Search results for: Application based learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14170

Search results for: Application based learning

13630 Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning

Authors: Ahcene Habbi, Yassine Boudouaoui

Abstract:

This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.

Keywords: Automatic design, learning, fuzzy rules, hybrid, swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
13629 Exploring the Application of Knowledge Management Factors in Esfahan University's Medical College

Authors: Alireza Shirvani, Shadi Ebrahimi Mehrabani

Abstract:

In this competitive age, one of the key tools of most successful organizations is knowledge management. Today some organizations measure their current knowledge and use it as an indicator for rating the organization on their reports. Noting that the universities and colleges of medical science have a great role in public health of societies, their access to newest scientific research and the establishment of organizational knowledge management systems is very important. In order to explore the Application of Knowledge Management Factors, a national study was undertaken. The main purpose of this study was to find the rate of the application of knowledge management factors and some ways to establish more application of knowledge management system in Esfahan University-s Medical College (EUMC). Esfahan is the second largest city after Tehran, the capital city of Iran, and the EUMC is the biggest medical college in Esfahan. To rate the application of knowledge management, this study uses a quantitative research methodology based on Probst, Raub and Romhardt model of knowledge management. A group of 267 faculty members and staff of the EUMC were asked via questionnaire. Finding showed that the rate of the application of knowledge management factors in EUMC have been lower than average. As a result, an interview with ten faculty members conducted to find the guidelines to establish more applications of knowledge management system in EUMC.

Keywords: Knowledge, knowledge management, knowledge management factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
13628 Take Me to the Bus Stop: AR Based Assistance System for Public Transit Users

Authors: Naoki Kanatani, Masaki Ito, Takao Kawamura, Kazunori Sugahara

Abstract:

Route bus system is the fundamental public transportation system and has an important role in every province. To improve the usability of it greatly, we develop an AR application for "Bus- Net". The Bus-Net system is the shortest path planning system. Bus-Net supports bus users to make a plan to change buses by providing them with information about the direction. However, with Bus-Net, these information are provided in text-base. It is difficult to understand them for the person who does not know the place. We developed the AR application for Bus-Net. It supports the action of a bus user in an innovative way by putting information on a camera picture and leading the way to a bus stop. The application also inform the user the correct bus to get, the direction the bus takes and the fare, which ease many anxieties and worries people tend to feel when they take buses.

Keywords: AR, navigation, Bus-Net, transport

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
13627 From Research to Teaching: Integrating Social Robotics in Engineering Degrees

Authors: Yolanda Bolea, Antoni Grau, Alberto Sanfeliu

Abstract:

When industrial robotics subject is taught in a degree in robotics, social and humanoid robotics concepts are rarely mentioned because this field of robotics is not used in industry. In this paper, an educational project related with industrial robotics is presented which includes social and humanoid robotics. The main motivations to realize this research are: i) humanoid robotics will be appearing soon in industry, the experience, based on research projects, indicates their deployment sooner than expected; ii) its educational interest, technology is shared with industrial robotics; iii) it is very attractive, students are interested in this part of the subject and thus they are interested in the whole subject. As a pedagogical methodology, the use of the problem-based learning is considered. Those concepts are introduced in a seminar during the last part of the subject and developed as a set of practices in the laboratory.

Keywords: Higher education in robotics, humanoid robotics, problem-based learning, social robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
13626 Designing Information Systems in Education as Prerequisite for Successful Management Results

Authors: Vladimir Simovic, Matija Varga, Tonco Marusic

Abstract:

This research paper shows matrix technology models and examples of information systems in education (in the Republic of Croatia and in the Germany) in support of business, education (when learning and teaching) and e-learning. Here we researched and described the aims and objectives of the main process in education and technology, with main matrix classes of data. In this paper, we have example of matrix technology with detailed description of processes related to specific data classes in the processes of education and an example module that is support for the process: ‘Filling in the directory and the diary of work’ and ‘evaluation’. Also, on the lower level of the processes, we researched and described all activities which take place within the lower process in education. We researched and described the characteristics and functioning of modules: ‘Fill the directory and the diary of work’ and ‘evaluation’. For the analysis of the affinity between the aforementioned processes and/or sub-process we used our application model created in Visual Basic, which was based on the algorithm for analyzing the affinity between the observed processes and/or sub-processes.

Keywords: Designing, education management, information systems, matrix technology, process affinity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096
13625 Towards a New Methodology for Developing Web-Based Systems

Authors: Omer Ishag Eldai, Ahmed Hassan M. H. Ali, S. Raviraja

Abstract:

Web-based systems have become increasingly important due to the fact that the Internet and the World Wide Web have become ubiquitous, surpassing all other technological developments in our history. The Internet and especially companies websites has rapidly evolved in their scope and extent of use, from being a little more than fixed advertising material, i.e. a "web presences", which had no particular influence for the company's business, to being one of the most essential parts of the company's core business. Traditional software engineering approaches with process models such as, for example, CMM and Waterfall models, do not work very well since web system development differs from traditional development. The development differs in several ways, for example, there is a large gap between traditional software engineering designs and concepts and the low-level implementation model, many of the web based system development activities are business oriented (for example web application are sales-oriented, web application and intranets are content-oriented) and not engineering-oriented. This paper aims to introduce Increment Iterative extreme Programming (IIXP) methodology for developing web based systems. In difference to the other existence methodologies, this methodology is combination of different traditional and modern software engineering and web engineering principles.

Keywords: Web based systems, Web engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
13624 Public Economic Efficiency and Case-Based Reasoning: A Theoretical Framework to Police Performance

Authors: Javier Parra-Domínguez, Juan Manuel Corchado

Abstract:

At present, public efficiency is a concept that intends to maximize return on public investment focus on minimizing the use of resources and maximizing the outputs. The concept takes into account statistical criteria drawn up according to techniques such as DEA (Data Envelopment Analysis). The purpose of the current work is to consider, more precisely, the theoretical application of CBR (Case-Based Reasoning) from economics and computer science, as a preliminary step to improving the efficiency of law enforcement agencies (public sector). With the aim of increasing the efficiency of the public sector, we have entered into a phase whose main objective is the implementation of new technologies. Our main conclusion is that the application of computer techniques, such as CBR, has become key to the efficiency of the public sector, which continues to require economic valuation based on methodologies such as DEA. As a theoretical result and conclusion, the incorporation of CBR systems will reduce the number of inputs and increase, theoretically, the number of outputs generated based on previous computer knowledge.

Keywords: Case-based reasoning, knowledge, police, public efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 603
13623 Adopting Artificial Intelligence and Deep Learning Techniques in Cloud Computing for Operational Efficiency

Authors: Sandesh Achar

Abstract:

Artificial intelligence (AI) is being increasingly incorporated into many applications across various sectors such as health, education, security, and agriculture. Recently, there has been rapid development in cloud computing technology, resulting in AI’s implementation into cloud computing to enhance and optimize the technology service rendered. The deployment of AI in cloud-based applications has brought about autonomous computing, whereby systems achieve stated results without human intervention. Despite the amount of research into autonomous computing, work incorporating AI/ML into cloud computing to enhance its performance and resource allocation remains a fundamental challenge. This paper highlights different manifestations, roles, trends, and challenges related to AI-based cloud computing models. This work reviews and highlights investigations and progress in the domain. Future directions are suggested for leveraging AI/ML in next-generation computing for emerging computing paradigms such as cloud environments. Adopting AI-based algorithms and techniques to increase operational efficiency, cost savings, automation, reducing energy consumption and solving complex cloud computing issues are the major findings outlined in this paper.

Keywords: Artificial intelligence, AI, cloud computing, deep learning, machine learning, ML, internet of things, IoT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 627
13622 Teachers’ Awareness of the Significance of Lifelong Learning: A Case Study of Secondary School Teachers of Batna – Algeria

Authors: Bahloul Amel

Abstract:

This study is an attempt to raise the awareness of the stakeholders and the authorities on the sensitivity of Algerian secondary school teachers of English as a Foreign Language about the students’ loss of English language skills learned during formal schooling with effort and at expense and the supposed measures to arrest that loss. Data was collected from secondary school teachers of EFL and analyzed quantitatively using a questionnaire containing open-ended and close-ended questions. The results advocate a consensus about the need for actions to be adopted to make assessment techniques outcome-oriented. Most of the participants were in favor of including curricular activities involving contextualized learning, problem-solving learning critical selfawareness, self and peer-assisted learning, use of computers and internet so as to make learners autonomous.

Keywords: Contextualized learning, EFL, Lifelong learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
13621 Web-Based Cognitive Writing Instruction (WeCWI): A Hybrid e-Framework for Instructional Design

Authors: Boon Yih Mah

Abstract:

Web-based Cognitive Writing Instruction (WeCWI) is a hybrid e-framework for the development of a web-based instruction (WBI), which contributes towards instructional design and language development. WeCWI divides its contribution in instructional design into macro and micro perspectives. In macro perspective, being a 21st century educator by disseminating knowledge and sharing ideas with the in-class and global learners is initiated. By leveraging the virtue of technology, WeCWI aims to transform an educator into an aggregator, curator, publisher, social networker and ultimately, a web-based instructor. Since the most notable contribution of integrating technology is being a tool of teaching as well as a stimulus for learning, WeCWI focuses on the use of contemporary web tools based on the multiple roles played by the 21st century educator. The micro perspective in instructional design draws attention to the pedagogical approaches focusing on three main aspects: reading, discussion, and writing. With the effective use of pedagogical approaches through free reading and enterprises, technology adds new dimensions and expands the boundaries of learning capacity. Lastly, WeCWI also imparts the fundamental theories and models for web-based instructors’ awareness such as interactionist theory, cognitive information processing (CIP) theory, computer-mediated communication (CMC), e-learning interactionalbased model, inquiry models, sensory mind model, and leaning styles model.

Keywords: WeCWI, instructional discovery, technological discovery, pedagogical discovery, theoretical discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235
13620 Electrophysical and Thermoelectric Properties of Nano-scaled In2O3:Sn, Zn, Ga-Based Thin Films: Achievements and Limitations for Thermoelectric Applications

Authors: G. Korotcenkov, V. Brinzari, B. K. Cho

Abstract:

The thermoelectric properties of nano-scaled In2O3:Sn films deposited by spray pyrolysis are considered in the present report. It is shown that multicomponent In2O3:Sn-based films are promising material for the application in thermoelectric devices. It is established that the increase in the efficiency of thermoelectric conversion at CSn~5% occurred due to nano-scaled structure of the films studied and the effect of the grain boundary filtering of the low energy electrons. There are also analyzed the limitations that may appear during such material using in devices developed for the market of thermoelectric generators and refrigerators. Studies showed that the stability of nano-scaled film’s parameters is the main problem which can limit the application of these materials in high temperature thermoelectric converters.

Keywords: Energy conversion technologies, thermoelectricity, In2O3-based films, power factor, nanocomposites, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418
13619 Data Analysis Techniques for Predictive Maintenance on Fleet of Heavy-Duty Vehicles

Authors: Antonis Sideris, Elias Chlis Kalogeropoulos, Konstantia Moirogiorgou

Abstract:

The present study proposes a methodology for the efficient daily management of fleet vehicles and construction machinery. The application covers the area of remote monitoring of heavy-duty vehicles operation parameters, where specific sensor data are stored and examined in order to provide information about the vehicle’s health. The vehicle diagnostics allow the user to inspect whether maintenance tasks need to be performed before a fault occurs. A properly designed machine learning model is proposed for the detection of two different types of faults through classification. Cross validation is used and the accuracy of the trained model is checked with the confusion matrix.

Keywords: Fault detection, feature selection, machine learning, predictive maintenance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
13618 The Role of Optimization and Machine Learning in e-Commerce Logistics in 2030

Authors: Vincenzo Capalbo, Gianpaolo Ghiani, Emanuele Manni

Abstract:

Global e-commerce sales have reached unprecedented levels in the past few years. As this trend is only predicted to go up as we continue into the ’20s, new challenges will be faced by companies when planning and controlling e-commerce logistics. In this paper, we survey the related literature on Optimization and Machine Learning as well as on combined methodologies. We also identify the distinctive features of next-generation planning algorithms - namely scalability, model-and-run features and learning capabilities - that will be fundamental to cope with the scale and complexity of logistics in the next decade.

Keywords: e-Commerce, Logistics, Machine Learning, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127
13617 Integration of Best Practices and Requirements for Preliminary E-Learning Courses

Authors: Sophie Huck, Knut Linke

Abstract:

This study will examine how IT practitioners can be motivated for IT studies and which kind of support they need during their occupational studies. Within this research project, the challenge of supporting students being engaged in business for several years arose. Here, it is especially important to successfully guide them through their studies. The problem of this group is that they finished their school education years ago. In order to gather first experiences, preliminary e-learning courses were introduced and tested with a group of users studying General Management. They had to work with these courses and have been questioned later on about their approach to the different methods. Moreover, a second group of potential students was interviewed with the help of online questionnaires to give information about their expectations regarding extra occupational studies. We also want to present best practices and cases in e-education in the subarea of mathematics and distance learning. Within these cases and practices, we use state of the art systems and technologies in e-education to find a way to increase teaching quality and the success of students. Our research indicated that the first group of enrolled students appreciated the new preliminary e-learning courses. The second group of potential students was convinced of this way of learning as a significant component of extra occupational studies. It can be concluded that this part of the project clarified the acceptance of the e-learning strategy by both groups and led to satisfactory results with the enrolled students.

Keywords: E-learning evaluation, self-learning, virtual classroom, virtual learning environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
13616 Double Clustering as an Unsupervised Approach for Order Picking of Distributed Warehouses

Authors: Hsin-Yi Huang, Ming-Sheng Liu, Jiun-Yan Shiau

Abstract:

Planning the order picking lists for warehouses to achieve some operational performances is a significant challenge when the costs associated with logistics are relatively high, and it is especially important in e-commerce era. Nowadays, many order planning techniques employ supervised machine learning algorithms. However, to define features for supervised machine learning algorithms is not a simple task. Against this background, we consider whether unsupervised algorithms can enhance the planning of order-picking lists. A double zone picking approach, which is based on using clustering algorithms twice, is developed. A simplified example is given to demonstrate the merit of our approach.

Keywords: order picking, warehouse, clustering, unsupervised learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 520
13615 Post Earthquake Volunteer Learning That Build Up Caring Learning Communities

Authors: Naoki Okamura

Abstract:

From a perspective of moral education, this study has examined the experiences of a group of college students who volunteered in disaster areas after the magnitude 9.0 Earthquake, which struck the Northeastern region of Japan in March, 2011. The research, utilizing the method of grounded theory, has uncovered that most of the students have gone through positive changes in their development of moral and social characters, such as attaining deeper sense of empathy and caring personalities. The study expresses, in identifying the nature of those transformations, that the importance of volunteer work should strongly be recognized by the colleges and universities in Japan, in fulfilling their public responsibility of creating and building learning communities that are responsible and caring.

Keywords: Moral development, moral education, service learning, volunteer learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
13614 Visualization and Indexing of Spectral Databases

Authors: Tibor Kulcsar, Gabor Sarossy, Gabor Bereznai, Robert Auer, Janos Abonyi

Abstract:

On-line (near infrared) spectroscopy is widely used to support the operation of complex process systems. Information extracted from spectral database can be used to estimate unmeasured product properties and monitor the operation of the process. These techniques are based on looking for similar spectra by nearest neighborhood algorithms and distance based searching methods. Search for nearest neighbors in the spectral space is an NP-hard problem, the computational complexity increases by the number of points in the discrete spectrum and the number of samples in the database. To reduce the calculation time some kind of indexing could be used. The main idea presented in this paper is to combine indexing and visualization techniques to reduce the computational requirement of estimation algorithms by providing a two dimensional indexing that can also be used to visualize the structure of the spectral database. This 2D visualization of spectral database does not only support application of distance and similarity based techniques but enables the utilization of advanced clustering and prediction algorithms based on the Delaunay tessellation of the mapped spectral space. This means the prediction has not to use the high dimension space but can be based on the mapped space too. The results illustrate that the proposed method is able to segment (cluster) spectral databases and detect outliers that are not suitable for instance based learning algorithms.

Keywords: indexing high dimensional databases, dimensional reduction, clustering, similarity, k-nn algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
13613 Biologically Inspired Controller for the Autonomous Navigation of a Mobile Robot in an Evasion Task

Authors: Dejanira Araiza-Illan, Tony J. Dodd

Abstract:

A novel biologically inspired controller for the autonomous navigation of a mobile robot in an evasion task is proposed. The controller takes advantage of the environment by calculating a measure of danger and subsequently choosing the parameters of a reinforcement learning based decision process. Two different reinforcement learning algorithms were used: Qlearning and Sarsa (λ). Simulations show that selecting dynamic parameters reduce the time while executing the decision making process, so the robot can obtain a policy to succeed in an escaping task in a realistic time.

Keywords: Autonomous navigation, mobile robots, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
13612 Automatic Number Plate Recognition System Based on Deep Learning

Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi

Abstract:

In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.

Keywords: Automatic number plate recognition, character segmentation, convolutional neural network, CNN, deep learning, number plate localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
13611 Comparison of Machine Learning and Deep Learning Algorithms for Automatic Classification of 80 Different Pollen Species

Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinié

Abstract:

Palynology is a field of interest in many disciplines due to its multiple applications: chronological dating, climatology, allergy treatment, and honey characterization. Unfortunately, the analysis of a pollen slide is a complicated and time consuming task that requires the intervention of experts in the field, which are becoming increasingly rare due to economic and social conditions. In this context, the automation of this task is urgent. In this work, we compare classical feature extraction methods (Shape, GLCM, LBP, and others) and Deep Learning (CNN and Transfer Learning) to perform a recognition task over 80 regional pollen species. It has been found that the use of Transfer Learning seems to be more precise than the other approaches.

Keywords: Image segmentation, stuck particles separation, Sobel operator, thresholding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201
13610 A Method for Consensus Building between Teachers and Learners in a Value Co-Creative Learning Service

Authors: Ryota Sugino, Satoshi Mizoguchi, Koji Kimita, Keiichi Muramatsu, Tatsunori Matsui, Yoshiki Shimomura

Abstract:

Improving added value and productivity of services entails improving both value-in-exchange and value-in-use. Value-in-use is realized by value co-creation, where providers and receivers create value together. In higher education services, value-in-use comes from learners achieving learning outcomes (e.g., knowledge and skills) that are consistent with their learning goals. To enhance the learning outcomes of a learner, it is necessary to enhance and utilize the abilities of the teacher along with the abilities of the learner. To do this, however, the learner and the teacher need to build a consensus about their respective roles. Teachers need to provide effective learning content; learners need to choose the appropriate learning strategies by using the learning content through consensus building. This makes consensus building an important factor in value co-creation. However, methods to build a consensus about their respective roles may not be clearly established, making such consensus difficult. In this paper, we propose some strategies for consensus building between a teacher and a learner in value co-creation. We focus on a teacher and learner co-design and propose an analysis method to clarify a collaborative design process to realize value co-creation. We then analyze some counseling data obtained from a university class. This counseling aimed to build a consensus for value-in-use, learning outcomes, and learning strategies between the teacher and the learner.

Keywords: Consensus building, value co-creation, higher education, learning service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773
13609 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection

Authors: Yaojun Wang, Yaoqing Wang

Abstract:

Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.

Keywords: Case-based reasoning, decision tree, stock selection, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
13608 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.

Keywords: Clustering, load profiling, load modeling, machine learning, energy efficiency and quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
13607 Architecture from Teaching to Learning to Practice: Authentic learning Tasks in Developing Professional Competencies

Authors: N. Utaberta, B. Hassanpour, M. Surat, A. I. Che Ani, N.M. Tawil

Abstract:

The concerns of education and practice of architecture do not necessarily overlap. Indeed the gap between them could be seen increasingly and less frequently bridged. We suggest that changing in architecture education and clarifying the relationship between these two can help to find and address the opportunities and unique positions to bridge this gulf.

Keywords: Architecture education, Learning, Practice, Teaching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
13606 An Experimental Study of a Self-Supervised Classifier Ensemble

Authors: Neamat El Gayar

Abstract:

Learning using labeled and unlabelled data has received considerable amount of attention in the machine learning community due its potential in reducing the need for expensive labeled data. In this work we present a new method for combining labeled and unlabeled data based on classifier ensembles. The model we propose assumes each classifier in the ensemble observes the input using different set of features. Classifiers are initially trained using some labeled samples. The trained classifiers learn further through labeling the unknown patterns using a teaching signals that is generated using the decision of the classifier ensemble, i.e. the classifiers self-supervise each other. Experiments on a set of object images are presented. Our experiments investigate different classifier models, different fusing techniques, different training sizes and different input features. Experimental results reveal that the proposed self-supervised ensemble learning approach reduces classification error over the single classifier and the traditional ensemble classifier approachs.

Keywords: Multiple Classifier Systems, classifier ensembles, learning using labeled and unlabelled data, K-nearest neighbor classifier, Bayes classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
13605 Personalised Mobile Picture Puzzle

Authors: Saipunidzam Mahamad, Eliza Mazmee Mazlan, Rozana Kasbon, Khairul Shafee Kalid, NurSyazwani Rusdi

Abstract:

Mobile Picture Puzzle is a mobile game application where the player use existing images stored in the mobile phone to create a puzzle to be played. This traditional picture puzzle is not so challenging once the player is familiar with the game. The objective of the developed mobile game application is to have a similar mobile game application that can provide the player with more challenging gaming experience. The developed mobile game application is also a mobile picture puzzle game application to create a puzzle to be played but instead of just using existing images that are stored, the personalised capability allows the player to use the built-in camera phone to capture an image and use the newly captured image to create the puzzle. The development of the mobile game application uses Symbian Operating System (OS), Mobile Media API (Application Programming Interface), Record Management System (RMS) storage and TiledLayer class from Game API.

Keywords: Picture Puzzle, Pervasive gaming, J2ME.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2652
13604 Miller’s Model for Developing Critical Thinking Skill of Pre-Service Teachers at Suan Sunandha Rajabhat University

Authors: Suttipong Boonphadung, Thassanant Unnanantn

Abstract:

This research focused on comparing the critical thinking of the teacher students before and after using Miller’s Model learning activities and investigating their opinions. The sampling groups were (1) fourth year 33 student teachers majoring in Early Childhood Education and enrolling in semester 1 of academic year 2013 (2) third year 28 student teachers majoring in English and enrolling in semester 2 of academic year 2013 and (3) third year 22 student teachers majoring in Thai and enrolling in semester 2 of academic year 2013. The research instruments were (1) lesson plans where the learning activities were settled based on Miller’s Model (2) critical thinking assessment criteria and (3) a questionnaire on opinions towards Miller’s Model based learning activities. The statistical treatment was mean, deviation, different scores and T-test. The result unfolded that (1) the critical thinking of the students after the assigned activities was better than before and (2) the students’ opinions towards the critical thinking improvement activities based on Miller’s Model ranged from the level of high to highest.

Keywords: Critical thinking, Miller’s model, Opinions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
13603 Individual Differences and Paired Learning in Virtual Environments

Authors: Patricia M. Boechler, Heather M. Gautreau

Abstract:

In this research study, postsecondary students completed an information learning task in an avatar-based 3D virtual learning environment. Three factors were of interest in relation to learning; 1) the influence of collaborative vs. independent conditions, 2) the influence of the spatial arrangement of the virtual environment (linear, random and clustered), and 3) the relationship of individual differences such as spatial skill, general computer experience and video game experience to learning. Students completed pretest measures of prior computer experience and prior spatial skill. Following the premeasure administration, students were given instruction to move through the virtual environment and study all the material within 10 information stations. In the collaborative condition, students proceeded in randomly assigned pairs, while in the independent condition they proceeded alone. After this learning phase, all students individually completed a multiple choice test to determine information retention. The overall results indicated that students in pairs did not perform any better or worse than independent students. As far as individual differences, only spatial ability predicted the performance of students. General computer experience and video game experience did not. Taking a closer look at the pairs and spatial ability, comparisons were made on pairs high/matched spatial ability, pairs low/matched spatial ability and pairs that were mismatched on spatial ability. The results showed that both high/matched pairs and mismatched pairs outperformed low/matched pairs. That is, if a pair had even one individual with strong spatial ability they would perform better than pairs with only low spatial ability individuals. This suggests that, in virtual environments, the specific individuals that are paired together are important for performance outcomes. The paper also includes a discussion of trends within the data that have implications for virtual environment education.

Keywords: Avatar-based, virtual environment, paired learning, individual differences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
13602 Enhancing Critical Reflective Practice in Fieldwork Education: An Exploratory Study of the Role of Social Work Agencies in the Welfare Context of Hong Kong

Authors: Yee-May Chan

Abstract:

In recent decades, it is observed that social work agencies have participated actively, and thus, have gradually been more influential in social work education in Hong Kong. The neo-liberal welfare ideologies and changing funding mode have transformed the landscape in social work practice and have also had a major influence on the fieldwork environment in Hong Kong. The aim of this research is to explore the educational role of social work agencies and examine in particular whether they are able to enhance or hinder critical reflective learning in fieldwork. In-depth interviews with 15 frontline social workers and managers in different social work agencies were conducted to collect their views and experience in helping social work students in fieldwork. The overall findings revealed that under the current social welfare context most social workers consider that the most important role of social work agencies in fieldwork is to help students prepare to fit-in the practice requirements and work within agencies’ boundary. The fit-for-purpose and down-to-earth view of fieldwork practice is seen as prevalent among most social workers. This narrow perception of agency’s role seems to be more favourable to competence-based approaches. In contrast, though critical reflection has been seen as important in addressing the changing needs of service users, the role of enhancing critical reflective learning has not been clearly expected or understood by most agency workers. The notion of critical reflection, if considered, has been narrowly perceived in fieldwork learning. The findings suggest that the importance of critical reflection is found to be subordinate to that of practice competence. The lack of critical reflection in the field is somehow embedded in the competence-based social work practice. In general, social work students’ critical reflection has not been adequately supported or enhanced in fieldwork agencies, nor critical reflective practice has been encouraged in fieldwork process. To address this situation, the role of social work agencies in fieldwork should be re-examined. To maximise critical reflective learning in the field, critical reflection as an avowed objective in fieldwork learning should be clearly stated. Concrete suggestions are made to help fieldwork agencies become more prepared to critical reflective learning. It is expected that the research can help social work communities to reflect upon the current realities of fieldwork context and to identify ways to strengthen agencies’ capacities to enhance critical reflective learning and practice of social work students.

Keywords: Competence-based social work, fieldwork, neo-liberal welfare, critical reflective learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009
13601 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems

Authors: Bruno Trstenjak, Dzenana Donko

Abstract:

Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.

Keywords: Case based reasoning, classification, expert's knowledge, hybrid model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419