Search results for: Accuracy Assessment
2568 Automated Detection of Alzheimer Disease Using Region Growing technique and Artificial Neural Network
Authors: B. Al-Naami, N. Gharaibeh, A. AlRazzaq Kheshman
Abstract:
Alzheimer is known as the loss of mental functions such as thinking, memory, and reasoning that is severe enough to interfere with a person's daily functioning. The appearance of Alzheimer Disease symptoms (AD) are resulted based on which part of the brain has a variety of infection or damage. In this case, the MRI is the best biomedical instrumentation can be ever used to discover the AD existence. Therefore, this paper proposed a fusion method to distinguish between the normal and (AD) MRIs. In this combined method around 27 MRIs collected from Jordanian Hospitals are analyzed based on the use of Low pass -morphological filters to get the extracted statistical outputs through intensity histogram to be employed by the descriptive box plot. Also, the artificial neural network (ANN) is applied to test the performance of this approach. Finally, the obtained result of t-test with confidence accuracy (95%) has compared with classification accuracy of ANN (100 %). The robust of the developed method can be considered effectively to diagnose and determine the type of AD image.Keywords: Alzheimer disease, Brain MRI analysis, Morphological filter, Box plot, Intensity histogram, ANN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31382567 Implementation of a Low-Cost Instrumentation for an Open Cycle Wind Tunnel to Evaluate Pressure Coefficient
Authors: Cristian P. Topa, Esteban A. Valencia, Victor H. Hidalgo, Marco A. Martinez
Abstract:
Wind tunnel experiments for aerodynamic profiles display numerous advantages, such as: clean steady laminar flow, controlled environmental conditions, streamlines visualization, and real data acquisition. However, the experiment instrumentation usually is expensive, and hence, each test implies a incremented in design cost. The aim of this work is to select and implement a low-cost static pressure data acquisition system for a NACA 2412 airfoil in an open cycle wind tunnel. This work compares wind tunnel experiment with Computational Fluid Dynamics (CFD) simulation and parametric analysis. The experiment was evaluated at Reynolds of 1.65 e5, with increasing angles from -5° to 15°. The comparison between the approaches show good enough accuracy, between the experiment and CFD, additional parametric analysis results differ widely from the other methods, which complies with the lack of accuracy of the lateral approach due its simplicity.Keywords: Wind tunnel, low cost instrumentation, experimental testing, CFD simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8132566 Assessing the Adaptive Re-Use Potential of Buildings as Part of the Disaster Management Process
Authors: A. Esra İdemen, Sinan M. Şener, Emrah Acar
Abstract:
The technological paradigm of the disaster management field, especially in the case of governmental intervention strategies, is generally based on rapid and flexible accommodation solutions. From various technical solution patterns used to address the immediate housing needs of disaster victims, the adaptive re-use of existing buildings can be considered to be both low-cost and practical. However, there is a scarcity of analytical methods to screen, select and adapt buildings to help decision makers in cases of emergency. Following an extensive literature review, this paper aims to highlight key points and problem areas associated with the adaptive re-use of buildings within the disaster management context. In other disciplines such as real estate management, the adaptive re-use potential (ARP) of existing buildings is typically based on the prioritization of a set of technical and non-technical criteria which are then weighted to arrive at an economically viable investment decision. After a disaster, however, the assessment of the ARP of buildings requires consideration of different/additional layers of analysis which stem from general disaster management principles and the peculiarities of different types of disasters, as well as of their victims. In this paper, a discussion of the development of an adaptive re-use potential (ARP) assessment model is presented. It is thought that governmental and non-governmental decision makers who are required to take quick decisions to accommodate displaced masses following disasters are likely to benefit from the implementation of such a model.Keywords: Adaptive re-use of buildings, assessment model, disaster management, temporary housing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16852565 Exergetic and Life Cycle Assessment Analyses of Integrated Biowaste Gasification-Combustion System: A Study Case
Authors: Anabel Fernandez, Leandro Rodriguez-Ortiz, Rosa Rodríguez
Abstract:
Due to the negative impact of fossil fuels, renewable energies are promising sources to limit global temperature rise and damage to the environment. Also, the development of technology is focused on obtaining energetic products from renewable sources. In this study, a thermodynamic model including exergy balance and a subsequent Life Cycle Assessment (LCA) were carried out for four subsystems of the integrated gasification-combustion of pinewood. Results of exergy analysis and LCA showed the process feasibility in terms of exergy efficiency and global energy efficiency of the life cycle (GEELC). Moreover, the energy return on investment (EROI) index was calculated. The global exergy efficiency resulted in 67%. For pretreatment, reaction, cleaning, and electric generation subsystems, the results were 85%, 59%, 87%, and 29%, respectively. Results of LCA indicated that the emissions from the electric generation caused the most damage to the atmosphere, water, and soil. GEELC resulted in 31.09% for the global process. This result suggested the environmental feasibility of an integrated gasification-combustion system. EROI resulted in 3.15, which determines the sustainability of the process.
Keywords: Exergy analysis, Life Cycle Assessment, LCA, renewability, sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4622564 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments
Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic
Abstract:
Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.
Keywords: Time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15692563 Through Biometric Card in Romania: Person Identification by Face, Fingerprint and Voice Recognition
Authors: Hariton N. Costin, Iulian Ciocoiu, Tudor Barbu, Cristian Rotariu
Abstract:
In this paper three different approaches for person verification and identification, i.e. by means of fingerprints, face and voice recognition, are studied. Face recognition uses parts-based representation methods and a manifold learning approach. The assessment criterion is recognition accuracy. The techniques under investigation are: a) Local Non-negative Matrix Factorization (LNMF); b) Independent Components Analysis (ICA); c) NMF with sparse constraints (NMFsc); d) Locality Preserving Projections (Laplacianfaces). Fingerprint detection was approached by classical minutiae (small graphical patterns) matching through image segmentation by using a structural approach and a neural network as decision block. As to voice / speaker recognition, melodic cepstral and delta delta mel cepstral analysis were used as main methods, in order to construct a supervised speaker-dependent voice recognition system. The final decision (e.g. “accept-reject" for a verification task) is taken by using a majority voting technique applied to the three biometrics. The preliminary results, obtained for medium databases of fingerprints, faces and voice recordings, indicate the feasibility of our study and an overall recognition precision (about 92%) permitting the utilization of our system for a future complex biometric card.Keywords: Biometry, image processing, pattern recognition, speech analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19432562 Research on Reservoir Lithology Prediction Based on Residual Neural Network and Squeeze-and- Excitation Neural Network
Authors: Li Kewen, Su Zhaoxin, Wang Xingmou, Zhu Jian Bing
Abstract:
Conventional reservoir prediction methods ar not sufficient to explore the implicit relation between seismic attributes, and thus data utilization is low. In order to improve the predictive classification accuracy of reservoir lithology, this paper proposes a deep learning lithology prediction method based on ResNet (Residual Neural Network) and SENet (Squeeze-and-Excitation Neural Network). The neural network model is built and trained by using seismic attribute data and lithology data of Shengli oilfield, and the nonlinear mapping relationship between seismic attribute and lithology marker is established. The experimental results show that this method can significantly improve the classification effect of reservoir lithology, and the classification accuracy is close to 70%. This study can effectively predict the lithology of undrilled area and provide support for exploration and development.
Keywords: Convolutional neural network, lithology, prediction of reservoir lithology, seismic attributes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6522561 The Establishment of Probabilistic Risk Assessment Analysis Methodology for Dry Storage Concrete Casks Using SAPHIRE 8
Authors: J. R. Wang, W. Y. Cheng, J. S. Yeh, S. W. Chen, Y. M. Ferng, J. H. Yang, W. S. Hsu, C. Shih
Abstract:
To understand the risk for dry storage concrete casks in the cask loading, transfer, and storage phase, the purpose of this research is to establish the probabilistic risk assessment (PRA) analysis methodology for dry storage concrete casks by using SAPHIRE 8 code. This analysis methodology is used to perform the study of Taiwan nuclear power plants (NPPs) dry storage system. The process of research has three steps. First, the data of the concrete casks and Taiwan NPPs are collected. Second, the PRA analysis methodology is developed by using SAPHIRE 8. Third, the PRA analysis is performed by using this methodology. According to the analysis results, the maximum risk is the multipurpose canister (MPC) drop case.
Keywords: PRA, Dry storage, concrete cask, SAPHIRE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8632560 Water Resources Vulnerability Assessment to Climate Change in a Semi-Arid Basin of South India
Authors: K. Shimola, M. Krishnaveni
Abstract:
This paper examines vulnerability assessment of water resources in a semi-arid basin using the 4-step approach. The vulnerability assessment framework is developed to study the water resources vulnerability which includes the creation of GIS-based vulnerability maps. These maps represent the spatial variability of the vulnerability index. This paper introduces the 4-step approach to assess vulnerability that incorporates a new set of indicators. The approach is demonstrated using a framework composed of a precipitation data for (1975–2010) period, temperature data for (1965–2010) period, hydrological model outputs and the water resources GIS data base. The vulnerability assessment is a function of three components such as exposure, sensitivity and adaptive capacity. The current water resources vulnerability is assessed using GIS based spatio-temporal information. Rainfall Coefficient of Variation, monsoon onset and end date, rainy days, seasonality indices, temperature are selected for the criterion ‘exposure’. Water yield, ground water recharge, evapotranspiration (ET) are selected for the criterion ‘sensitivity’. Type of irrigation and storage structures are selected for the criterion ‘Adaptive capacity’. These indicators were mapped and integrated in GIS environment using overlay analysis. The five sub-basins, namely Arjunanadhi, Kousiganadhi, Sindapalli-Uppodai and Vallampatti Odai, fall under medium vulnerability profile, which indicates that the basin is under moderate stress of water resources. The paper also explores prioritization of sub-basinwise adaptation strategies to climate change based on the vulnerability indices.
Keywords: Adaptive capacity, exposure, overlay analysis, sensitivity, vulnerability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11232559 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing ECG Based on ResNet and Bi-LSTM
Authors: Yang Zhang, Jian He
Abstract:
Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper presents sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for CHD prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.
Keywords: Bi-LSTM, CHD, coronary heart disease, ECG, electrocardiogram, ResNet, sliding window.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3322558 Quality Function Deployment Application in Sewer Pipeline Assessment
Authors: Khalid Kaddoura, Tarek Zayed
Abstract:
Infrastructure assets are essential in urban cities; their purpose is to facilitate the public needs. As a result, their conditions and states shall always be monitored to avoid any sudden malfunction. Sewer systems, one of the assets, are an essential part of the underground infrastructure as they transfer sewer medium to designated areas. However, their conditions are subject to deterioration due to ageing. Therefore, it is of great significance to assess the conditions of pipelines to avoid sudden collapses. Current practices of sewer pipeline assessment rely on industrial protocols that consider distinct defects and grades to conclude the limited average or peak score of the assessed assets. This research aims to enhance the evaluation by integrating the Quality Function Deployment (QFD) and the Decision-Making Trial and Evaluation Laboratory (DEMATEL) methods in assessing the condition of sewer pipelines. The methodology shall study the cause and effect relationship of the systems’ defects to deduce the relative influence weights of each defect. Subsequently, the overall grade is calculated by aggregating the WHAT’s and HOW’s of the House of Quality (HOQ) using the computed relative weights. Thus, this study shall enhance the evaluation of the assets to conclude informative rehabilitation and maintenance plans for decision makers.
Keywords: Condition assessment, DEMATEL, QFD, sewer pipelines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8272557 Automatic Number Plate Recognition System Based on Deep Learning
Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi
Abstract:
In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.
Keywords: Automatic number plate recognition, character segmentation, convolutional neural network, CNN, deep learning, number plate localization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12842556 Subjective Assessment about Super Resolution Image Resolution
Authors: Seiichi Gohshi, Hiroyuki Sekiguchi, Yoshiyasu Shimizu, Takeshi Ikenaga
Abstract:
Super resolution (SR) technologies are now being applied to video to improve resolution. Some TV sets are now equipped with SR functions. However, it is not known if super resolution image reconstruction (SRR) for TV really works or not. Super resolution with non-linear signal processing (SRNL) has recently been proposed. SRR and SRNL are the only methods for processing video signals in real time. The results from subjective assessments of SSR and SRNL are described in this paper. SRR video was produced in simulations with quarter precision motion vectors and 100 iterations. These are ideal conditions for SRR. We found that the image quality of SRNL is better than that of SRR even though SRR was processed under ideal conditions.Keywords: Super Resolution Image Reconstruction, Super Resolution with Non-Linear Signal Processing, Subjective Assessment, Image Quality
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16942555 Input Textural Feature Selection By Mutual Information For Multispectral Image Classification
Authors: Mounir Ait kerroum, Ahmed Hammouch, Driss Aboutajdine
Abstract:
Texture information plays increasingly an important role in remotely sensed imagery classification and many pattern recognition applications. However, the selection of relevant textural features to improve this classification accuracy is not a straightforward task. This work investigates the effectiveness of two Mutual Information Feature Selector (MIFS) algorithms to select salient textural features that contain highly discriminatory information for multispectral imagery classification. The input candidate features are extracted from a SPOT High Resolution Visible(HRV) image using Wavelet Transform (WT) at levels (l = 1,2). The experimental results show that the selected textural features according to MIFS algorithms make the largest contribution to improve the classification accuracy than classical approaches such as Principal Components Analysis (PCA) and Linear Discriminant Analysis (LDA).Keywords: Feature Selection, Texture, Mutual Information, Wavelet Transform, SVM classification, SPOT Imagery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15532554 Analysis of the Impact of NVivo and EndNote on Academic Research Productivity
Authors: Sujit K. Basak
Abstract:
The aim of this paper is to analyze the impact of literature review software on researchers. The aim of this study was achieved by analyzing models in terms of perceived usefulness, perceived ease of use, and acceptance level. Collected data were analyzed using WarpPLS 4.0 software. This study used two theoretical frameworks, namely, Technology Acceptance Model and the Training Needs Assessment Model. The study was experimental and was conducted at a public university in South Africa. The results of the study showed that acceptance level has a high impact on research productivity followed by perceived usefulness and perceived ease of use.Keywords: Technology acceptance model, training needs assessment model, literature review software, research productivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29762553 A Method of Effective Planning and Control of Industrial Facility Energy Consumption
Authors: Aleksandra Aleksandrovna Filimonova, Lev Sergeevich Kazarinov, Tatyana Aleksandrovna Barbasova
Abstract:
A method of effective planning and control of industrial facility energy consumption is offered. The method allows optimally arranging the management and full control of complex production facilities in accordance with the criteria of minimal technical and economic losses at the forecasting control. The method is based on the optimal construction of the power efficiency characteristics with the prescribed accuracy. The problem of optimal designing of the forecasting model is solved on the basis of three criteria: maximizing the weighted sum of the points of forecasting with the prescribed accuracy; the solving of the problem by the standard principles at the incomplete statistic data on the basis of minimization of the regularized function; minimizing the technical and economic losses due to the forecasting errors.Keywords: Energy consumption, energy efficiency, energy management system, forecasting model, power efficiency characteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15542552 An Effective Noise Resistant FM Continuous-Wave Radar Vital Sign Signal Detection Method
Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng
Abstract:
To address the problem that the FM continuous-wave (FMCW) radar extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a backpropagation (BP) neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise, accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal to-noise ratio of the sign signals.
Keywords: Frequency modulated continuous wave radar, ICEEMDAN, BP Neural Network, vital signs signal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4772551 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering
Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel
Abstract:
Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.Keywords: Classification, data mining, spam filtering, naive Bayes, decision tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14962550 A Statistical Identification Approach by the Boundary Field Changes
Authors: Rumena D. Stancheva, Ilona I. Iatcheva
Abstract:
In working mode some unexpected changes could be arise in inner structure of electromagnetic device. They influence modification in electromagnetic field propagation map. The field values at an observed boundary are also changed. The development of the process has to be watched because the arising structural changes would provoke the device to be gone out later. The probabilistic assessment of the state is possible to be made. The numerical assessment points if the resulting changes have only accidental character or they are due to the essential inner structural disturbances. The presented application example is referring to the 200MW turbine-generator. A part of the stator core end teeth zone is simulated broken. Quasi three-dimensional electromagnetic and temperature field are solved applying FEM. The stator core state diagnosis is proposed to be solved as an identification problem on the basis of a statistical criterion.Keywords: Identification, structural disturbance, statistical criterion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12892549 Achieving Design-Stage Elemental Cost Planning Accuracy: Case Study of New Zealand
Authors: Johnson Adafin, James O. B. Rotimi, Suzanne Wilkinson, Abimbola O. Windapo
Abstract:
An aspect of client expenditure management that requires attention is the level of accuracy achievable in design-stage elemental cost planning. This has been a major concern for construction clients and practitioners in New Zealand (NZ). Pre-tender estimating inaccuracies are significantly influenced by the level of risk information available to estimators. Proper cost planning activities should ensure the production of a project’s likely construction costs (initial and final), and subsequent cost control activities should prevent unpleasant consequences of cost overruns, disputes and project abandonment. If risks were properly identified and priced at the design stage, observed variance between design-stage elemental cost plans (ECPs) and final tender sums (FTS) (initial contract sums) could be reduced. This study investigates the variations between design-stage ECPs and FTS of construction projects, with a view to identifying risk factors that are responsible for the observed variance. Data were sourced through interviews, and risk factors were identified by using thematic analysis. Access was obtained to project files from the records of study participants (consultant quantity surveyors), and document analysis was employed in complementing the responses from the interviews. Study findings revealed the discrepancies between ECPs and FTS in the region of -14% and +16%. It is opined in this study that the identified risk factors were responsible for the variability observed. The values obtained from the analysis would enable greater accuracy in the forecast of FTS by Quantity Surveyors. Further, whilst inherent risks in construction project developments are observed globally, these findings have important ramifications for construction projects by expanding existing knowledge on what is needed for reasonable budgetary performance and successful delivery of construction projects. The findings contribute significantly to the study by providing quantitative confirmation to justify the theoretical conclusions generated in the literature from around the world. This therefore adds to and consolidates existing knowledge.
Keywords: Accuracy, design-stage, elemental cost plan, final tender sum, New Zealand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18032548 Assessment of Solid Insulating Material Using Partial Discharge Characteristics
Authors: Qasim Khan, Furkan Ahmad, Asfar A. Khan, M. Saad Alam, Faiz Ahmad
Abstract:
In this paper, partial discharge analysis is performed in cavities artificially created in insulation. The setup is according with Cigre-II Method. Circular Samples created from Perspex Sheet with different configuration with changing number of cavities. Assessment of insulation health can be performed by Partial Discharge measurement as this has been found to be important means of condition monitoring. The experiments are done using MPD 540, which is a modern partial discharge measurement system. By analyzing the PD activity obtained for various voids/cavities, it is observed that the PD voltages show variation for cavity’s diameter, depth even for its ratios. This can be employed for scrutiny of insulation system.
Keywords: Partial discharges, condition monitoring, MPD 540, cavities/defects, degradation and corrosion, PMMA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23592547 Characteristics of Corporate Social Responsibility Indicators
Authors: Grigoris Giannarakis, Nikolaos Litinas, Ioannis Theotokas
Abstract:
The aim of the study is to investigate a number of characteristics of Corporate Social Responsibility (CSR) indicators that should be adopted by CSR assessment methodologies. For the purpose of this paper, a survey among the Greek companies that belong to FTSE 20 in Athens Exchange (FTSE/Athex-20) has been conducted, as these companies are expected to pioneer in the field of CSR. The results show consensus as regards the characteristics of indicators such as the need for the adoption of general and specific sector indicators, financial and non-financial indicators, the origin and the weight rate. However, the results are contradictory concerning the appropriate number of indicators for the assessment of CSR and the unit of measurement. Finally, the company-s sector is a more important dimension of CSR than the size and the country where the company operates. The purpose of this paper is to standardize the main characteristics of CSR indicators.
Keywords: Corporate social responsibility, Greece, Indicators
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79552546 The Sequential Estimation of the Seismoacoustic Source Energy in C-OTDR Monitoring Systems
Authors: Andrey V. Timofeev, Dmitry V. Egorov
Abstract:
The practical efficient approach is suggested for estimation of the seismoacoustic sources energy in C-OTDR monitoring systems. This approach is represents the sequential plan for confidence estimation both the seismoacoustic sources energy, as well the absorption coefficient of the soil. The sequential plan delivers the non-asymptotic guaranteed accuracy of obtained estimates in the form of non-asymptotic confidence regions with prescribed sizes. These confidence regions are valid for a finite sample size when the distributions of the observations are unknown. Thus, suggested estimates are non-asymptotic and nonparametric, and also these estimates guarantee the prescribed estimation accuracy in form of prior prescribed size of confidence regions, and prescribed confidence coefficient value.
Keywords: C-OTDR-system, guaranteed estimates, nonparametric estimation, sequential confidence estimation, multichannel monitoring systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20982545 Personal Authentication Using FDOST in Finger Knuckle-Print Biometrics
Authors: N. B. Mahesh Kumar, K. Premalatha
Abstract:
The inherent skin patterns created at the joints in the finger exterior are referred as finger knuckle-print. It is exploited to identify a person in a unique manner because the finger knuckle print is greatly affluent in textures. In biometric system, the region of interest is utilized for the feature extraction algorithm. In this paper, local and global features are extracted separately. Fast Discrete Orthonormal Stockwell Transform is exploited to extract the local features. Global feature is attained by escalating the size of Fast Discrete Orthonormal Stockwell Transform to infinity. Two features are fused to increase the recognition accuracy. A matching distance is calculated for both the features individually. Then two distances are merged mutually to acquire the final matching distance. The proposed scheme gives the better performance in terms of equal error rate and correct recognition rate.
Keywords: Hamming distance, Instantaneous phase, Region of Interest, Recognition accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27582544 Health Assessment of Electronic Products using Mahalanobis Distance and Projection Pursuit Analysis
Authors: Sachin Kumar, Vasilis Sotiris, Michael Pecht
Abstract:
With increasing complexity in electronic systems there is a need for system level anomaly detection and fault isolation. Anomaly detection based on vector similarity to a training set is used in this paper through two approaches, one the preserves the original information, Mahalanobis Distance (MD), and the other that compresses the data into its principal components, Projection Pursuit Analysis. These methods have been used to detect deviations in system performance from normal operation and for critical parameter isolation in multivariate environments. The study evaluates the detection capability of each approach on a set of test data with known faults against a baseline set of data representative of such “healthy" systems.Keywords: Mahalanobis distance, Principle components, Projection pursuit, Health assessment, Anomaly.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16802543 Image Spam Detection Using Color Features and K-Nearest Neighbor Classification
Authors: T. Kumaresan, S. Sanjushree, C. Palanisamy
Abstract:
Image spam is a kind of email spam where the spam text is embedded with an image. It is a new spamming technique being used by spammers to send their messages to bulk of internet users. Spam email has become a big problem in the lives of internet users, causing time consumption and economic losses. The main objective of this paper is to detect the image spam by using histogram properties of an image. Though there are many techniques to automatically detect and avoid this problem, spammers employing new tricks to bypass those techniques, as a result those techniques are inefficient to detect the spam mails. In this paper we have proposed a new method to detect the image spam. Here the image features are extracted by using RGB histogram, HSV histogram and combination of both RGB and HSV histogram. Based on the optimized image feature set classification is done by using k- Nearest Neighbor(k-NN) algorithm. Experimental result shows that our method has achieved better accuracy. From the result it is known that combination of RGB and HSV histogram with k-NN algorithm gives the best accuracy in spam detection.
Keywords: File Type, HSV Histogram, k-NN, RGB Histogram, Spam Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21402542 A Lagrangian Hamiltonian Computational Method for Hyper-Elastic Structural Dynamics
Authors: Hosein Falahaty, Hitoshi Gotoh, Abbas Khayyer
Abstract:
Performance of a Hamiltonian based particle method in simulation of nonlinear structural dynamics is subjected to investigation in terms of stability and accuracy. The governing equation of motion is derived based on Hamilton's principle of least action, while the deformation gradient is obtained according to Weighted Least Square method. The hyper-elasticity models of Saint Venant-Kirchhoff and a compressible version similar to Mooney- Rivlin are engaged for the calculation of second Piola-Kirchhoff stress tensor, respectively. Stability along with accuracy of numerical model is verified by reproducing critical stress fields in static and dynamic responses. As the results, although performance of Hamiltonian based model is evaluated as being acceptable in dealing with intense extensional stress fields, however kinds of instabilities reveal in the case of violent collision which can be most likely attributed to zero energy singular modes.
Keywords: Hamilton's principle of least action, particle based method, hyper-elasticity, analysis of stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16692541 A Modularized Design for Multi-Drivers Off-Road Vehicle Driving-Line and its Performance Assessment
Authors: Yi Jianjun, Sun Yingce, Hu Diqing, Li Chenggang
Abstract:
Modularized design approach can facilitate the modeling of complex systems and support behavior analysis and simulation in an iterative and thus complex engineering process, by using encapsulated submodels of components and of their interfaces. Therefore it can improve the design efficiency and simplify the solving complicated problem. Multi-drivers off-road vehicle is comparatively complicated. Driving-line is an important core part to a vehicle; it has a significant contribution to the performance of a vehicle. Multi-driver off-road vehicles have complex driving-line, so its performance is heavily dependent on the driving-line. A typical off-road vehicle-s driving-line system consists of torque converter, transmission, transfer case and driving-axles, which transfer the power, generated by the engine and distribute it effectively to the driving wheels according to the road condition. According to its main function, this paper puts forward a modularized approach for designing and evaluation of vehicle-s driving-line. It can be used to effectively estimate the performance of driving-line during concept design stage. Through appropriate analysis and assessment method, an optimal design can be reached. This method has been applied to the practical vehicle design, it can improve the design efficiency and is convenient to assess and validate the performance of a vehicle, especially of multi-drivers off-road vehicle.Keywords: Heavy-loaded Off-road Vehicle, Power Driving-line, Modularized Design, Performance Assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18482540 Urban Roads of Bhopal City
Authors: Anshu Gupta
Abstract:
Quality evaluation of urban environment is an integral part of efficient urban environment planning and management. The development of fuzzy set theory (FST) and the introduction of FST to the urban study field attempts to incorporate the gradual variation and avoid loss of information. Urban environmental quality assessment pertain to interpretation and forecast of the urban environmental quality according to the national regulation about the permitted content of contamination for the sake of protecting human health and subsistence environment . A strategic motor vehicle control strategy has to be proposed to mitigate the air pollution in the city. There is no well defined guideline for the assessment of urban air pollution and no systematic study has been reported so far for Indian cities. The methodology adopted may be useful in similar cities of India. Remote sensing & GIS can play significant role in mapping air pollution.Keywords: GIS, Pollution, Remote Sensing, Urban.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26382539 Integrated Modeling Approach for Energy Planning and Climate Change Mitigation Assessment in the State of Florida
Authors: Kuntal Thakkar, Chaouki Ghenai, Ahmed Hachicha
Abstract:
An integrated modeling approach was used in this study for energy planning and climate change mitigation assessment. The main objective of this study was to develop various green-house gas (GHG) mitigations scenarios in the energy demand and supply sectors for the state of Florida. The Long range energy alternative planning (LEAP) model was used in this study to examine the energy alternative and GHG emissions reduction scenarios for short and long term (2010-2050). One of the energy analysis and GHG mitigation scenarios was developed by taking into account the available renewable energy resources potential for power generation in the state of Florida. This will help to compare and analyze the GHG reduction measure against “Business As Usual” and ‘State of Florida Policy” scenarios. Two master scenarios: “Electrification” and “Energy efficiency and Lifestyle” were developed through combination of various mitigation scenarios: technological changes and energy efficiency and conservation. The results show a net reduction of the energy demand and GHG emissions by adopting these two energy scenarios compared to the business as usual.
Keywords: Integrated modeling, energy planning, climate change mitigation assessment, greenhouse gas emissions, renewable energy, energy efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780