karakus, Z. Ozer

Abstract:

Nurses are responsible for the care and treatment of individuals, as well as health maintenance and education. Medication administration is an important part of health promotion. The administration of a medicine is a common but important clinical procedure for nurses because of its complex structure. Therefore, medication errors are inevitable for nurses or nursing students. Medication errors can cause ineffective treatment, patient’s prolonged hospital stay, disablement or death. Additionally, medication errors affect the global economy adversely by increasing health costs. Hence, preventing or decreasing of medication errors is a critical and essential issue in nursing. Nurse educators are in pursuit of new teaching methods to teach students significance of medication application. In the light of technological developments of this age, e-learning has started to be accepted as an important teaching method. E-learning is the use of electronic media and information and communication technologies in education. It has advantages such as flexibility of time and place, lower costs, faster delivery and lower environmental impact. Students can make their own schedule and decide the learning method. This study is conducted to determine the impact of e-learning on medication administration of nursing students.

Keywords: E-Learning, Medication Administration, Nursing, Nursing Students.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2759
2933 Pre-Service Teachers’ Assessment of Information Technology Application to Instruction

Authors: Adesanya Anuoluwapo Olusola

Abstract:

Technology has moved into the classroom, and it becomes difficult talking of achievement in and attitude to learning without making mention of it. The use of technology makes learning easy, real and practical as it motivates learners, sustains their interest and improves their attitude to learning. This study, therefore examined the pre-service teachers’ assessment of information technology application to instruction. The use of technology emphasizes and encourages active learning in the classroom. The study involved 100 pre-service teachers in the selected two (2) Colleges of Education, Nigeria. Purposive random sampling was used in selecting the participants and ex-post facto design was adopted the in which there is no manipulation of variables. Two valid and reliable instruments were used for data collection: Access Point ICT facilities and Application of ICT. The study established that pre-service teachers have less access to ICT facilities and Application of ICT in the college, apart from those students having the access outside the college. Also fewer pre-service teachers used ICT facilities on weekly and monthly bases. It was concluded that the establishment of students’ resources centres and Campus wide wireless connectivity must be implemented so as to improve and enhance students’ achievement in and attitude to learning. The time and attention devoted to learning activities and strategic specialized ICT skills and requisite entrepreneur skills should be increased so as to have easy access to information sources and be able to apply it in teaching process.

Keywords: Computer, ICT Application, Learning Facilities, Pre-Service Teachers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
2932 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 636
2931 Investigation of Dimethyl Ether Solubility in Liquid Hexadecane by UNIFAC Method

Authors: F. Raouf, M. Taghizadeh

Abstract:

It is shown that a modified UNIFAC model can be applied to predict solubility of hydrocarbon gases and vapors in hydrocarbon solvents. Very good agreement with experimental data has been achieved. In this work we try to find best way for predicting dimethyl ether solubility in liquid paraffin by using group contribution theory.

Keywords: UNIFAC, Henry's law, Group contribution theory, Solubility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2300
2930 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting

Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu

Abstract:

Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.

Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
2929 Determination of Skills Gap between School-Based Learning and Laboratory-Based Learning in Omar Al-Mukhtar University

Authors: Aisha Othman, Crinela Pislaru, Ahmed Impes

Abstract:

This paper provides an identification of the existing practical skills gap between school-based learning (SBL) and laboratory based learning (LBL) in the Computing Department within the Faculty of Science at Omar Al-Mukhtar University in Libya. A survey has been conducted and the first author has elicited the responses of two groups of stakeholders, namely the academic teachers and students.

The primary goal is to review the main strands of evidence available and argue that there is a gap between laboratory and school-based learning in terms of opportunities for experiment and application of skills. In addition, the nature of experimental work within the laboratory at Omar Al-Mukhtar University needs to be reconsidered. Another goal of our study was to identify the reasons for students’ poor performance in the laboratory and to determine how this poor performance can be eliminated by the modification of teaching methods. Bloom’s taxonomy of learning outcomes has been applied in order to classify questions and problems into categories, and the survey was formulated with reference to third year Computing Department students. Furthermore, to discover students’ opinions with respect to all the issues, an exercise was conducted. The survey provided questions related to what the students had learnt and how well they had learnt. We were also interested in feedback on how to improve the course and the final question provided an opportunity for such feedback.

Keywords: Bloom’s taxonomy, e-learning, Omar Al-Mukhtar University.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
2928 Does Practice Reflect Theory? An Exploratory Study of a Successful Knowledge Management System

Authors: Janet L. Kourik, Peter E. Maher

Abstract:

To investigate the correspondence of theory and practice, a successfully implemented Knowledge Management System (KMS) is explored through the lens of Alavi and Leidner-s proposed KMS framework for the analysis of an information system in knowledge management (Framework-AISKM). The applied KMS system was designed to manage curricular knowledge in a distributed university environment. The motivation for the KMS is discussed along with the types of knowledge necessary in an academic setting. Elements of the KMS involved in all phases of capturing and disseminating knowledge are described. As the KMS matures the resulting data stores form the precursor to and the potential for knowledge mining. The findings from this exploratory study indicate substantial correspondence between the successful KMS and the theory-based framework providing provisional confirmation for the framework while suggesting factors that contributed to the system-s success. Avenues for future work are described.

Keywords: Applied KMS, education, knowledge management (KM), KM framework, knowledge management system (KMS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1036
2927 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification

Authors: Samiah Alammari, Nassim Ammour

Abstract:

When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method.

Keywords: Continual learning, data reconstruction, remote sensing, hyperspectral image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 231
2926 Combining ILP with Semi-supervised Learning for Web Page Categorization

Authors: Nuanwan Soonthornphisaj, Boonserm Kijsirikul

Abstract:

This paper presents a semi-supervised learning algorithm called Iterative-Cross Training (ICT) to solve the Web pages classification problems. We apply Inductive logic programming (ILP) as a strong learner in ICT. The objective of this research is to evaluate the potential of the strong learner in order to boost the performance of the weak learner of ICT. We compare the result with the supervised Naive Bayes, which is the well-known algorithm for the text classification problem. The performance of our learning algorithm is also compare with other semi-supervised learning algorithms which are Co-Training and EM. The experimental results show that ICT algorithm outperforms those algorithms and the performance of the weak learner can be enhanced by ILP system.

Keywords: Inductive Logic Programming, Semi-supervisedLearning, Web Page Categorization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
2925 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: Affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, Signal Detection Theory, student engagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1260
2924 A Survey of Sentiment Analysis Based on Deep Learning

Authors: Pingping Lin, Xudong Luo, Yifan Fan

Abstract:

Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.

Keywords: Natural language processing, sentiment analysis, document analysis, multimodal sentiment analysis, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
2923 Authentic Learning for Computer Network with Mobile Device-Based Hands-On Labware

Authors: Kai Qian, Ming Yang, Minzhe Guo, Prabir Bhattacharya, Lixin Tao

Abstract:

Computer network courses are essential parts of college computer science curriculum and hands-on networking experience is well recognized as an effective approach to help students understand better about the network concepts, the layered architecture of network protocols, and the dynamics of the networks. However, existing networking labs are usually server-based and relatively cumbersome, which require a certain level of specialty and resource to set up and maintain the lab environment. Many universities/colleges lack the resources and build-ups in this field and have difficulty to provide students with hands-on practice labs. A new affordable and easily-adoptable approach to networking labs is desirable to enhance network teaching and learning. In addition, current network labs are short on providing hands-on practice for modern wireless and mobile network learning. With the prevalence of smart mobile devices, wireless and mobile network are permeating into various aspects of our information society. The emerging and modern mobile technology provides computer science students with more authentic learning experience opportunities especially in network learning. A mobile device based hands-on labware can provide an excellent ‘real world’ authentic learning environment for computer network especially for wireless network study. In this paper, we present our mobile device-based hands-on labware (series of lab module) for computer network learning which is guided by authentic learning principles to immerse students in a real world relevant learning environment. We have been using this labware in teaching computer network, mobile security, and wireless network classes. The student feedback shows that students can learn more when they have hands-on authentic learning experience. 

Keywords: Mobile computing, android, network, labware.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
2922 Learning Factory for Changeability

Authors: Dennis Gossmann, Habil Peter Nyhuis

Abstract:

Amongst the consistently fluctuating conditions prevailing today, changeability represents a strategic key factor for a manufacturing company to achieve success on the international markets. In order to cope with turbulences and the increasing level of incalculability, not only the flexible design of production systems but in particular the employee as enabler of change provide the focus here. It is important to enable employees from manufacturing companies to participate actively in change events and in change decisions. To this end, the learning factory has been created, which is intended to serve the development of change-promoting competences and the sensitization of employees for the necessity of changes.

Keywords: Changeability, human resources, learning factory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
2921 Exploring Students’ Self-Evaluation on Their Learning Outcomes through an Integrated Cumulative Grade Point Average Reporting Mechanism

Authors: Suriyani Ariffin, Nor Aziah Alias, Khairil Iskandar Othman, Haslinda Yusoff

Abstract:

An Integrated Cumulative Grade Point Average (iCGPA) is a mechanism and strategy to ensure the curriculum of an academic programme is constructively aligned to the expected learning outcomes and student performance based on the attainment of those learning outcomes that is reported objectively in a spider web. Much effort and time has been spent to develop a viable mechanism and trains academics to utilize the platform for reporting. The question is: How well do learners conceive the idea of their achievement via iCGPA and whether quality learner attributes have been nurtured through the iCGPA mechanism? This paper presents the architecture of an integrated CGPA mechanism purported to address a holistic evaluation from the evaluation of courses learning outcomes to aligned programme learning outcomes attainment. The paper then discusses the students’ understanding of the mechanism and evaluation of their achievement from the generated spider web. A set of questionnaires were distributed to a group of students with iCGPA reporting and frequency analysis was used to compare the perspectives of students on their performance. In addition, the questionnaire also explored how they conceive the idea of an integrated, holistic reporting and how it generates their motivation to improve. The iCGPA group was found to be receptive to what they have achieved throughout their study period. They agreed that the achievement level generated from their spider web allows them to develop intervention and enhance the programme learning outcomes before they graduate.

Keywords: Learning outcomes attainment, iCGPA, programme learning outcomes, spider web, iCGPA reporting skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 773
2920 Robot Exploration and Navigation in Unseen Environments Using Deep Reinforcement Learning

Authors: Romisaa Ali

Abstract:

This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environment complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.

Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, Custom Environment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61
2919 Generalized Exploratory Model of Human Category Learning

Authors: Toshihiko Matsuka

Abstract:

One problem in evaluating recent computational models of human category learning is that there is no standardized method for systematically comparing the models' assumptions or hypotheses. In the present study, a flexible general model (called GECLE) is introduced that can be used as a framework to systematically manipulate and compare the effects and descriptive validities of a limited number of assumptions at a time. Two example simulation studies are presented to show how the GECLE framework can be useful in the field of human high-order cognition research.

Keywords: artificial intelligence, category learning, cognitive modeling, radial basis functions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1384
2918 Relational Representation in XCSF

Authors: Mohammad Ali Tabarzad, Caro Lucas, Ali Hamzeh

Abstract:

Generalization is one of the most challenging issues of Learning Classifier Systems. This feature depends on the representation method which the system used. Considering the proposed representation schemes for Learning Classifier System, it can be concluded that many of them are designed to describe the shape of the region which the environmental states belong and the other relations of the environmental state with that region was ignored. In this paper, we propose a new representation scheme which is designed to show various relationships between the environmental state and the region that is specified with a particular classifier.

Keywords: Classifier Systems, Reinforcement Learning, Relational Representation, XCSF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1322
2917 Modified Diffie-Hellman Protocol By Extend The Theory of The Congruence

Authors: Rand Alfaris, Mohamed Rushdan MD Said, Mohamed Othman, Fudziah Ismail

Abstract:

This paper is introduced a modification to Diffie- Hellman protocol to be applicable on the decimal numbers, which they are the numbers between zero and one. For this purpose we extend the theory of the congruence. The new congruence is over the set of the real numbers and it is called the “real congruence" or the “real modulus". We will refer to the existing congruence by the “integer congruence" or the “integer modulus". This extension will define new terms and redefine the existing terms. As the properties and the theorems of the integer modulus are extended as well. Modified Diffie-Hellman key exchange protocol is produced a sharing, secure and decimal secret key for the the cryptosystems that depend on decimal numbers.

Keywords: Extended theory of the congruence, modified Diffie- Hellman protocol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
2916 Hacking the Spatial Limitations in Bridging Virtual and Traditional Teaching Methodologies in Sri Lanka

Authors: Manuela Nayantara Jeyaraj

Abstract:

Having moved into the 21st century, it is way past being arguable that innovative technology needs to be incorporated into conventional classroom teaching. Though the Western world has found presumable success in achieving this, it is still a concept under battle in developing countries such as Sri Lanka. Reaching the acme of implementing interactive virtual learning within classrooms is a struggling idealistic fascination within the island. In order to overcome this problem, this study is set to reveal facts that limit the implementation of virtual, interactive learning within the school classrooms and provide hacks that could prove the augmented use of the Virtual World to enhance teaching and learning experiences. As each classroom moves along with the usage of technology to fulfill its functionalities, a few intense hacks provided will build the administrative onuses on a virtual system. These hacks may divulge barriers based on social conventions, financial boundaries, digital literacy, intellectual capacity of the staff, and highlight the impediments in introducing students to an interactive virtual learning environment and thereby provide the necessary actions or changes to be made to succeed and march along in creating an intellectual society built on virtual learning and lifestyle. This digital learning environment will be composed of multimedia presentations, trivia and pop quizzes conducted on a GUI, assessments conducted via a virtual system, records maintained on a database, etc. The ultimate objective of this study could enhance every child's basic learning environment; hence, diminishing the digital divide that exists in certain communities.

Keywords: Digital divide, digital learning, digitization, Sri Lanka, teaching methodologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
2915 The Students' Learning Effects on Dance Domain of Arts Education

Authors: Sheng-Min Cheng

Abstract:

The purpose of this study was to explore the learning effects on dance domain in Arts Curriculum at junior and senior high levels. A total of 1,366 students from 9th to 11th grade of different areas from Taiwan were administered a self-designed dance achievement test. Data were analyzed through descriptive analysis, independent sample t test, one-way ANOVA and Post hoc comparison analysis using Scheffé Test. The results showed (1) female students

Keywords: arts education, dance learning effects, secondary level students, dance talented students

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
2914 A Primer to the Learning Readiness Assessment to Raise the Sharing of e-Health Knowledge amongst Libyan Nurses

Authors: Mohamed Elhadi M. Sharif, Mona Masood

Abstract:

The usage of e-health facilities is seen to be the first priority by the Libyan government. As such this paper focuses on how the key factors or elements of working size in terms of technological availability, structural environment, and other competence-related matters may affect nurses’ sharing of knowledge in e-health. Hence, this paper investigates learning readiness assessment to raise e-health for Libyan regional hospitals by using ehealth services in nursing education.

Keywords: Libyan nurses, e-Learning readiness, e-Health.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
2913 Teaching Turn-Taking Rules and Pragmatic Principles to Empower EFL Students and Enhance Their Learning in Speaking Modules

Authors: O. F. Elkommos

Abstract:

Teaching and learning EFL speaking modules is one of the most challenging productive modules for both instructors and learners. In a student-centered interactive communicative language teaching approach, learners and instructors should be aware of the fact that the target language must be taught as/for communication. The student must be empowered by tools that will work on more than one level of their communicative competence. Communicative learning will need a teaching and learning methodology that will address the goal. Teaching turn-taking rules, pragmatic principles and speech acts will enhance students' sociolinguistic competence, strategic competence together with discourse competence. Sociolinguistic competence entails the mastering of speech act conventions and illocutionary acts of refusing, agreeing/disagreeing; emotive acts like, thanking, apologizing, inviting, offering; directives like, ordering, requesting, advising, and hinting, among others. Strategic competence includes enlightening students’ consciousness of the various particular turn-taking systemic rules of organizing techniques of opening and closing conversation, adjacency pairs, interrupting, back-channeling, asking for/giving opinion, agreeing/disagreeing, using natural fillers for pauses, gaps, speaker select, self-select, and silence among others. Students will have the tools to manage a conversation. Students are engaged in opportunities of experiencing the natural language not as a mere extra student talking time but rather an empowerment of knowing and using the strategies. They will have the component items they need to use as well as the opportunity to communicate in the target language using topics of their interest and choice. This enhances students' communicative abilities. Available websites and textbooks now use one or more of these tools of turn-taking or pragmatics. These will be students' support in self-study in their independent learning study hours. This will be their reinforcement practice on e-Learning interactive activities. The students' target is to be able to communicate the intended meaning to an addressee that is in turn able to infer that intended meaning. The combination of these tools will be assertive and encouraging to the student to beat the struggle with what to say, how to say it, and when to say it. Teaching the rules, principles and techniques is an act of awareness raising method engaging students in activities that will lead to their pragmatic discourse competence. The aim of the paper is to show how the suggested pragmatic model will empower students with tools and systems that would support their learning. Supporting students with turn taking rules, speech act theory, applying both to texts and practical analysis and using it in speaking classes empowers students’ pragmatic discourse competence and assists them to understand language and its context. They become more spontaneous and ready to learn the discourse pragmatic dimension of the speaking techniques and suitable content. Students showed a better performance and a good motivation to learn. The model is therefore suggested for speaking modules in EFL classes.

Keywords: Communicative competence, EFL, empowering learners, enhance learning, speech acts, teaching speaking, turn-taking, learner centered, pragmatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
2912 The Attitude of Second Year Pharmacy Students towards Lectures, Exams and E-Learning

Authors: Ahmed T. Alahmar

Abstract:

There is an increasing trend toward student-centred interactive e-learning methods and students’ feedback is a valuable tool for improving learning methods. The aim of this study was to explore the attitude of second year pharmacy students at the University of Babylon, Iraq, towards lectures, exams and e-learning. Materials and methods: Ninety pharmacy students were surveyed by paper questionnaire about their preference for lecture format, use of e-files, theoretical lectures versus practical experiments, lecture and lab time. Students were also asked about their predilection for Moodle-based online exams, different types of exam questions, exam time and other extra academic activities. Results: Students prefer to read lectures on paper (73.3%), use of PowerPoint file (76.7%), short lectures of less than 10 pages (94.5%), practical experiments (66.7%), lectures and lab time of less than two hours (89.9% and 96.6 respectively) and intra-lecture discussions (68.9%). Students also like to have paper-based exam (73.3%), short essay (40%) or MCQ (34.4%) questions and also prefer to do extra activities like reports (22.2%), seminars (18.6%) and posters (10.8%). Conclusion: Second year pharmacy students have different attitudes toward traditional and electronic leaning and assessment methods. Using multimedia, e-learning and Moodle are increasingly preferred methods among some students.

Keywords: Pharmacy, students, lecture, exam, e-learning, Moodle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
2911 Machine Learning in Production Systems Design Using Genetic Algorithms

Authors: Abu Qudeiri Jaber, Yamamoto Hidehiko Rizauddin Ramli

Abstract:

To create a solution for a specific problem in machine learning, the solution is constructed from the data or by use a search method. Genetic algorithms are a model of machine learning that can be used to find nearest optimal solution. While the great advantage of genetic algorithms is the fact that they find a solution through evolution, this is also the biggest disadvantage. Evolution is inductive, in nature life does not evolve towards a good solution but it evolves away from bad circumstances. This can cause a species to evolve into an evolutionary dead end. In order to reduce the effect of this disadvantage we propose a new a learning tool (criteria) which can be included into the genetic algorithms generations to compare the previous population and the current population and then decide whether is effective to continue with the previous population or the current population, the proposed learning tool is called as Keeping Efficient Population (KEP). We applied a GA based on KEP to the production line layout problem, as a result KEP keep the evaluation direction increases and stops any deviation in the evaluation.

Keywords: Genetic algorithms, Layout problem, Machinelearning, Production system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1627