Search results for: ruin probability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 555

Search results for: ruin probability

105 Real-time Network Anomaly Detection Systems Based on Machine-Learning Algorithms

Authors: Zahra Ramezanpanah, Joachim Carvallo, Aurelien Rodriguez

Abstract:

This paper aims to detect anomalies in streaming data using machine learning algorithms. In this regard, we designed two separate pipelines and evaluated the effectiveness of each separately. The first pipeline, based on supervised machine learning methods, consists of two phases. In the first phase, we trained several supervised models using the UNSW-NB15 data set. We measured the efficiency of each using different performance metrics and selected the best model for the second phase. At the beginning of the second phase, we first, using Argus Server, sniffed a local area network. Several types of attacks were simulated and then sent the sniffed data to a running algorithm at short intervals. This algorithm can display the results of each packet of received data in real-time using the trained model. The second pipeline presented in this paper is based on unsupervised algorithms, in which a Temporal Graph Network (TGN) is used to monitor a local network. The TGN is trained to predict the probability of future states of the network based on its past behavior. Our contribution in this section is introducing an indicator to identify anomalies from these predicted probabilities.

Keywords: Cyber-security, Intrusion Detection Systems, Temporal Graph Network, Anomaly Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 515
104 The Effect of Application of Biological Phosphate Fertilizer (Fertile 2) and Triple Super Phosphate Chemical Fertilizers on Some Morphological Traits of Corn (SC704)

Authors: M. Mojaddam, M. Araei, T. Saki Nejad, M. Soltani Howyzeh

Abstract:

In order to study the effect of different levels of triple super phosphate chemical fertilizer and biological phosphate fertilizer (fertile 2) on some morphological traits of corn this research was carried out in Ahvaz in 2002 as a factorial experiment in randomized complete block design with 4 replications). The experiment included two factors: first, biological phosphate fertilizer (fertile 2) at three levels of 0, 100, 200 g/ha; second, triple super phosphate chemical fertilizer at three levels of 0, 60, 90 kg/ha of pure phosphorus (P2O5). The obtained results indicated that fertilizer treatments had a significant effect on some morphological traits at 1% probability level. In this regard, P2B2 treatment (100 g/ha biological phosphate fertilizer (fertile 2) and 60 kg/ha triple super phosphate fertilizer) had the greatest plant height, stem diameter, number of leaves and ear length. It seems that in Ahvaz weather conditions, decrease of consumption of triple superphosphate chemical fertilizer to less than a half along with the consumption of biological phosphate fertilizer (fertile 2) is highly important in order to achieve optimal results. Therefore, it can be concluded that biological fertilizers can be used as a suitable substitute for some of the chemical fertilizers in sustainable agricultural systems.

Keywords: Biological phosphate fertilizer, corn (SC704), morphological, triple super phosphate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1824
103 An Efficient Approach to Mining Frequent Itemsets on Data Streams

Authors: Sara Ansari, Mohammad Hadi Sadreddini

Abstract:

The increasing importance of data stream arising in a wide range of advanced applications has led to the extensive study of mining frequent patterns. Mining data streams poses many new challenges amongst which are the one-scan nature, the unbounded memory requirement and the high arrival rate of data streams. In this paper, we propose a new approach for mining itemsets on data stream. Our approach SFIDS has been developed based on FIDS algorithm. The main attempts were to keep some advantages of the previous approach and resolve some of its drawbacks, and consequently to improve run time and memory consumption. Our approach has the following advantages: using a data structure similar to lattice for keeping frequent itemsets, separating regions from each other with deleting common nodes that results in a decrease in search space, memory consumption and run time; and Finally, considering CPU constraint, with increasing arrival rate of data that result in overloading system, SFIDS automatically detect this situation and discard some of unprocessing data. We guarantee that error of results is bounded to user pre-specified threshold, based on a probability technique. Final results show that SFIDS algorithm could attain about 50% run time improvement than FIDS approach.

Keywords: Data stream, frequent itemset, stream mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
102 A Bayesian Kernel for the Prediction of Protein- Protein Interactions

Authors: Hany Alashwal, Safaai Deris, Razib M. Othman

Abstract:

Understanding proteins functions is a major goal in the post-genomic era. Proteins usually work in context of other proteins and rarely function alone. Therefore, it is highly relevant to study the interaction partners of a protein in order to understand its function. Machine learning techniques have been widely applied to predict protein-protein interactions. Kernel functions play an important role for a successful machine learning technique. Choosing the appropriate kernel function can lead to a better accuracy in a binary classifier such as the support vector machines. In this paper, we describe a Bayesian kernel for the support vector machine to predict protein-protein interactions. The use of Bayesian kernel can improve the classifier performance by incorporating the probability characteristic of the available experimental protein-protein interactions data that were compiled from different sources. In addition, the probabilistic output from the Bayesian kernel can assist biologists to conduct more research on the highly predicted interactions. The results show that the accuracy of the classifier has been improved using the Bayesian kernel compared to the standard SVM kernels. These results imply that protein-protein interaction can be predicted using Bayesian kernel with better accuracy compared to the standard SVM kernels.

Keywords: Bioinformatics, Protein-protein interactions, Bayesian Kernel, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
101 Health Monitoring of Power Transformers by Dissolved Gas Analysis using Regression Method and Study the Effect of Filtration on Oil

Authors: Anjali Chatterjee, Nirmal Kumar Roy

Abstract:

Economically transformers constitute one of the largest investments in a Power system. For this reason, transformer condition assessment and management is a high priority task. If a transformer fails, it would have a significant negative impact on revenue and service reliability. Monitoring the state of health of power transformers has traditionally been carried out using laboratory Dissolved Gas Analysis (DGA) tests performed at periodic intervals on the oil sample, collected from the transformers. DGA of transformer oil is the single best indicator of a transformer-s overall condition and is a universal practice today, which started somewhere in the 1960s. Failure can occur in a transformer due to different reasons. Some failures can be limited or prevented by maintenance. Oil filtration is one of the methods to remove the dissolve gases and prevent the deterioration of the oil. In this paper we analysis the DGA data by regression method and predict the gas concentration in the oil in the future. We bring about a comparative study of different traditional methods of regression and the errors generated out of their predictions. With the help of these data we can deduce the health of the transformer by finding the type of fault if it has occurred or will occur in future. Additional in this paper effect of filtration on the transformer health is highlight by calculating the probability of failure of a transformer with and without oil filtrating.

Keywords: Power Transformers, Dissolve gas Analysis, Regression method, Filtration, oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2948
100 Effect of Supplemental Irrigation, Nitrogen Chemical Fertilizer, and Inoculation with Rhizobium Bacteria on Grain Yield and Its Components of Chickpea (Cicer arietinum L.) Under Rainfed Conditions

Authors: Abbas Maleki, Maryam Pournajaf, Rahim Naseri, Reza Rashnavadi

Abstract:

In order to study the effects of supplemental irrigation, different levels of nitrogen chemical fertilizer and inoculation with rhizobium bacteria on the grain yield of chickpea, an experiment was carried out using split plot arrangement in randomize complete block design with three replication in agricultural researches station of Zanjan, Iran during 2009-2010 cropping season. The factors of experiment consisted of irritation (without irrigation (I1), irrigation at flowering stage (I2), irrigation at flowering and grain filling stages (I3) and full irrigation (I4)) and different levels of nitrogen fertilizer (without using of nitrogen fertilizer (N0), 75 kg.ha-1 (N75), 150 kg.ha-1 (N150) and inoculation with rhizobium bacteria (N4). The results of the analysis of variance showed that the effects of irrigation, nitrogen fertilizer levels and bacterial inoculation, were significant affect on number of pods per plant, number grains per plant, grain weight, grain yield, biological yield and harvest index at 1% probability level. Also Results showed that the grain yield in full irrigation treatment and inoculated with rhizobium bacteria was significantly higher than the other treatments.

Keywords: Chickpea, Nitrogen, Supplemental irrigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
99 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks

Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha

Abstract:

Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs – Sigmoid, ReLU, and Tanh – have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment on multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLU-ReLU) combination. Our results show that on using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).

Keywords: Activation Function, Universal Approximation function, Neural Networks, convergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161
98 Formal Analysis of a Public-Key Algorithm

Authors: Markus Kaiser, Johannes Buchmann

Abstract:

In this article, a formal specification and verification of the Rabin public-key scheme in a formal proof system is presented. The idea is to use the two views of cryptographic verification: the computational approach relying on the vocabulary of probability theory and complexity theory and the formal approach based on ideas and techniques from logic and programming languages. A major objective of this article is the presentation of the first computer-proved implementation of the Rabin public-key scheme in Isabelle/HOL. Moreover, we explicate a (computer-proven) formalization of correctness as well as a computer verification of security properties using a straight-forward computation model in Isabelle/HOL. The analysis uses a given database to prove formal properties of our implemented functions with computer support. The main task in designing a practical formalization of correctness as well as efficient computer proofs of security properties is to cope with the complexity of cryptographic proving. We reduce this complexity by exploring a light-weight formalization that enables both appropriate formal definitions as well as efficient formal proofs. Consequently, we get reliable proofs with a minimal error rate augmenting the used database, what provides a formal basis for more computer proof constructions in this area.

Keywords: public-key encryption, Rabin public-key scheme, formalproof system, higher-order logic, formal verification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
97 An Intelligent Approach for Management of Hybrid DG System

Authors: Ali Vaseghi Ardekani, Hamid Reza Forutan, Amir Habibi, Ali Reza Rajabi, Hasan Adloo

Abstract:

Distributed generation units (DGs) are grid-connected or stand-alone electric generation units located within the electric distribution system at or near the end user. It is generally accepted that centralized electric power plants will remain the major source of the electric power supply for the near future. DGs, however, can complement central power by providing incremental capacity to the utility grid or to an end user. This paper presents an efficient power dispatching model for hybrid wind-Solar power generation system, to satisfy some essential requirements, such as dispersed electric power demand, electric power quality and reducing generation cost and so on. In this paper, presented some elements of the main parts in the hybrid system; and then made fundamental dispatching strategies according to different situations; then pointed out four improving measures to improve genetic algorithm, such as: modify the producing way of selection probability, improve the way of crossover, protect excellent chromosomes, and change mutation range and so on. Finally, propose a technique for solving the unit's commitment for dispatching problem based on an improved genetic algorithm.

Keywords: Power Quality, Wind-Solar System, Genetic Algorithm, Hybrid System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
96 Identification of Most Frequently Occurring Lexis in Winnings-announcing Unsolicited Bulke-mails

Authors: Jatinderkumar R. Saini, Apurva A. Desai

Abstract:

e-mail has become an important means of electronic communication but the viability of its usage is marred by Unsolicited Bulk e-mail (UBE) messages. UBE consists of many types like pornographic, virus infected and 'cry-for-help' messages as well as fake and fraudulent offers for jobs, winnings and medicines. UBE poses technical and socio-economic challenges to usage of e-mails. To meet this challenge and combat this menace, we need to understand UBE. Towards this end, the current paper presents a content-based textual analysis of nearly 3000 winnings-announcing UBE. Technically, this is an application of Text Parsing and Tokenization for an un-structured textual document and we approach it using Bag Of Words (BOW) and Vector Space Document Model techniques. We have attempted to identify the most frequently occurring lexis in the winnings-announcing UBE documents. The analysis of such top 100 lexis is also presented. We exhibit the relationship between occurrence of a word from the identified lexisset in the given UBE and the probability that the given UBE will be the one announcing fake winnings. To the best of our knowledge and survey of related literature, this is the first formal attempt for identification of most frequently occurring lexis in winningsannouncing UBE by its textual analysis. Finally, this is a sincere attempt to bring about alertness against and mitigate the threat of such luring but fake UBE.

Keywords: Lexis, Unsolicited Bulk e-mail (UBE), Vector SpaceDocument Model, Winnings, Lottery

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1545
95 Multi-Hazard Risk Assessment and Management in Tourism Industry- A Case Study from the Island of Taiwan

Authors: Chung-Hung Tsai

Abstract:

Global environmental changes lead to increased frequency and scale of natural disaster, Taiwan is under the influence of global warming and extreme weather. Therefore, the vulnerability was increased and variability and complexity of disasters is relatively enhanced. The purpose of this study is to consider the source and magnitude of hazard characteristics on the tourism industry. Using modern risk management concepts, integration of related domestic and international basic research, this goes beyond the Taiwan typhoon disaster risk assessment model and evaluation of loss. This loss evaluation index system considers the impact of extreme weather, in particular heavy rain on the tourism industry in Taiwan. Consider the extreme climate of the compound impact of disaster for the tourism industry; we try to make multi-hazard risk assessment model, strategies and suggestions. Related risk analysis results are expected to provide government department, the tourism industry asset owners, insurance companies and banking include tourist disaster risk necessary information to help its tourism industry for effective natural disaster risk management.

Keywords: Tourism industry, extreme weather, multi-hazard, vulnerability analysis, loss exceeding probability, risk management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3834
94 Position Based Routing Protocol with More Reliability in Mobile Ad Hoc Network

Authors: Mahboobeh Abdoos, Karim Faez, Masoud Sabaei

Abstract:

Position based routing protocols are the kinds of routing protocols, which they use of nodes location information, instead of links information to routing. In position based routing protocols, it supposed that the packet source node has position information of itself and it's neighbors and packet destination node. Greedy is a very important position based routing protocol. In one of it's kinds, named MFR (Most Forward Within Radius), source node or packet forwarder node, sends packet to one of it's neighbors with most forward progress towards destination node (closest neighbor to destination). Using distance deciding metric in Greedy to forward packet to a neighbor node, is not suitable for all conditions. If closest neighbor to destination node, has high speed, in comparison with source node or intermediate packet forwarder node speed or has very low remained battery power, then packet loss probability is increased. Proposed strategy uses combination of metrics distancevelocity similarity-power, to deciding about giving the packet to which neighbor. Simulation results show that the proposed strategy has lower lost packets average than Greedy, so it has more reliability.

Keywords: Mobile Ad Hoc Network, Position Based, Reliability, Routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1767
93 Strength and Permeability Characteristics of Steel Fibre Reinforced Concrete

Authors: A. P. Singh

Abstract:

The results reported in this paper are the part of an extensive laboratory investigation undertaken to study the effects of fibre parameters on the permeability and strength characteristics of steel fibre reinforced concrete (SFRC). The effect of varying fibre content and curing age on the water permeability, compressive and split tensile strengths of SFRC was investigated using straight steel fibres having an aspect ratio of 65. Samples containing three different weight fractions of 1.0%, 2.0% and 4.0% were cast and tested for permeability and strength after 7, 14, 28 and 60 days of curing. Plain concrete samples were also cast and tested for reference purposes.

Permeability was observed to decrease significantly with the addition of steel fibres and continued to decrease with increasing fibre content and increasing curing age. An exponential relationship was observed between permeability and compressive and split tensile strengths for SFRC as well as PCC. To evaluate the effect of fibre content on the permeability and strength characteristics, the Analysis of Variance (ANOVA) statistical method was used. An a level (probability of error) of 0.05 was used for ANOVA test. Regression analysis was carried out to develop relationship between permeability, compressive strength and curing age.

Keywords: Permeability, grade of concrete, fibre shape, fibre content, curing age, steady state, Darcy’s law, method of penetration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3088
92 The Tourist Satisfaction on Brand Identity Design of Creative Agriculture Community Enterprise, Bang Khonthi District, Samut Songkhram Province

Authors: Panupong Chanplin, Kathaleeya Chanda., Wilailuk Mepracha

Abstract:

The aims of this research were twofold: 1) to brand identity design of Creative Agriculture Community Enterprise, Bang Khonthi District, Samut Songkhram Province and 2) to study the level of tourist satisfaction towards brand identity design of Creative Agriculture Community Enterprise, Bang Khonthi District, Samut Songkhram Province. tourist satisfaction was measured using six criteria: clear brand positioning, likeable brand personality, memorable logo, attractive color palette, professional typography and on-brand supporting graphics. The researcher utilized a probability sampling method via simple random sampling. The sample consisted of 30 tourists in the Creative Agriculture Community Enterprise. Statistics utilized for data analysis were percentage, mean, and standard deviation. The results suggest that tourist had high levels of satisfaction towards all six criteria of the brand identity design that was designed to target them. This study proposes that specifically brand identity designed of Creative Agriculture Community Enterprise could also be implemented with other real media already available on the market.

Keywords: Satisfaction, brand identity, logo, creative agriculture community enterprise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
91 Stackelberg Security Game for Optimizing Security of Federated Internet of Things Platform Instances

Authors: Violeta Damjanovic-Behrendt

Abstract:

This paper presents an approach for optimal cyber security decisions to protect instances of a federated Internet of Things (IoT) platform in the cloud. The presented solution implements the repeated Stackelberg Security Game (SSG) and a model called Stochastic Human behaviour model with AttRactiveness and Probability weighting (SHARP). SHARP employs the Subjective Utility Quantal Response (SUQR) for formulating a subjective utility function, which is based on the evaluations of alternative solutions during decision-making. We augment the repeated SSG (including SHARP and SUQR) with a reinforced learning algorithm called Naïve Q-Learning. Naïve Q-Learning belongs to the category of active and model-free Machine Learning (ML) techniques in which the agent (either the defender or the attacker) attempts to find an optimal security solution. In this way, we combine GT and ML algorithms for discovering optimal cyber security policies. The proposed security optimization components will be validated in a collaborative cloud platform that is based on the Industrial Internet Reference Architecture (IIRA) and its recently published security model.

Keywords: Security, internet of things, cloud computing, Stackelberg security game, machine learning, Naïve Q-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
90 Designing for Experience-Based Tourism: A Virtual Tour in Tehran

Authors: Maryam Khalili, Fateme Ghanei

Abstract:

As one of the most significant phenomena of industrialized societies, tourism plays a key role in encouraging regional developments and enhancing higher standards of living for local communities in particular. Traveling is a formative experience endowed with lessons on various aspects of life. It allows us learning how to enhance the social position as well as the social relationships. However, people forget the need to travel and gain first-hand experiences as they have to cope with the ever-increasing rate of stress created by the disorders and routines of the urban dwelling style. In this paper, various spaces of such experiences were explored through a virtual tour with two underlying aims: 1) encouraging, informing, and educating the community in terms of tourism development, and 2) introducing a temporary release from the routines. This study enjoyed a practical-qualitative research methodology, and the required data were collected through observation and using a multiple-response questionnaire. The participants (19-48 years old) included 41 citizens of both genders (63.4% male and 36.6% female) from two regions in Tehran, selected by cluster-probability sampling. The results led to development of a spatial design for a virtual tour experience in Tehran where different areas are explored to both raise people’s awareness and educate them on their cultural heritage.

Keywords: Ecotourism, education, gamification, social interaction, urban design, virtual tour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
89 Discrete Polyphase Matched Filtering-based Soft Timing Estimation for Mobile Wireless Systems

Authors: Thomas O. Olwal, Michael A. van Wyk, Barend J. van Wyk

Abstract:

In this paper we present a soft timing phase estimation (STPE) method for wireless mobile receivers operating in low signal to noise ratios (SNRs). Discrete Polyphase Matched (DPM) filters, a Log-maximum a posterior probability (MAP) and/or a Soft-output Viterbi algorithm (SOVA) are combined to derive a new timing recovery (TR) scheme. We apply this scheme to wireless cellular communication system model that comprises of a raised cosine filter (RCF), a bit-interleaved turbo-coded multi-level modulation (BITMM) scheme and the channel is assumed to be memory-less. Furthermore, no clock signals are transmitted to the receiver contrary to the classical data aided (DA) models. This new model ensures that both the bandwidth and power of the communication system is conserved. However, the computational complexity of ideal turbo synchronization is increased by 50%. Several simulation tests on bit error rate (BER) and block error rate (BLER) versus low SNR reveal that the proposed iterative soft timing recovery (ISTR) scheme outperforms the conventional schemes.

Keywords: discrete polyphase matched filters, maximum likelihood estimators, soft timing phase estimation, wireless mobile systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
88 Estimation of Time -Varying Linear Regression with Unknown Time -Volatility via Continuous Generalization of the Akaike Information Criterion

Authors: Elena Ezhova, Vadim Mottl, Olga Krasotkina

Abstract:

The problem of estimating time-varying regression is inevitably concerned with the necessity to choose the appropriate level of model volatility - ranging from the full stationarity of instant regression models to their absolute independence of each other. In the stationary case the number of regression coefficients to be estimated equals that of regressors, whereas the absence of any smoothness assumptions augments the dimension of the unknown vector by the factor of the time-series length. The Akaike Information Criterion is a commonly adopted means of adjusting a model to the given data set within a succession of nested parametric model classes, but its crucial restriction is that the classes are rigidly defined by the growing integer-valued dimension of the unknown vector. To make the Kullback information maximization principle underlying the classical AIC applicable to the problem of time-varying regression estimation, we extend it onto a wider class of data models in which the dimension of the parameter is fixed, but the freedom of its values is softly constrained by a family of continuously nested a priori probability distributions.

Keywords: Time varying regression, time-volatility of regression coefficients, Akaike Information Criterion (AIC), Kullback information maximization principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
87 Towards Growing Self-Organizing Neural Networks with Fixed Dimensionality

Authors: Guojian Cheng, Tianshi Liu, Jiaxin Han, Zheng Wang

Abstract:

The competitive learning is an adaptive process in which the neurons in a neural network gradually become sensitive to different input pattern clusters. The basic idea behind the Kohonen-s Self-Organizing Feature Maps (SOFM) is competitive learning. SOFM can generate mappings from high-dimensional signal spaces to lower dimensional topological structures. The main features of this kind of mappings are topology preserving, feature mappings and probability distribution approximation of input patterns. To overcome some limitations of SOFM, e.g., a fixed number of neural units and a topology of fixed dimensionality, Growing Self-Organizing Neural Network (GSONN) can be used. GSONN can change its topological structure during learning. It grows by learning and shrinks by forgetting. To speed up the training and convergence, a new variant of GSONN, twin growing cell structures (TGCS) is presented here. This paper first gives an introduction to competitive learning, SOFM and its variants. Then, we discuss some GSONN with fixed dimensionality, which include growing cell structures, its variants and the author-s model: TGCS. It is ended with some testing results comparison and conclusions.

Keywords: Artificial neural networks, Competitive learning, Growing cell structures, Self-organizing feature maps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
86 Packet Reserving and Clogging Control via Routing Aware Packet Reserving Framework in MANET

Authors: C. Sathiyakumar, K. Duraiswamy

Abstract:

In MANET, mobile nodes communicate with each other using the wireless channel where transmission takes place with significant interference. The wireless medium used in MANET is a shared resource used by all the nodes available in MANET. Packet reserving is one important resource management scheme which controls the allocation of bandwidth among multiple flows through node cooperation in MANET. This paper proposes packet reserving and clogging control via Routing Aware Packet Reserving (RAPR) framework in MANET. It mainly focuses the end-to-end routing condition with maximal throughput. RAPR is complimentary system where the packet reserving utilizes local routing information available in each node. Path setup in RAPR estimates the security level of the system, and symbolizes the end-to-end routing by controlling the clogging. RAPR reaches the packet to the destination with high probability ratio and minimal delay count. The standard performance measures such as network security level, communication overhead, end-to-end throughput, resource utilization efficiency and delay measure are considered in this work. The results reveals that the proposed packet reservation and clogging control via Routing Aware Packet Reserving (RAPR) framework performs well for the above said performance measures compare to the existing methods.

Keywords: Packet reserving, Clogging control, Packet reservation in MANET, RAPR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1811
85 Comparative Analysis of Various Multiuser Detection Techniques in SDMA-OFDM System Over the Correlated MIMO Channel Model for IEEE 802.16n

Authors: Susmita Das, Kala Praveen Bagadi

Abstract:

SDMA (Space-Division Multiple Access) is a MIMO (Multiple-Input and Multiple-Output) based wireless communication network architecture which has the potential to significantly increase the spectral efficiency and the system performance. The maximum likelihood (ML) detection provides the optimal performance, but its complexity increases exponentially with the constellation size of modulation and number of users. The QR decomposition (QRD) MUD can be a substitute to ML detection due its low complexity and near optimal performance. The minimum mean-squared-error (MMSE) multiuser detection (MUD) minimises the mean square error (MSE), which may not give guarantee that the BER of the system is also minimum. But the minimum bit error rate (MBER) MUD performs better than the classic MMSE MUD in term of minimum probability of error by directly minimising the BER cost function. Also the MBER MUD is able to support more users than the number of receiving antennas, whereas the rest of MUDs fail in this scenario. In this paper the performance of various MUD techniques is verified for the correlated MIMO channel models based on IEEE 802.16n standard.

Keywords: Multiple input multiple output, multiuser detection, orthogonal frequency division multiplexing, space division multiple access, Bit error rate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
84 Data-driven Multiscale Tsallis Complexity: Application to EEG Analysis

Authors: Young-Seok Choi

Abstract:

This work proposes a data-driven multiscale based quantitative measures to reveal the underlying complexity of electroencephalogram (EEG), applying to a rodent model of hypoxic-ischemic brain injury and recovery. Motivated by that real EEG recording is nonlinear and non-stationary over different frequencies or scales, there is a need of more suitable approach over the conventional single scale based tools for analyzing the EEG data. Here, we present a new framework of complexity measures considering changing dynamics over multiple oscillatory scales. The proposed multiscale complexity is obtained by calculating entropies of the probability distributions of the intrinsic mode functions extracted by the empirical mode decomposition (EMD) of EEG. To quantify EEG recording of a rat model of hypoxic-ischemic brain injury following cardiac arrest, the multiscale version of Tsallis entropy is examined. To validate the proposed complexity measure, actual EEG recordings from rats (n=9) experiencing 7 min cardiac arrest followed by resuscitation were analyzed. Experimental results demonstrate that the use of the multiscale Tsallis entropy leads to better discrimination of the injury levels and improved correlations with the neurological deficit evaluation after 72 hours after cardiac arrest, thus suggesting an effective metric as a prognostic tool.

Keywords: Electroencephalogram (EEG), multiscale complexity, empirical mode decomposition, Tsallis entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065
83 A Data Driven Approach for the Degradation of a Lithium-Ion Battery Based on Accelerated Life Test

Authors: Alyaa M. Younes, Nermine Harraz, Mohammad H. Elwany

Abstract:

Lithium ion batteries are currently used for many applications including satellites, electric vehicles and mobile electronics. Their ability to store relatively large amount of energy in a limited space make them most appropriate for critical applications. Evaluation of the life of these batteries and their reliability becomes crucial to the systems they support. Reliability of Li-Ion batteries has been mainly considered based on its lifetime. However, another important factor that can be considered critical in many applications such as in electric vehicles is the cycle duration. The present work presents the results of an experimental investigation on the degradation behavior of a Laptop Li-ion battery (type TKV2V) and the effect of applied load on the battery cycle time. The reliability was evaluated using an accelerated life test. Least squares linear regression with median rank estimation was used to estimate the Weibull distribution parameters needed for the reliability functions estimation. The probability density function, failure rate and reliability function under each of the applied loads were evaluated and compared. An inverse power model is introduced that can predict cycle time at any stress level given.

Keywords: Accelerated life test, inverse power law, lithium ion battery, reliability evaluation, Weibull distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842
82 Complex Condition Monitoring System of Aircraft Gas Turbine Engine

Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev

Abstract:

Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE workand output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stage-by-stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.

Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2548
81 Microseismicity of the Tehran Region Based on Three Seismic Networks

Authors: Jamileh Vasheghani Farahani

Abstract:

The main purpose of this research is to show the current active faults and active tectonic of the area by three seismic networks in Tehran region: 1-Tehran Disaster Mitigation and Management Organization (TDMMO), 2-Broadband Iranian National Seismic Network Center (BIN), 3-Iranian Seismological Center (IRSC). In this study, we analyzed microearthquakes happened in Tehran city and its surroundings using the Tehran networks from 1996 to 2015. We found some active faults and trends in the region. There is a 200-year history of historical earthquakes in Tehran. Historical and instrumental seismicity show that the east of Tehran is more active than the west. The Mosha fault in the North of Tehran is one of the active faults of the central Alborz. Moreover, other major faults in the region are Kahrizak, Eyvanakey, Parchin and North Tehran faults. An important seismicity region is an intersection of the Mosha and North Tehran fault systems (Kalan village in Lavasan). This region shows a cluster of microearthquakes. According to the historical and microseismic events analyzed in this research, there is a seismic gap in SE of Tehran. The empirical relationship is used to assess the Mmax based on the rupture length. There is a probability of occurrence of a strong motion of 7.0 to 7.5 magnitudes in the region (based on the assessed capability of the major faults such as Parchin and Eyvanekey faults and historical earthquakes).

Keywords: Iran, major faults, microseismicity, Tehran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
80 On Pooling Different Levels of Data in Estimating Parameters of Continuous Meta-Analysis

Authors: N. R. N. Idris, S. Baharom

Abstract:

A meta-analysis may be performed using aggregate data (AD) or an individual patient data (IPD). In practice, studies may be available at both IPD and AD level. In this situation, both the IPD and AD should be utilised in order to maximize the available information. Statistical advantages of combining the studies from different level have not been fully explored. This study aims to quantify the statistical benefits of including available IPD when conducting a conventional summary-level meta-analysis. Simulated meta-analysis were used to assess the influence of the levels of data on overall meta-analysis estimates based on IPD-only, AD-only and the combination of IPD and AD (mixed data, MD), under different study scenario. The percentage relative bias (PRB), root mean-square-error (RMSE) and coverage probability were used to assess the efficiency of the overall estimates. The results demonstrate that available IPD should always be included in a conventional meta-analysis using summary level data as they would significantly increased the accuracy of the estimates.On the other hand, if more than 80% of the available data are at IPD level, including the AD does not provide significant differences in terms of accuracy of the estimates. Additionally, combining the IPD and AD has moderating effects on the biasness of the estimates of the treatment effects as the IPD tends to overestimate the treatment effects, while the AD has the tendency to produce underestimated effect estimates. These results may provide some guide in deciding if significant benefit is gained by pooling the two levels of data when conducting meta-analysis.

Keywords: Aggregate data, combined-level data, Individual patient data, meta analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743
79 Effect of Transmission Codes on Hybrid SC/MRC Diversity Reception MQAM system over Rayleigh Fading Channels

Authors: J.S. Ubhi, M.S. Patterh, T.S. Kamal

Abstract:

In this paper, the effect of transmission codes on the performance of coherent square M-ary quadrature amplitude modulation (CSMQAM) under hybrid selection/maximal-ratio combining (H-S/MRC) diversity is analysed. The fading channels are modeled as frequency non-selective slow independent and identically distributed Rayleigh fading channels corrupted by additive white Gaussian noise (AWGN). The results for coded MQAM are computed numerically for the case of (24,12) extended Golay code and compared with uncoded MQAM under H-S/MRC diversity by plotting error probabilities versus average signal to noise ratio (SNR) for various values L and N in order to examine the improvement in the performance of the digital communications system as the number of selected diversity branches is increased. The results for no diversity, conventional SC and Lth order MRC schemes are also plotted for comparison. Closed form analytical results derived in this paper are sufficiently simple and therefore can be computed numerically without any approximations. The analytical results presented in this paper are expected to provide useful information needed for design and analysis of digital communication systems over wireless fading channels.

Keywords: Error probability, diversity reception, Rayleigh fading channels, wireless digital communications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
78 Early Warning System of Financial Distress Based On Credit Cycle Index

Authors: Bi-Huei Tsai

Abstract:

Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightlydistressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the one-stage model has the lower misclassification error rate than the two-stage model. The one-stage model is more accurate than the two-stage model.

Keywords: Multinomial logit model, corporate governance, company failure, reorganization, bankruptcy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2686
77 On The Analysis of a Compound Neural Network for Detecting Atrio Ventricular Heart Block (AVB) in an ECG Signal

Authors: Salama Meghriche, Amer Draa, Mohammed Boulemden

Abstract:

Heart failure is the most common reason of death nowadays, but if the medical help is given directly, the patient-s life may be saved in many cases. Numerous heart diseases can be detected by means of analyzing electrocardiograms (ECG). Artificial Neural Networks (ANN) are computer-based expert systems that have proved to be useful in pattern recognition tasks. ANN can be used in different phases of the decision-making process, from classification to diagnostic procedures. This work concentrates on a review followed by a novel method. The purpose of the review is to assess the evidence of healthcare benefits involving the application of artificial neural networks to the clinical functions of diagnosis, prognosis and survival analysis, in ECG signals. The developed method is based on a compound neural network (CNN), to classify ECGs as normal or carrying an AtrioVentricular heart Block (AVB). This method uses three different feed forward multilayer neural networks. A single output unit encodes the probability of AVB occurrences. A value between 0 and 0.1 is the desired output for a normal ECG; a value between 0.1 and 1 would infer an occurrence of an AVB. The results show that this compound network has a good performance in detecting AVBs, with a sensitivity of 90.7% and a specificity of 86.05%. The accuracy value is 87.9%.

Keywords: Artificial neural networks, Electrocardiogram(ECG), Feed forward multilayer neural network, Medical diagnosis, Pattern recognitionm, Signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2476
76 Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models

Authors: Yina F. Muñoz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Fariña, Guilherme M. Sales

Abstract:

The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results.

Keywords: Concrete bridges, deterioration, Markov chains, probability matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445