Search results for: feature detection and description
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2594

Search results for: feature detection and description

2114 A Generator from Cascade Markov Model for Packet Loss and Subsequent Bit Error Description

Authors: Jaroslav Polec, Viliam Hirner, Michal Martinovič, Kvetoslava Kotuliaková

Abstract:

In this paper we present a novel error model for packet loss and subsequent error description. The proposed model simulates the error performance of wireless communication link. The model is designed as two independent Markov chains, where the first one is used for packet generation and the second one generates correctly and incorrectly transmitted bits for received packets from the first chain. The statistical analyses of real communication on the wireless link are used for determination of model-s parameters. Using the obtained parameters and the implementation of the generator, we collected generated traffic. The obtained results generated by proposed model are compared with the real data collection.

Keywords: Wireless channel, error model, Markov chain, Elliot model, Gilbert model, generator, IEEE 802.11.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
2113 In Search of New Laws for a Gluten Kingdom

Authors: Mohammed Saleem Tariq

Abstract:

The enthusiasm for gluten avoidance in a growing market is met by improvements in sensitive detection methods for analysing gluten content. Paradoxically, manufacturers employ no such systems in the production process but continue to market their product as gluten free, a significant risk posed to an undetermined coeliac population. This paper resonates with an immunological response that causes gastrointestinal scarring and villous atrophy with the conventional description of personal injury. This thesis divulges into evaluating potential inadequacies of gluten labelling laws which not only present a diagnostic challenge for general practitioners in the UK but it also exposes a less than adequate form of available legal protection to those who suffer adverse reactions as a result of gluten digestion. Central to this discussion is whether a claim brought in misrepresentation, negligence and/or under the Consumer Protection Act 1987 could be sustained. An interesting comparison is then made with the legal regimes of neighboring jurisdictions furthering the theme of a legally un-catered for gluten kingdom.

Keywords: Coeliac, litigation, misrepresentation, negligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
2112 Automatic Detection of Mass Type Breast Cancer using Texture Analysis in Korean Digital Mammography

Authors: E. B. Jo, J. H. Lee, J. Y. Park, S. M. Kim

Abstract:

In this study, we present an advanced detection technique for mass type breast cancer based on texture information of organs. The proposed method detects the cancer areas in three stages. In the first stage, the midpoints of mass area are determined based on AHE (Adaptive Histogram Equalization). In the second stage, we set the threshold coefficient of homogeneity by using MLE (Maximum Likelihood Estimation) to compute the uniformity of texture. Finally, mass type cancer tissues are extracted from the original image. As a result, it was observed that the proposed method shows an improved detection performance on dense breast tissues of Korean women compared with the existing methods. It is expected that the proposed method may provide additional diagnostic information for detection of mass-type breast cancer.

Keywords: Mass Type Breast Cancer, Mammography, Maximum Likelihood Estimation (MLE), Ranklets, SVM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
2111 A Rigid Point Set Registration of Remote Sensing Images Based on Genetic Algorithms and Hausdorff Distance

Authors: F. Meskine, N. Taleb, M. Chikr El-Mezouar, K. Kpalma, A. Almhdie

Abstract:

Image registration is the process of establishing point by point correspondence between images obtained from a same scene. This process is very useful in remote sensing, medicine, cartography, computer vision, etc. Then, the task of registration is to place the data into a common reference frame by estimating the transformations between the data sets. In this work, we develop a rigid point registration method based on the application of genetic algorithms and Hausdorff distance. First, we extract the feature points from both images based on the algorithm of global and local curvature corner. After refining the feature points, we use Hausdorff distance as similarity measure between the two data sets and for optimizing the search space we use genetic algorithms to achieve high computation speed for its inertial parallel. The results show the efficiency of this method for registration of satellite images.

Keywords: Feature extraction, Genetic algorithms, Hausdorff distance, Image registration, Point registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
2110 An Efficient Method of Shot Cut Detection

Authors: Lenka Krulikovská, Jaroslav Polec

Abstract:

In this paper we present a method of abrupt cut detection with a novel logic of frames- comparison. Actual frame is compared with its motion estimated prediction instead of comparison with successive frame. Four different similarity metrics were employed to estimate the resemblance of compared frames. Obtained results were evaluated by standard used measures of test accuracy and compared with existing approach. Based on the results, we claim the proposed method is more effective and Pearson correlation coefficient obtained the best results among chosen similarity metrics.

Keywords: Abrupt cut, mutual information, shot cut detection, Pearson correlation coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
2109 Evaluation of Graph-based Analysis for Forest Fire Detections

Authors: Young Gi Byun, Yong Huh, Kiyun Yu, Yong Il Kim

Abstract:

Spatial outliers in remotely sensed imageries represent observed quantities showing unusual values compared to their neighbor pixel values. There have been various methods to detect the spatial outliers based on spatial autocorrelations in statistics and data mining. These methods may be applied in detecting forest fire pixels in the MODIS imageries from NASA-s AQUA satellite. This is because the forest fire detection can be referred to as finding spatial outliers using spatial variation of brightness temperature. This point is what distinguishes our approach from the traditional fire detection methods. In this paper, we propose a graph-based forest fire detection algorithm which is based on spatial outlier detection methods, and test the proposed algorithm to evaluate its applicability. For this the ordinary scatter plot and Moran-s scatter plot were used. In order to evaluate the proposed algorithm, the results were compared with the MODIS fire product provided by the NASA MODIS Science Team, which showed the possibility of the proposed algorithm in detecting the fire pixels.

Keywords: Spatial Outlier Detection, MODIS, Forest Fire

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
2108 A Discriminatory Rewarding Mechanism for Sybil Detection with Applications to Tor

Authors: Asim Kumar Pal, Debabrata Nath, Sumit Chakraborty

Abstract:

This paper presents an economic game for sybil detection in a distributed computing environment. Cost parameters reflecting impacts of different sybil attacks are introduced in the sybil detection game. The optimal strategies for this game in which both sybil and non-sybil identities are expected to participate are devised. A cost sharing economic mechanism called Discriminatory Rewarding Mechanism for Sybil Detection is proposed based on this game. A detective accepts a security deposit from each active agent, negotiates with the agents and offers rewards to the sybils if the latter disclose their identity. The basic objective of the detective is to determine the optimum reward amount for each sybil which will encourage the maximum possible number of sybils to reveal themselves. Maintaining privacy is an important issue for the mechanism since the participants involved in the negotiation are generally reluctant to share their private information. The mechanism has been applied to Tor by introducing a reputation scoring function.

Keywords: Game theory, Incentive mechanism, Reputation, Sybil Attack

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
2107 On the Learning of Causal Relationships between Banks in Saudi Equities Market Using Ensemble Feature Selection Methods

Authors: Adel Aloraini

Abstract:

Financial forecasting using machine learning techniques has received great efforts in the last decide . In this ongoing work, we show how machine learning of graphical models will be able to infer a visualized causal interactions between different banks in the Saudi equities market. One important discovery from such learned causal graphs is how companies influence each other and to what extend. In this work, a set of graphical models named Gaussian graphical models with developed ensemble penalized feature selection methods that combine ; filtering method, wrapper method and a regularizer will be shown. A comparison between these different developed ensemble combinations will also be shown. The best ensemble method will be used to infer the causal relationships between banks in Saudi equities market.

Keywords: Causal interactions , banks, feature selection, regularizere,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
2106 Protein-Protein Interaction Detection Based on Substring Sensitivity Measure

Authors: Nazar Zaki, Safaai Deris, Hany Alashwal

Abstract:

Detecting protein-protein interactions is a central problem in computational biology and aberrant such interactions may have implicated in a number of neurological disorders. As a result, the prediction of protein-protein interactions has recently received considerable attention from biologist around the globe. Computational tools that are capable of effectively identifying protein-protein interactions are much needed. In this paper, we propose a method to detect protein-protein interaction based on substring similarity measure. Two protein sequences may interact by the mean of the similarities of the substrings they contain. When applied on the currently available protein-protein interaction data for the yeast Saccharomyces cerevisiae, the proposed method delivered reasonable improvement over the existing ones.

Keywords: Protein-Protein Interaction, support vector machine, feature extraction, pairwise alignment, Smith-Waterman score.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
2105 Medical Advances in Diagnosing Neurological and Genetic Disorders

Authors: Simon B. N. Thompson

Abstract:

Retinoblastoma is a rare type of childhood genetic cancer that affects children worldwide. The diagnosis is often missed due to lack of education and difficulty in presentation of the tumor. Frequently, the tumor on the retina is noticed by photography when the red-eye flash, commonly seen in normal eyes, is not produced. Instead, a yellow or white colored patch is seen or the child has a noticeable strabismus. Early detection can be life-saving though often results in removal of the affected eye. Remaining functioning in the healthy eye when the child is young has resulted in super-vision and high or above-average intelligence. Technological advancement of cameras has helped in early detection. Brain imaging has also made possible early detection of neurological diseases and, together with the monitoring of cortisol levels and yawning frequency, promises to be the next new early diagnostic tool for the detection of neurological diseases where cortisol insufficiency is particularly salient, such as multiple sclerosis and Cushing’s disease.

Keywords: Cortisol, Neurological Disease, Retinoblastoma, Thompson Cortisol Hypothesis, Yawning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327
2104 An Empirical Mode Decomposition Based Method for Action Potential Detection in Neural Raw Data

Authors: Sajjad Farashi, Mohammadjavad Abolhassani, Mostafa Taghavi Kani

Abstract:

Information in the nervous system is coded as firing patterns of electrical signals called action potential or spike so an essential step in analysis of neural mechanism is detection of action potentials embedded in the neural data. There are several methods proposed in the literature for such a purpose. In this paper a novel method based on empirical mode decomposition (EMD) has been developed. EMD is a decomposition method that extracts oscillations with different frequency range in a waveform. The method is adaptive and no a-priori knowledge about data or parameter adjusting is needed in it. The results for simulated data indicate that proposed method is comparable with wavelet based methods for spike detection. For neural signals with signal-to-noise ratio near 3 proposed methods is capable to detect more than 95% of action potentials accurately.

Keywords: EMD, neural data processing, spike detection, wavelet decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
2103 Objects Extraction by Cooperating Optical Flow, Edge Detection and Region Growing Procedures

Authors: C. Lodato, S. Lopes

Abstract:

The image segmentation method described in this paper has been developed as a pre-processing stage to be used in methodologies and tools for video/image indexing and retrieval by content. This method solves the problem of whole objects extraction from background and it produces images of single complete objects from videos or photos. The extracted images are used for calculating the object visual features necessary for both indexing and retrieval processes. The segmentation algorithm is based on the cooperation among an optical flow evaluation method, edge detection and region growing procedures. The optical flow estimator belongs to the class of differential methods. It permits to detect motions ranging from a fraction of a pixel to a few pixels per frame, achieving good results in presence of noise without the need of a filtering pre-processing stage and includes a specialised model for moving object detection. The first task of the presented method exploits the cues from motion analysis for moving areas detection. Objects and background are then refined using respectively edge detection and seeded region growing procedures. All the tasks are iteratively performed until objects and background are completely resolved. The method has been applied to a variety of indoor and outdoor scenes where objects of different type and shape are represented on variously textured background.

Keywords: Image Segmentation, Motion Detection, Object Extraction, Optical Flow

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
2102 Fast 3D Collision Detection Algorithm using 2D Intersection Area

Authors: Taehyun Yoon, Keechul Jung

Abstract:

There are many researches to detect collision between real object and virtual object in 3D space. In general, these techniques are need to huge computing power. So, many research and study are constructed by using cloud computing, network computing, and distribute computing. As a reason of these, this paper proposed a novel fast 3D collision detection algorithm between real and virtual object using 2D intersection area. Proposed algorithm uses 4 multiple cameras and coarse-and-fine method to improve accuracy and speed performance of collision detection. In the coarse step, this system examines the intersection area between real and virtual object silhouettes from all camera views. The result of this step is the index of virtual sensors which has a possibility of collision in 3D space. To decide collision accurately, at the fine step, this system examines the collision detection in 3D space by using the visual hull algorithm. Performance of the algorithm is verified by comparing with existing algorithm. We believe proposed algorithm help many other research, study and application fields such as HCI, augmented reality, intelligent space, and so on.

Keywords: Collision Detection, Computer Vision, Human Computer Interaction, Visual Hull

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2405
2101 X-Corner Detection for Camera Calibration Using Saddle Points

Authors: Abdulrahman S. Alturki, John S. Loomis

Abstract:

This paper discusses a corner detection algorithm for camera calibration. Calibration is a necessary step in many computer vision and image processing applications. Robust corner detection for an image of a checkerboard is required to determine intrinsic and extrinsic parameters. In this paper, an algorithm for fully automatic and robust X-corner detection is presented. Checkerboard corner points are automatically found in each image without user interaction or any prior information regarding the number of rows or columns. The approach represents each X-corner with a quadratic fitting function. Using the fact that the X-corners are saddle points, the coefficients in the fitting function are used to identify each corner location. The automation of this process greatly simplifies calibration. Our method is robust against noise and different camera orientations. Experimental analysis shows the accuracy of our method using actual images acquired at different camera locations and orientations.

Keywords: Camera Calibration, Corner Detector, Saddle Points, X-Corners.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3152
2100 A Real-Time Image Change Detection System

Authors: Madina Hamiane, Amina Khunji

Abstract:

Detecting changes in multiple images of the same scene has recently seen increased interest due to the many contemporary applications including smart security systems, smart homes, remote sensing, surveillance, medical diagnosis, weather forecasting, speed and distance measurement, post-disaster forensics and much more. These applications differ in the scale, nature, and speed of change. This paper presents an application of image processing techniques to implement a real-time change detection system. Change is identified by comparing the RGB representation of two consecutive frames captured in real-time. The detection threshold can be controlled to account for various luminance levels. The comparison result is passed through a filter before decision making to reduce false positives, especially at lower luminance conditions. The system is implemented with a MATLAB Graphical User interface with several controls to manage its operation and performance.

Keywords: Image change detection, Image processing, image filtering, thresholding, B/W quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563
2099 Genetic-based Anomaly Detection in Logs of Process Aware Systems

Authors: Hanieh Jalali, Ahmad Baraani

Abstract:

Nowaday-s, many organizations use systems that support business process as a whole or partially. However, in some application domains, like software development and health care processes, a normative Process Aware System (PAS) is not suitable, because a flexible support is needed to respond rapidly to new process models. On the other hand, a flexible Process Aware System may be vulnerable to undesirable and fraudulent executions, which imposes a tradeoff between flexibility and security. In order to make this tradeoff available, a genetic-based anomaly detection model for logs of Process Aware Systems is presented in this paper. The detection of an anomalous trace is based on discovering an appropriate process model by using genetic process mining and detecting traces that do not fit the appropriate model as anomalous trace; therefore, when used in PAS, this model is an automated solution that can support coexistence of flexibility and security.

Keywords: Anomaly Detection, Genetic Algorithm, ProcessAware Systems, Process Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1925
2098 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra, Abdus Sobur

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of artificial intelligence (AI), specifically deep learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images, representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our approach presents a hybrid model, amalgamating the strengths of two renowned convolutional neural networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: Artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437
2097 Key Issues and Challenges of Intrusion Detection and Prevention System: Developing Proactive Protection in Wireless Network Environment

Authors: M. Salman, B. Budiardjo, K. Ramli

Abstract:

Nowadays wireless technology plays an important role in public and personal communication. However, the growth of wireless networking has confused the traditional boundaries between trusted and untrusted networks. Wireless networks are subject to a variety of threats and attacks at present. An attacker has the ability to listen to all network traffic which becoming a potential intrusion. Intrusion of any kind may lead to a chaotic condition. In addition, improperly configured access points also contribute the risk to wireless network. To overcome this issue, a security solution that includes an intrusion detection and prevention system need to be implemented. In this paper, first the security drawbacks of wireless network will be analyzed then investigate the characteristics and also the limitations on current wireless intrusion detection and prevention system. Finally, the requirement of next wireless intrusion prevention system will be identified including some key issues which should be focused on in the future to overcomes those limitations.

Keywords: intrusion detection, intrusion prevention, wireless networks, proactive protection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3938
2096 An Evaluation of Algorithms for Single-Echo Biosonar Target Classification

Authors: Turgay Temel, John Hallam

Abstract:

A recent neurospiking coding scheme for feature extraction from biosonar echoes of various plants is examined with avariety of stochastic classifiers. Feature vectors derived are employedin well-known stochastic classifiers, including nearest-neighborhood,single Gaussian and a Gaussian mixture with EM optimization.Classifiers' performances are evaluated by using cross-validation and bootstrapping techniques. It is shown that the various classifers perform equivalently and that the modified preprocessing configuration yields considerably improved results.

Keywords: Classification, neuro-spike coding, non-parametricmodel, parametric model, Gaussian mixture, EM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669
2095 Smartphone-Based Human Activity Recognition by Machine Learning Methods

Authors: Yanting Cao, Kazumitsu Nawata

Abstract:

As smartphones are continually upgrading, their software and hardware are getting smarter, so the smartphone-based human activity recognition will be described more refined, complex and detailed. In this context, we analyzed a set of experimental data, obtained by observing and measuring 30 volunteers with six activities of daily living (ADL). Due to the large sample size, especially a 561-feature vector with time and frequency domain variables, cleaning these intractable features and training a proper model become extremely challenging. After a series of feature selection and parameters adjustments, a well-performed SVM classifier has been trained. 

Keywords: smart sensors, human activity recognition, artificial intelligence, SVM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 635
2094 An Innovation Capability Maturity Model – Development and Initial Application

Authors: H. Essmann, N. du Preez

Abstract:

The seemingly ambiguous title of this paper – use of the terms maturity and innovation in concord – signifies the imperative of every organisation within the competitive domain. Where organisational maturity and innovativeness were traditionally considered antonymous, the assimilation of these two seemingly contradictory notions is fundamental to the assurance of long-term organisational prosperity. Organisations are required, now more than ever, to grow and mature their innovation capability – rending consistent innovative outputs. This paper describes research conducted to consolidate the principles of innovation and identify the fundamental components that constitute organisational innovation capability. The process of developing an Innovation Capability Maturity Model is presented. A brief description is provided of the basic components of the model, followed by a description of the case studies that were conducted to evaluate the model. The paper concludes with a summary of the findings and potential future research.

Keywords: Capability maturity, innovation, innovation capability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4184
2093 An Energy Detection-Based Algorithm for Cooperative Spectrum Sensing in Rayleigh Fading Channel

Authors: H. Bakhshi, E. Khayyamian

Abstract:

Cognitive radios have been recognized as one of the most promising technologies dealing with the scarcity of the radio spectrum. In cognitive radio systems, secondary users are allowed to utilize the frequency bands of primary users when the bands are idle. Hence, how to accurately detect the idle frequency bands has attracted many researchers’ interest. Detection performance is sensitive toward noise power and gain fluctuation. Since signal to noise ratio (SNR) between primary user and secondary users are not the same and change over the time, SNR and noise power estimation is essential. In this paper, we present a cooperative spectrum sensing algorithm using SNR estimation to improve detection performance in the real situation.

Keywords: Cognitive radio, cooperative spectrum sensing, energy detection, SNR estimation, spectrum sensing, Rayleigh fading channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
2092 Application of Computational Intelligence for Sensor Fault Detection and Isolation

Authors: A. Jabbari, R. Jedermann, W. Lang

Abstract:

The new idea of this research is application of a new fault detection and isolation (FDI) technique for supervision of sensor networks in transportation system. In measurement systems, it is necessary to detect all types of faults and failures, based on predefined algorithm. Last improvements in artificial neural network studies (ANN) led to using them for some FDI purposes. In this paper, application of new probabilistic neural network features for data approximation and data classification are considered for plausibility check in temperature measurement. For this purpose, two-phase FDI mechanism was considered for residual generation and evaluation.

Keywords: Fault detection and Isolation, Neural network, Temperature measurement, measurement approximation and classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
2091 An Improved Switching Median filter for Uniformly Distributed Impulse Noise Removal

Authors: Rajoo Pandey

Abstract:

The performance of an image filtering system depends on its ability to detect the presence of noisy pixels in the image. Most of the impulse detection schemes assume the presence of salt and pepper noise in the images and do not work satisfactorily in case of uniformly distributed impulse noise. In this paper, a new algorithm is presented to improve the performance of switching median filter in detection of uniformly distributed impulse noise. The performance of the proposed scheme is demonstrated by the results obtained from computer simulations on various images.

Keywords: Switching median filter, Impulse noise, Imagefiltering, Impulse detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
2090 A Novel Approach to Iris Localization for Iris Biometric Processing

Authors: Somnath Dey, Debasis Samanta

Abstract:

Iris-based biometric system is gaining its importance in several applications. However, processing of iris biometric is a challenging and time consuming task. Detection of iris part in an eye image poses a number of challenges such as, inferior image quality, occlusion of eyelids and eyelashes etc. Due to these problems it is not possible to achieve 100% accuracy rate in any iris-based biometric authentication systems. Further, iris detection is a computationally intensive task in the overall iris biometric processing. In this paper, we address these two problems and propose a technique to localize iris part efficiently and accurately. We propose scaling and color level transform followed by thresholding, finding pupil boundary points for pupil boundary detection and dilation, thresholding, vertical edge detection and removal of unnecessary edges present in the eye images for iris boundary detection. Scaling reduces the search space significantly and intensity level transform is helpful for image thresholding. Experimental results show that our approach is comparable with the existing approaches. Following our approach it is possible to detect iris part with 95-99% accuracy as substantiated by our experiments on CASIA Ver-3.0, ICE 2005, UBIRIS, Bath and MMU iris image databases.

Keywords: Iris recognition, iris localization, biometrics, image processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3191
2089 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer

Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved

Abstract:

Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.

Keywords: Computer-aided system, detection, image segmentation, morphology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 544
2088 Development of an Ensemble Classification Model Based on Hybrid Filter-Wrapper Feature Selection for Email Phishing Detection

Authors: R. B. Ibrahim, M. S. Argungu, I. M. Mungadi

Abstract:

It is obvious in this present time, internet has become an indispensable part of human life since its inception. The Internet has provided diverse opportunities to make life so easy for human beings, through the adoption of various channels. Among these channels are email, internet banking, video conferencing, and the like. Email is one of the easiest means of communication hugely accepted among individuals and organizations globally. But over decades the security integrity of this platform has been challenged with malicious activities like Phishing. Email phishing is designed by phishers to fool the recipient into handing over sensitive personal information such as passwords, credit card numbers, account credentials, social security numbers, etc. This activity has caused a lot of financial damage to email users globally which has resulted in bankruptcy, sudden death of victims, and other health-related sicknesses. Although many methods have been proposed to detect email phishing, in this research, the results of multiple machine-learning methods for predicting email phishing have been compared with the use of filter-wrapper feature selection. It is worth noting that all three models performed substantially but one outperformed the other. The dataset used for these models is obtained from Kaggle online data repository, while three classifiers: decision tree, Naïve Bayes, and Logistic regression are ensemble (Bagging) respectively. Results from the study show that the Decision Tree (CART) bagging ensemble recorded the highest accuracy of 98.13% using PEF (Phishing Essential Features). This result further demonstrates the dependability of the proposed model.

Keywords: Ensemble, hybrid, filter-wrapper, phishing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178
2087 Similarity Detection in Collaborative Development of Object-Oriented Formal Specifications

Authors: Fathi Taibi, Fouad Mohammed Abbou, Md. Jahangir Alam

Abstract:

The complexity of today-s software systems makes collaborative development necessary to accomplish tasks. Frameworks are necessary to allow developers perform their tasks independently yet collaboratively. Similarity detection is one of the major issues to consider when developing such frameworks. It allows developers to mine existing repositories when developing their own views of a software artifact, and it is necessary for identifying the correspondences between the views to allow merging them and checking their consistency. Due to the importance of the requirements specification stage in software development, this paper proposes a framework for collaborative development of Object- Oriented formal specifications along with a similarity detection approach to support the creation, merging and consistency checking of specifications. The paper also explores the impact of using additional concepts on improving the matching results. Finally, the proposed approach is empirically evaluated.

Keywords: Collaborative Development, Formal methods, Object-Oriented, Similarity detection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
2086 Actuator Fault Detection and Fault Tolerant Control of a Nonlinear System Using Sliding Mode Observer

Authors: R. Loukil, M. Chtourou, T. Damak

Abstract:

In this work, we use the Fault detection and isolation and the Fault tolerant control based on sliding mode observer in order to introduce the well diagnosis of a nonlinear system. The robustness of the proposed observer for the two techniques is tested through a physical example. The results in this paper show the interaction between the Fault tolerant control and the Diagnosis procedure.

Keywords: Fault detection and isolation “FDI”, Fault tolerant control “FTC”, sliding mode observer, nonlinear system, robustness, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1653
2085 A Multimodal Approach for Biometric Authentication with Multiple Classifiers

Authors: Sorin Soviany, Cristina Soviany, Mariana Jurian

Abstract:

The paper presents a multimodal approach for biometric authentication, based on multiple classifiers. The proposed solution uses a post-classification biometric fusion method in which the biometric data classifiers outputs are combined in order to improve the overall biometric system performance by decreasing the classification error rates. The paper shows also the biometric recognition task improvement by means of a carefully feature selection, as much as not all of the feature vectors components support the accuracy improvement.

Keywords: biometric fusion, multiple classifiers

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083