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Abstract—This paper is introduced a modification to Diffie-
Hellman protocol to be applicable on the decimal numbers, which
they are the numbers between zero and one. For this purpose we
extend the theory of the congruence. The new congruence is over
the set of the real numbers and it is called the “real congruence’
or the “real modulus’. We will refer to the existing congruence by
the “integer congruence” or the “integer modulus’. This extension
will define new terms and redefine the existing terms. As the
properties and the theorems of the integer modulus are extended as
well. Modified Diffie-Hellman key exchange protocol is produced a
sharing, secure and decimal secret key for the the cryptosystems that
depend on decima numbers.

Keywords—Extended theory of the congruence, modified Diffie-
Hellman protocol.

|. INTRODUCTION

E use Diffie-Hellman protocol, [4], mainly as a key

exchange in cryptography field. This protocol gives
the sharing secret key as an integer number. The questions
are, when the cryptosystem does not depend on integer
numbers, [11], how can we produce a sharing secret key as
real number while keeping it secure and how can we use the
theory of the integer congruence when the numbers in use
are only the real numbers, specifically, decimal numbers?

Of course, it is easy to go directly to DiffieeHellman
protocol, and we can introduce the modification on it.
However, the problems that we will encounter are, what is
this modification based on? How can we use the modulo
function (mod m) on real number m when it is never defined
on such numbers, and how can we just define the modulo
on the real numbers when we do not have definition for
the greatest common divisor on the real numbers? Finally,
the most important problem that we will face is, how can
we built a computer program to implement the decimal
cryptosystem and modified Diffie-Hellman protocol without
having agorithms for defining and applying topics like mod,
gcd and discrete logarithmic equation on the real numbers in
the library of the computer programming?

In this research we give the answers to these questions by
introducing an extension to the theory of the congruence to
cover the set of the real numbers. The most important part
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of this extension depends on two definitions. The first is the
definition of the greatest common divisor on the real numbers
and the second is the definition of the modulus on the real
numbers.

We extend theorems like “Least Positive real number”,
“Well-Ordering principle” and “Greatest common divisor
theorem” which are the bases for proving that the greatest
common divisor is applicable on the real numbers. In addition,
we give most of the proofs of the extended theorems of the
congruence.

For the greatest common divisor and the congruence
concept we refer to [8], [9], [5], [3], [1], [2], [6] and [7]. We
refer to [4] and [12] for the modification of Diffie-Hellman
key exchange protocol. Finaly, in this paper, we do not
include all the proofs of the theorems and the propositions.
The full proofs can be found in [10]

This research is organized as follows. Beside the section
on the introduction, we introduce the theories of the greatest
common divisor on the real numbers and the congruence
on the real numbers in the second and the third sections
respectively. In the fourth section we modify the Diffie-
Hellman scheme.

Il. THE EXTENSION OF THE THEORY OF THE
CONGRUENCE

A. Real Greatest Common Divisor

To put the greatest common divisor on the real numbers in
its right form, we introduce new terms such as “the length of
the real number” and “zero real length divisors’, and redefine
the related terms to the congruence and the greatest common
divisor. The theorems that related to the greatest common
divisor are extended in this section.

Definition 1. The length of the real number
The length of the real number r is the number of the digits
to the right of the decimal point, and we denote by rl(r).

For example, r1(34.9273543) = 7 and r1(618) = 0.

We are introducing an extension to the theory of the
congruence in order to implement it in cryptography, we need
to apply the pure mathematics theories in computer programs.
Therefore, definition (1) is important to define the number of
digits after the decimal point of the real humbers.
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Definition 2: The real factor, real divisor
Let x and m be rea numbers. We say m is a real factor
or real divisor of x if there exist a real number r such that
x =m-r and rl(r) = s, where s € ZT. We say m is not
divisor or nondivisor of x if rl(z/m) = oc.

For example, 0.4, 0.6, 0.002 and 160 all considered
as some of the rea factors of the real number 0.32,
but, 3.5 is not a factor or not a divisor of 1.29 because
1.29/3.5 = 0.368571422857142 - - -, here r1(1.29/3.5) = oo.

Definition (2) produces two main results, the first one is,
there are infinitely many real factors for each real number
and hence there are infinitely many real divisors. The second
result is, the real divisor could be greater than the number
itself.

Proposition 1: If the rea number m is a common rea
divisor of rea numbers a and b, then m is a common rea
divisor of the linear combination ac + bd for any integer
numbers ¢ and d.

Proof: We have m divides a and b, which means, a =
m-ry and b = m - ro With 7l(ry) and ri(rq) finite integers.
Therefore, ac + bd can be written as m(ry - ¢+ 72 - d), it is
obvious that the real length of r; -c+r5-d is still finite integer.
That means m is area divisor of ac + bd.

[ ]

Definition 3: ZRL-divisor
We say the real number m is zero real length divisor of the
real number z if 2 /m € Z. That means, if m divides = without
remainder then rl(z/m) = 0. We denoted the zero real length
divisor by ZRL-divisor.

For example, 2.005 is the ZRL-divisor of 52.13 since
r1(52.13/2.005) = 0.

Definition 4: The greatest common divisor of the real
number
The greatest common divisor of the two real numbers a and
b, denoted by rged(a,b) and caled real greatest common
divisor, is the largest positive ZRL-divisor of a and b and
rl(rged(a, b)) = max{rl(a),rl(b)}.

The agorithm for finding the rged is the same as the
Euclidian agorithm for finding the gcd but the difference is
that it should be done without removing the decimal points
of the real numbers. For instance, rged(2.11,3.8) = 0.01.

Definition 5: Real multiple
Let » and s be real numbers. If r is a rea divisor of s,
then we say that s is a real multiple of r. Moreover, the
real numbers ry,ro,--- 7, are not al equal to zero, have
a common real multiple s if r; is a real divisor of s for
i =1,2,---,n. The least positive common real multiple is
caled the least common real multiple, and it is denoted by
1,72, , Tn)g-

Definition 6: Real prime numbers
We say a isareal prime number if rl(a) = cc.
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has no real divisors except itself and the integer number 1.
This fact is consistent with the definition of the integer prime
numbers.

Definition 7: Relatively real prime numbers
Any two rea numbers a¢ and b are called relatively real
prime, if the rged(a,b) = 10~* where s = max{rl(a), rl(b)}.

Proposition 2: (Extension of Least Positive real number)
For every set S of all positive real numbers of the definite
maximum real length, say ¢ , the real number 10~ is the
least positive real number. That is 10~¢ < z for al = € S.

Proof: Let S be the set of al positive rea numbers x

of the definite maximum real length ¢ such that 10~ < z.

Then 107t € S. Suppose k € S. Now 0 < 107! implies

k=k+0<k+107%, sowe have 107 < k < k+ 107
Thus k € S impliesk +10~t ¢ S.

[ ]

According to this theorem, the least positive real number
is not unique. There is a family of the least element in the
set of real number. each member in this family is a unique
when we define its real length.

Proposition 3: (Extension of Well-Ordering Principle)
Every nonempty set .S of positive real numbers of the definite
maximum real length contains a least element. That is, there
isan element m € S such that m < = for al = € S.

Proof: Let S be the nonempty set of positive real numbers

and let these real numbers have the definite maximum real
length, say ¢, that is t = max {rl(z) : Va € S}.
If 107t € S, then 107t < z for al = € S, by the extension of
the least element theorem. In this case, m = 10! is the least
element in S. Consider now the case 10~* ¢ S, and let L be
the set of all positive real numbers p of the definite maximum
real length ¢, such that for all p < x. That is,

L:{pEPﬁ:rl(p):t and p<x,V:c€S}‘

Since 10~¢ ¢ S, then the extension of the least element
theorem assure us that 10~% € L. We shall show that thereisa
positive real number p, such that p, € L. And p,+10~¢ ¢ L.
Suppose that this is not the case. Then we have that p € L
implies p + 10~% € L. This contradicts the fact that S is
nonempty (note that L. N S = ¢). Therefore, there is p,
such that p, € L and p, + 107t ¢ L. We must show that
po+10~t € S.Wehavep, < zforalz € S,s0p,+107t < x
for dl 2 € S (because 10~¢ is the least element, then there
is no element n such that m < n < m + 107t in S. If
po + 107t < x were dways true for this set, then p, + 10~¢
would be in L. Hence p, + 10~* = « for some 2 € S, and
m = po + 10~¢ is the required least element in S.

|

Proposition 4: (Extension of the Division Algorithm)

For any two real numbers o and b with a > b, there exist
unique positive integer number ¢ and unique positive rea
number ¢ and rl(c) = max{rl(a),rl(b)} such that a = bq + ¢,
with ¢ € [0, ).

1SN1:0000000091950263



Open Science Index, Mathematical and Computational Sciences Vol:2, No:11, 2008 publications.waset.org/4774.pdf

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

Proof: Existence: Let S be the set of all real NGhbA¥L-dMfe o = dzy and b = dzo and | = d(z1p + 22¢q), there

j=a—bnforn e Z and rl(j) = max{rl(a),rl(b)}, and let
S’ be the set of all nonnegative real numbersin S. The set S’
is nonempty. (for specific example: 0.18 = 1.2 — 0.51(2)). If
0 € S’, we have a — bg = 0 for some ¢, and a = bg + 0. If
0 ¢ S, since all the numbersin S” have real length not greater
than the maximum real length of a and b, then S’ has definite
maximum real length then by the extension of well-ordering
theorem, S’ contain a least element ¢ = a — bg which gives

a=bq+c,
where ¢ is positive. Now
c—b=a—-bg—b=a—-blg+1),

Soc—be S.Sincecisleast lement in S’ and c—b < ¢, it
must be true that ¢ — b is negative. That is, ¢ < b. Combining
the two cases, we get a = bq + ¢, with ¢ € [0,b).

Uniqueness. To show ¢ and ¢ are unique, suppose a =
bqy + ¢1 and a = bgs + co where 0 < ¢1,¢5 < b, we may
assume ¢; < ¢y Without loss of generality. This means that

0§02761§62<b.
However, we also have
0<cy—c1=(a—bg)—(a—bg)=>b(g—q)

That is, co — ¢; is nonnegative multiple of b that is less than b.
This gives co — ¢y = 0 and ¢ = ¢1. It follows that bgy = bgy
and g2 = ¢; where b #£ 0.
|
Proposition 5: (Extension of Greatest common divisor
theorem)
Let a and b be real numbers, at least one of them not equal to
zero. Then there exist a unique real greatest common divisor
d of a and b. Moreover, d can be writtenasd =a-p+b-¢q
with rl(d) = max{rl(a),rl(b)}, for integer numbers p and q.
Proof: Consider the linear combination ap, + bq., where
po and ¢, are integer numbers. According to proposition
(2), We can choose p and ¢ such that | = ap + bq is the
least positive real number for the family of al the linear
combinations {ap, + bq, }, of course this family includes all
the numbers.
The strategy of the proof is, first, we need to prove that [ isa
ZRL-divisor of both a and b. Second, we prove that d = .
Let us prove that [ is a ZRL-divisor of a, the other one will
follow the same scheme. We assume that [ is a real divisor of
a, (i.e.a/l =t, rl(t) =s and s € Z), but not ZRL-divisor of
a, (i.e. t isinteger number). Then, by the extension of division
algorithm, proposition (4), there exist unique positive integer
number k£ and unique positive real number r and rl(r) =
max{rl(a),rl(l)} such that a = Ik + r, with » € [0, |/]). This
will lead to, r = a — k(ap + bq) = a(1 — kp) + b(—kq), this
means that r is in the set of {ap, + bg, }, which is cannot be.
So that [ is must be ZRL-divisor of a. Similarly we can prove
that [ is ZRL-divisor of b.
Finally, d is the real greatest common divisor of a and b. That
means it is the ZRL-divisor of them. In this case we may
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for d is ZRL-divisor of [, that means d < [. But d < [ is
impossible because here we have to follow the definition of
divisor on integer numbers for we have ZRL-divisor. So we
concludethat d =1. Thend=a-p+b-q.
[ ]
Proposition 6: (Extension of Least common real multiple
theorem)

If s is any common read multiple of ri,79,---,7,, then
[r1,72,- -+ ,Tn]g iSarea divisor of s.

Proof: Let [ri,re,- - ,70lp = u. Then,
0, Fu, F2u, F3u,--- are al common real multiples of
[r1,72, , Tn)g-

Now, let ¢ be any common real multiple, and divide ¢ by w.
By extension the division algorithm, proposition (4), there
exist unique positive integer number ¢ and unique positive
real number ¢ and rl(¢) = max{rl(¢),rl(u)} such that
t = uq + ¢, with ¢ € [0,u). Now, we need only to prove that
¢ = 0. Let us assume that ¢ # 0, then for each i = 1,2,---n
we know that r; is area divisor of v and r; is ared divisor
of t, so that r; isareal divisor of c. Therefore, ¢ is a positive
common real multiple of ry,rs,--- ,7,, but this contradict
the fact that « is the least of all the positive common real
multiples.
[ ]
The next theorem gives some of the properties of the real
greatest common divisor. We will not include the proofs.

Theorem 1: The greatest common divisor on the real num-
bers has the following properties.

1) The extension of Bezout's identity is applicable for rea
greatest common divisor. rged(a,b), where ¢ and b are
not both zero, may be defined alternatively and equiv-
aently as the smallest positive integer d which can be
written in the fom d = a-p + b - ¢ where p and ¢
are integer numbers. Numbers p and ¢ like this can be
computed with the extended Euclidean algorithm as well.

2) Every common real divisor of a and b is a real divisor
of rged(a, b).

3) If d =rged(a,b) then d is ZRL-divisor of a — b.

4) If ¢ and b are relatively prime then (rged(a,b))” isared
divisor of a —b for @l n and it is a ZRL-divisor of a — b,
foral n> 1.

5) If m is any real number then rged(m - a,m - b) = m -

rged(a, b) and if m is nonzero then rged (%,2) =
rged (a,b)

6) If rgcd(a,b) = d then 2 and % are integer relatively
prime, i.e. (rged (%, %) = 1).

7) rged(a £+ b,b) = rged(a, b).

8) The rged is commutative and associative.

9) The rged of three numbers can be computed as
rged(a, b, ¢) = rged(rged(a, b), ¢), or in some different
way by applying commutatively and associatively. This
can be extended to any number of numbers.

Proposition 7: Let a be areal number and let ¢ and b are

integer numbers. If ¢ is a red divisor of the product ab and
gre(b, ¢) = 1 then ¢ is aredl divisor of the product a.
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Proof: We have rged(m - a,m - b) = m - rgcd(\é?'b%' WyLL 20%his is considered as the significant difference from the

theorem (1)—5). By the hypothesis ¢ is a real divisor of ab
and it is clear that ¢ is a real divisor of the product ac, S0 ¢
is area divisor of a by theorem (1)—2).

[ ]

B. Real Congruence

The important part in this research is the real congruence
on the set of real numbers, since the modification of
Diffie-Hellman protocol depends on applying the theory
of modulo on the real numbers. Here, we will introduce
the extension of the definitions and the theorems of this theory.

Definition 8: Real congruence

Let a and b belong to the set of real humbers R. We say that
a congruence to b modulo real number r if a —b =k - r,
for some k € Z, that is r is ZRL-divisor of (a — b). We
denote the modulus of real numbers by rmod and we write
a = b (rmod r). In the cases that r is real divisor or
nondivisor of a — b, we say that « is not congruent to b real
modulo r, and in this case we write a & b (rmod 7).

For a further explanation, a, b and r are all real numbers.
If a congruence to b real modulo r, then r divides the value
a — b without remainder. According to the definition (3), r is
ZRL-divisor of (a — b).
We say that « is not congruent to b real modulo r in two
cases, both of them followed the definition (2). The first case
is when r areal divisor of (a — b), in this case 11 (%) = k
where k& € Z. The second case is when r not a divisor of
(a —b), and in this case rl (2-2) = oo,
This definition is an extension to the classic definition of the
modulus; the difference is that we expand the set of numbers
that is implemented under this operation.

Definition 9: The real residue
If @ = brmod r then b iscalled areal residue of @ modulo r,
for al a,b and r in the set of real numbers.

Definition 10: The least real residue
The rea number s is caled the least real residue of a if
a=srmodrandse[0,r).

In the integer congruence, the least residue y of
x = y mod m is could be one on the integers in
0 < y < x. The important note here is the least rea residue
s ina = s rmod r is belong to uncountable set.

Definition 11: The complete canonical real residue
system.
An infinite set of real numbers s; € [0, r) is called a complete
canonical real residue system modulo r if for every red
number b thereis one and only one s; such that b = s; rmod 7.

It is very important to note that the complete canonical
real residue system is an uncountable set, because, s; € [0,r)
means s; belong to uncountable interval.
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integer complete canonical residue system. The consequences
of the difference will affect the solution of the real congruence
equation as we will see in the subsection (11-C).

Definition 12: The real congruence class
For fixed real number a and d > 0, the set of all real numbers
z satisfying = a rmod d is the arithmetic progression

w,a—2d,a—d,a,a+d,a+2d,...
caled a real residue class or real congruence class of real
modulo d.

Proposition 8: a = b (rmod r) if and only if « and b leave
the same remainder when dividing by r.
Proof: We have

a=b (rmod r) (1)
then there exist a unique ¢ € [0, r) such that
a = ¢ (rmod 7). 2
From Eq. (1) there exist ¢ such that
rt =a—b. (©)]
The same for Eq. (2), there exist s such that
rs=a-—c. (4

From Eg's. (3) and (4) we will get

rt—s)=c—b= r divides c¢—b. (5
That means there exist a unique ¢ € [0, ) such that
b=gqr+c (6)
aso from Eq. (2) we have
a=sr+c @)

In other word, a and b |eave the same remainder when dividing
by r.
On the other hand, if we have a =sr+c¢ and b=qr+c
then a —b=r(s—1t) = a="brmod r.
|
The proposition above leads to the next corollary, which is
another way to describe this relation.

Corollary 1: a = b (rmod r) if and only if there exist an
integer k suchthat a = b+ & - r.

Proposition 9: Every real number is congruent modulo r
to exactly one of the values in the interval [0,r), and no two
values in this interva are congruent modulo r.

Proof: Using the division algorithm on real numbers gives
a = rq+ c where ¢ is unique positive integer and ¢ € [0,r) is
unique real number. That is, a — ¢ = rq which it means, that
a = ¢ (rmod r) where c € [0, 7).
It is simple to prove that if a = ¢; (rmod r) and a =
¢o (rmod r) then ¢y = ¢o for 0 < ¢p,c0 < 7.
[ |
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Proposition 10: If a =
rged(b, r).

Proof: We have a = b(rmod ) whichmeansa—b = r-k,
for some k € Z. Since rged(a,r) divides a and r without
reminder, that means rged(a, r) is a ZRL-divisor of a and r.
Then we have rged(a,r) is a ZRL-divisor of b and hence
rged(a,r) is a ZRL-divisor of rged(b,r). In the same way
we can prove rged (b,r) isaZRL-divisor of rged(a,r) and
that leads to rged(a,r) = rged(b,r) because both of them
are positive.

|

We will highlight the properties of the real congruence in

the next theorem. We will see that some of the properties are
similar to the integer congruence.

Theorem 2: The congruence on the real numbers has the
following properties,

1) There are infinitely many complete rea residue systems
and each system is uncountable set.

2) For any rea numbers ¢ and b, a = b (rmod rged(a, b)).

3 If a and b are relatively prime then o =
b rmod (rged(a, b)) , n > 1.

4) If a =0brmod r and @’ = b rmod r then a + o’ =
b=+ b’ rmod r for any rea numbers a,b,a’ and b’.

5 i.ifa=brmod r and ¢ = d rmod r then ax + cy =
bz + dy rmod r, where x and y are integers.
ii. if a = b rmod » and ¢ = d rmod s then ac =
bd rmod rs
6) i.a=brmodr,b=armodranda—b=0rmodr

are equivalent statement.
ii. a=brmodr andb = crmod r then a = c rmod r.
iii. fa=brmodrthenk-a=k-brmod k-r,V k € R.
iv. Ifa=brmodrthenl-a=1-brmod r wherel is

integer.

V. If a = b rmod r and d is ZRL-divisor of m then
a =b rmod d.

vi. The real modulus is reflexive, symmetric and
transitive.

Proposition 11: Let a,z,y and r be real numbers,

1) az = ay rmod r if and only if z =y (rmod m).

2) =y (rmod r;)fori = 1,2,--- s if and only i% x
y (rmod [ry,r9, -+ ,7s]).
Proof:

1) We have az = ay rmod r, by the definition of the real
modulo we get, “*—*¥ ¢ Z. Hence,

a r
1/ N — = 7]{ f . t k
rged(a, r) =) rged(a, 1) Or SOme 1nteger

and thus, recd(a is ZRL-divisor of rgcd(a 5 (y—x). But,

by theorem (1)—85) second assertion, we have
)=1

And by using proposition (7), we get that
ZRL-divisor of (x — y). Thisimplies

= rmod ———
r=y © rged(a,r) )

a r

d
ree (rgcd(a, r)’ rged(a,r)
rgcd?a,r) 1S
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b(rmodr) then rged(d9P NE1L208 15 prove the other direction,

we hae z =
m), we can multiply by « to get axz =

ay Ermod ity ) by using theorem (2)(6iii). But

rged(a, r) is a ZRL-divisor of a, so that we can write
ar = ay rmod r by using (2)—(6iv).

2) If x =y (rmod r;) for ¢ = 1,2,--- ,s then r; is a
ZRL-divisor of x —y for i = 1,2,--- ,s. Thatisxz — y
is a common rea multiple of ry,rs,--- ,rs, by using
proposition (6) we get that [rq,72,--- ,7]g is a red
divisor, and more specific is a ZRL-divisor of z —y. And
thisimplies 2 = y (rmod [ry,72,- - ,7s]g).

From the other side, if z = y (rmod [r1,72, -+ ,7s]g)
then by theorem (2)—(6v) « = y (rmod r;) since r; is
ZRL-divisor of [ry,7q,- -

y (rmod

ars}m)-

[ ]
The modification to DiffieeHellman that we want to
introduce in the next section does not depend on the prime
numbers and their relatives. For this reason we do not need
to go deep analyzing into the topic of the prime numbers and
the relatively prime numbers. We see that it is enough for
the time being to propose only their extended definitions in
this research. But from our observations, we can conclude
the next statement. It is still not proved yet, so we introduce
it as a conjecture.

Conjecture 1: Let a and b be real numbers. Let a < b, If
rl(a) = oo andlor rl(b) = oo then either rged(a,b) = a or a
and b are real relatively prime.

C. The Solution of the Real Congruence Equation

As we extend the definitions and the theorems that related
to the congruence so that it can be applied on the set of the
real numbers with some specific conditions, we must now
introduce the extended method of solving the real congruence
equation. The solution of the real congruence equation does
not differ much from the solution of the integer congruence.

Let f(x) denote a polynomia with real coefficients, and we
will write,

fl@) =rma® +raa" ™t 4y ®
If u isarea number such that,
f(w) =0 rmod d 9)

then we say that « is a solution of the congruence

f(z) =0 rmod d

Definition 13: Let s; € [0,d) denote the complete
canonical residue system real modulo d. The number of the
solutions of f(z) = 0 rmod d is the number of the s; such
that f(s;) = 0 rmod d.

(10)

Proposition 12: The number of the solutions of f(x) =
0 rmod d is uncountable.
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Proof: The argument of the proof is as follows. Chg AL 20%(ample 3: Let A and B be the partners.

definitions (13) and (11), we have s; € [0,d) is a complete
canonical real residue system for the b = s; (rmod d). Thus
the number of the number of the solutions is uncountable
because it is depending on the interval [0,d) which is
uncountable.

|
Example 1: The real congruence z? — 3.6784161x +
0.00558882072 = 0 rmod 0.164 hasthe solution = 0.00152
and also the solution x = 3.6768961 and all the numbers that
can be obtained by adding or subtracting 0.164.
The important note here, if the real length of the solution
of the polynomial is infinity, then there is no solution to the
real congruence equation.

Example 2: The real congruence z2 + z —
8325 = 0 (rmod 0.164) has no solution because,

d (—1+ 1;4(8.325)) _

I1l. MoDIFIED DIFFIE-HELLMAN PROTOCOL

We dl know that Diffie-Hellman key exchange protocol
depend on agreement between the partners on two values s
and p, where p is alarge prime number, and s integer number
less than p. As a first step in real modulus is that we will
introduce another number, a secret agreement between Alice
and Bob but this number will be decimal number. Let it be
d, d € (0,1), and then each of the two partners (A, B) pick
arandom number (R4, Rp) and then each of them computes
the required equations of Diffie-Hellman scheme:

Rp

Ya=s® modp and Yz = s modp

Now, each of them submits his value to his partner and each
of them should do the last computation related to the classic
Diffie-Hellman scheme to get what we call the initial value
for the secret key. So for the partners A and B will get

ga =Y modp and gp =Y " mod p; (11)

respectively, where g4 = gp, is an integer number.
Now the two partners A and B should do the last compu-

tation by using the real modulus to get the shared secret key
as a secure real numbers:

gap = (ga)%(rmod d), (12)

and

gAB = (gB)d(rrnod d) (13)

respectively.
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A B
Agree for s = 16,p :[ 41,d = 0.375816173
pick R4 =6 pick Rg =3
Y4 = 165 mod 41 = 37 Yp = 16° mod 41 = 23
Submit Y4 to B Submit Yg to A

ga = 23% mod 41 = 18 gp = 37° mod 41 = 18

gAp = (18)0-3758T6T3 gAp = (18)0-3758T6T3
(rmod 0.37581673) (rmod 0.37581673)
=0.332424507 =0.332424507

The Solution of the Real congruence in Modified Diffie-
Hellman protocol is exist but it is not unique. Lets consider
equation (12) or (13). The number g4 or gp is unknown
integer number, received from Diffie-Hellman protocol which
gap and d are unknown decimal numbers.

As we saw in the previous section, solving real modulus
equation is no different from solving modulus equation, except
that the real modulus equation is more complicated because
the numbers belong to uncountable sets. The proposition (12)
shows us that the set of the solutions belong to uncountable
interval of numbers.

The advantage of using the real numbers here is that
the equations of the modified Diffie-Hellman protocol are
nonlinear equations. Mostly, the rea length of any solution
for the nonlinear equation in this modification is infinity. If
the real length is infinity then there is no solution to the rea
congruence equations that are related to the nonlinear equation,
as we saw in example (2).

IV. CONCLUSION

The main reason to go through this research was to modify
Diffie-Hellman protocol to make it work on real numbers and
more specifically on the decimal numbers. The main step of
the modification depends on using the modulo on the real
numbers. We could not implement the modulo on the rea
numbers without studying and analyzing the theory of the
congruence on the real numbers.

The sub section (lI-A), is the extended theory of the
greatest common divisor. In this section we redefine the
greatest common divisor, definition (4). This definition needs
to define new term which it is the length of the real number,
definition (1) and redefine the divisor, and this produce two
definitions, namely, the rea divisor, definition (2) and the
ZRL-divisor, definition (3). The meaning of “not a divisor”
has changed in this extension and redefined, definition (2).
As we know in the topic of the divisibility on the integer
numbers, there are aways a finite number of divisors for
every integer number except the zero, moreover, al the
divisors should be less than the number itself. When we
extend this topic to the set of the real numbers, we found that
there are infinitely many divisors for every real number and
the divisors could be greater than the number itself. We could
extend most of the theorems from the set of integer numbers
to the set of real numbers. We proved most of the theorems
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that we illustrated in this section except. New prop&®lésNF1- B Alfaris Doctor of Philosophy (2008), in Pure Mathematics/Number

the greatest common divisor was added in theorem (1).

Sub section (11-B) is extended the theory congruence. We
covered the properties of the real congruent in theorem (2),
and we introduced the proofs for most of the properties. We
discussed the solution of the real congruence equation. The
definitions (9), (10) and (11) highlight important result about
the unaccountability and this was introduced and proved in
proposition (12).

The modification of Diffie-Hellman protocol is introduced
in section (I11). The steps of the modification depend on
two points. The first point is the secret agrement among the
partners on the decimal number. The second point is using the
real congruent to calculate the sharing secret key, Equations
(12) and (13). All the numbers in the modified Diffie-Hellman
protocol are unknown numbers.
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