Search results for: Post weld Heat Treatment
2748 Thermal Management of Space Power Electronics using TLM-3D
Authors: R. Hocine, K. Belkacemi, A. Boukortt, A. Boudjemai
Abstract:
When designing satellites, one of the major issues aside for designing its primary subsystems is to devise its thermal. The thermal management of satellites requires solving different sets of issues with regards to modelling. If the satellite is well conditioned all other parts of the satellite will have higher temperature no matter what. The main issue of thermal modelling for satellite design is really making sure that all the other points of the satellite will be within the temperature limits they are designed. The insertion of power electronics in aerospace technologies is becoming widespread and the modern electronic systems used in space must be reliable and efficient with thermal management unaffected by outer space constraints. Many advanced thermal management techniques have been developed in recent years that have application in high power electronic systems. This paper presents a Three-Dimensional Modal Transmission Line Matrix (3D-TLM) implementation of transient heat flow in space power electronics. In such kind of components heat dissipation and good thermal management are essential. Simulation provides the cheapest tool to investigate all aspects of power handling. The 3DTLM has been successful in modeling heat diffusion problems and has proven to be efficient in terms of stability and complex geometry. The results show a three-dimensional visualisation of self-heating phenomena in the device affected by outer space constraints, and will presents possible approaches for increasing the heat dissipation capability of the power modules.
Keywords: Thermal management, conduction, heat dissipation, CTE, ceramic, heat spreader, nodes, 3D-TLM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27852747 Thermal and Mechanical Properties of Basalt Fibre Reinforced Concrete
Authors: Tumadhir M., Borhan
Abstract:
In this study, the thermal and mechanical properties of basalt fibre reinforced concrete were investigated. The volume fractions of basalt fibre of (0.1, 0.2, 0.3, and 0.5% by total mix volume) were used. Properties such as heat transfer, compressive and splitting tensile strengths were examined. Results indicated that the strength increases with increase the fibre content till 0.3% then there is a slight reduction when 0.5% fibre used. Lower amount of heat conducted through the thickness of concrete specimens than the conventional concrete was also recorded.Keywords: Chopped basalt fibre, Compressive strength, Splitting tensile strength, Heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59172746 Post Colonial Socio-Cultural Reflections in Telugu Literature
Authors: Kanakasabha Ramana
Abstract:
The Post colonial society in India has witnessed the turmoil to come out from the widespread control and influence of colonialism. The socio-cultural life of a society with all its dynamics is reflected in realistic forms of literature. The social events and human experience are drawn into a new creative form and are given to the reader as a new understanding and perspective of life. It enables the reader to understand the essence of life and motivates him to prepare for a positive change. After India becoming free from the colonial rule in 1947, systematic efforts were made by central and state governments and institutions to limit the role of English and simultaneously enlarge the function of Indian languages by planning in a strategic manner. The eighteen languages recognized as national languages are having very rich literatures. Telugu language is one among the Dravidian language family and is widely spoken by a majority of people. The post colonial socio-cultural factors were very well reflected in Telugu literature. The anti-colonial, reform oriented, progressive, post modernistic trends in Telugu literature are nothing but creative reflections of the post colonial society. This paper examines the major socio-cultural reflections in Telugu literature of the post colonial period.
Keywords: postcolonialism, culture, progressive movement, Telugu Literature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27072745 Investigation of Enhancement of Heat Transfer in Natural Convection Utilizing of Nanofluids
Authors: S. Etaig, R. Hasan, N. Perera
Abstract:
This paper analyses the heat transfer performance and fluid flow using different nanofluids in a square enclosure. The energy equation and Navier-Stokes equation are solved numerically using finite volume scheme. The effect of volume fraction concentration on the enhancement of heat transfer has been studied icorporating the Brownian motion; the influence of effective thermal conductivity on the enhancement was also investigated for a range of volume fraction concentration. The velocity profile for different Rayleigh number. Water-Cu, water AL2O3 and water-TiO2 were tested.Keywords: Computational fluid Dynamics, Natural convection, Nanofluid and Thermal conductivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18392744 Effect of Gamma Irradiation on the Crystalline Structure of Poly(Vinylidene Fluoride)
Authors: Adriana Souza M. Batista, Cláubia Pereira, Luiz O. Faria
Abstract:
The irradiation of polymeric materials has received much attention because it can produce diverse changes in chemical structure and physical properties. Thus, studying the chemical and structural changes of polymers is important in practice to achieve optimal conditions for the modification of polymers. The effect of gamma irradiation on the crystalline structure of poly(vinylidene fluoride) (PVDF) has been investigated using differential scanning calorimetry (DSC) and X-ray diffraction techniques (XRD). Gamma irradiation was carried out in atmosphere air with doses between 100 kGy at 3,000 kGy with a Co-60 source. In the melting thermogram of the samples irradiated can be seen a bimodal melting endotherm is detected with two melting temperature. The lower melting temperature is attributed to melting of crystals originally present and the higher melting peak due to melting of crystals reorganized upon heat treatment. These results are consistent with those obtained by XRD technique showing increasing crystallinity with increasing irradiation dose, although the melting latent heat is decreasing.Keywords: Differential scanning calorimetry, gamma irradiation, PVDF, X-ray diffraction technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16172743 Analysis of Heat Exchanger Network of Distillation Unit of Shiraz Oil Refinery
Authors: J. Khorshidi, E. Zare, A.R. Khademi
Abstract:
The reduction of energy consumption through improvements in energy efficiency has become an important goal for all industries, in order to improve the efficiency of the economy, and to reduce the emissions of Co2 caused by power generation. The objective of this paper is to investigate opportunities to increase process energy efficiency at the distillation unit of Shiraz oil refinery in south of Iran. The main aim of the project is to locate energy savings by use of pinch technology and to assess them. At first all the required data of hot and cold streams in preheating section of distillation unit has been extracted from the available flow sheets and then pinch analysis has been conducted. The present case study is a threshold one which does not need any utilities. After running range, targeting several heat exchanger networks were designed with respect to operating conditions and different ΔTmin. The optimal value of ΔTmin was calculated to be 22.3 °C. Based on this optimal value, there will be 5% reduction in annual total cost of heat exchanger network.
Keywords: Pinch technology, heat exchanger network, operating cost.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16822742 Performance Augmentation of a Combined Cycle Power Plant with Waste Heat Recovery and Solar Energy
Authors: Mohammed A. Elhaj, Jamal S. Yassin
Abstract:
In the present time, energy crises is considered a severe problem across the world. For the protection of global environment and maintain ecological balance, energy saving is considered one of the most vital issues from the view point of fuel consumption. As the industrial sectors everywhere continue efforts to improve their energy efficiency, recovering waste heat losses provides an attractive opportunity for an emission free and less costly energy resource. In the other hand the using of solar energy has become more insistent particularly after the high gross of prices and running off the conventional energy sources. Therefore, it is essential that we should endeavor for waste heat recovery as well as solar energy by making significant and concrete efforts. For these reasons this investigation is carried out to study and analyze the performance of a power plant working by a combined cycle in which heat recovery system generator (HRSG) gets its energy from the waste heat of a gas turbine unit. Evaluation of the performance of the plant is based on different thermal efficiencies of the main components in addition to the second law analysis considering the exergy destructions for the whole components. The contribution factors including the solar as well as the wasted energy are considered in the calculations. The final results have shown that there is significant exergy destruction in solar concentrator and the combustion chamber of the gas turbine unit. Other components such as compressor, gas turbine, steam turbine and heat exchangers having insignificant exergy destruction. Also, solar energy can contribute by about 27% of the input energy to the plant while the energy lost with exhaust gases can contribute by about 64% at maximum cases.
Keywords: Solar energy, environment, efficiency, waste heat, steam generator, performance, exergy destruction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21312741 Optimizing of Gas Consumption in Gas-burner Space Heater
Authors: Saead Negahdari, Davood Jalali Vahid
Abstract:
Nowadays, the importance of energy saving is clearance to everyone. By attention to increasing price of fuels and also the problems of environment pollutions, there are the most efforts for using fuels littler and more optimum in everywhere. This essay studies optimizing of gas consumption in gas-burner space heaters. In oven of each gas-burner space heaters there is two snags to prevent the hot air (the result of combustion of natural gas) to go out of oven of the gas-burner space heaters directly without delivering its heat to the space of favorite environment like a room. These snags cause a excess circulating that helps hot air deliver its heat to the space of favorite environment. It means the exhaust air temperature will be decreased then when there are no snags. This is the aim of this essay to use maximum potential energy of the natural gas to make heat. In this study, by the help of a finite volume software (FLUENT) consumption of the gas-burner space heaters is simulated and optimized. At the end of this writing, by comparing the results of software and experimental results, it will be proved the authenticity of this method.
Keywords: FLUENT, Heat transfer, Oven of Gas-burner spaceheaters, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18112740 Conjugate Mixed Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid in an Enclosure with Thick Wavy Bottom Wall
Authors: Sanjib Kr Pal, S. Bhattacharyya
Abstract:
Mixed convection of Cu-water nanofluid in an enclosure with thick wavy bottom wall has been investigated numerically. A co-ordinate transformation method is used to transform the computational domain into an orthogonal co-ordinate system. The governing equations in the computational domain are solved through a pressure correction based iterative algorithm. The fluid flow and heat transfer characteristics are analyzed for a wide range of Richardson number (0.1 ≤ Ri ≤ 5), nanoparticle volume concentration (0.0 ≤ ϕ ≤ 0.2), amplitude (0.0 ≤ α ≤ 0.1) of the wavy thick- bottom wall and the wave number (ω) at a fixed Reynolds number. Obtained results showed that heat transfer rate increases remarkably by adding the nanoparticles. Heat transfer rate is dependent on the wavy wall amplitude and wave number and decreases with increasing Richardson number for fixed amplitude and wave number. The Bejan number and the entropy generation are determined to analyze the thermodynamic optimization of the mixed convection.Keywords: Entropy generation, mixed convection, conjugate heat transfer, numerical, nanofluid, wall waviness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10462739 Quebec Elementary Pre-service Teachers’ Conceptual Representations about Heat and Temperature
Authors: Abdeljalil Métioui
Abstract:
This article identifies the conceptual representations of 128 students enrolled in elementary pre-service teachers’ education in the Province of Quebec, Canada (ages 19-24). To construct their conceptual representations relatively to notions of heat and temperature, we use a qualitative research approach. For that, we distributed them a questionnaire including four questions. The result demonstrates that these students tend to view the temperature as a measure of the hotness of an object or person. They also related the sensation of cold (or warm) to the difference in temperature, and for their majority, the physical change of the matter does not require a constant temperature. These representations are inaccurate relatively to the scientific views, and we will see that they are relevant to the design of teaching strategies based on conceptual conflict.
Keywords: Conceptual representations, heat, temperature, pre-service teachers, elementary school.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6092738 3-D Numerical Simulation of Scraped Surface Heat Exchanger with Helical Screw
Authors: Rabeb Triki, Hassene Djemel, Mounir Baccar
Abstract:
Surface scraping is a passive heat transfer enhancement technique that is directly used in scraped surface heat exchanger (SSHE). The scraping action prevents the accumulation of the product on the inner wall, which intensifies the heat transfer and avoids the formation of dead zones. SSHEs are widely used in industry for several applications such as crystallization, sterilization, freezing, gelatinization, and many other continuous processes. They are designed to deal with products that are viscous, sticky or that contain particulate matter. This research work presents a three-dimensional numerical simulation of the coupled thermal and hydrodynamic behavior within a SSHE which includes Archimedes’ screw instead of scraper blades. The finite volume Fluent 15.0 was used to solve continuity, momentum and energy equations using multiple reference frame formulation. The process fluid investigated under this study is the pure glycerin. Different geometrical parameters were studied in the case of steady, non-isothermal, laminar flow. In particular, attention is focused on the effect of the conicity of the rotor and the pitch of Archimedes’ screw on temperature and velocity distribution and heat transfer rate. Numerical investigations show that the increase of the number of turns in the screw from five to seven turns leads to amelioration of heat transfer coefficient, and the increase of the conicity of the rotor from 0.1 to 0.15 leads to an increase in the rate of heat transfer. Further studies should investigate the effect of different operating parameters (axial and rotational Reynolds number) on the hydrodynamic and thermal behavior of the SSHE.
Keywords: ANSYS-Fluent, hydrodynamic behavior, SSHE, thermal behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9252737 Steady State Transpiration Cooling System in Ni-Cr Open-Cellular Porous Plate
Authors: P. Amatachaya, P. Khantikomol, R. Sangchot, B. Krittacom
Abstract:
The steady-state temperature for one-dimensional transpiration cooling system has been conducted experimentally and numerically to investigate the heat transfer characteristics of combined convection and radiation. The Nickel –Chrome (Ni-Cr) open-cellular porous material having porosity of 0.93 and pores per inch (PPI) of 21.5 was examined. The upper surface of porous plate was heated by the heat flux of incoming radiation varying from 7.7 - 16.6 kW/m2 whereas air injection velocity fed into the lower surface was varied from 0.36 - 1.27 m/s, and was then rearranged as Reynolds number (Re). For the report of the results in the present study, two efficiencies including of temperature and conversion efficiency were presented. Temperature efficiency indicating how close the mean temperature of a porous heat plate to that of inlet air, and increased rapidly with the air injection velocity (Re). It was then saturated and had a constant value at Re higher than 10. The conversion efficiency, which was regarded as the ability of porous material in transferring energy by convection after absorbed from heat radiation, decreased with increasing of the heat flux and air injection velocity. In addition, it was then asymptotic to a constant value at the Re higher than 10. The numerical predictions also agreed with experimental data very well.
Keywords: Convection, open-cellular, radiation, transpiration cooling, Reynolds number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16172736 Performance Characteristics of a Closed Circuit Cooling Tower with Multi Path
Authors: Gyu-Jin Shim, Seung-Moon Baek, Choon-Geun Moon, Ho-Saeng Lee, Jung-In Yoon
Abstract:
The experimental thermal performance of two heat exchangers in closed-wet cooling tower (CWCT) was investigated in this study. The test sections are heat exchangers which have multi path that is used as the entrance of cooling water and are consisting of bare-type copper tubes between 15.88mm and 19.05mm. The process fluids are the cooling water that flows from top part of heat exchanger to bottom side in the inner side of tube, and spray water that flows gravitational direction in the outer side of it. Air contacts its outer side of that as it counterflows. Heat and mass transfer coefficients and cooling capacity were calculated with variations of process fluids, multi path and different diameter tubes to figure out the performance of characteristics of CWCT. The main results were summarized as follows: The results show this experiment is reliable with values of heat and mass transfer coefficients comparing to values of correlations. Heat and mass transfer coefficients and cooling capacity of two paths are higher than these with one path using 15.88 and 19.05mm tubes. Cooling capacity per unit volume with 15.88mm tube using one and two paths are higher than 19.05mm tube due to increase of surface area per unit volume.Keywords: Closed–Wet Cooling Tower, Cooling Capacity, Heatand Mass Transfer Coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24402735 A Design of the Organic Rankine Cycle for the Low Temperature Waste Heat
Abstract:
A presentation of the design of the Organic Rankine cycle (ORC) with heat regeneration and superheating processes is a subject of this paper. The maximum temperature level in the ORC is considered to be 110°C and the maximum pressure varies up to 2.5MPa. The selection process of the appropriate working fluids, thermal design and calculation of the cycle and its components are described. With respect to the safety, toxicity, flammability, price and thermal cycle efficiency, the working fluid selected is R134a. As a particular example, the thermal design of the condenser used for the ORC engine with a theoretical thermal power of 179 kW was introduced. The minimal heat transfer area for a completed condensation was determined to be approximately 520m2.
Keywords: Organic Rankine Cycle, thermal efficiency, working fluids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40592734 Simulation and Assessment of Carbon Dioxide Separation by Piperazine Blended Solutions Using E-NRTL and Peng-Robinson Models: A Study of Regeneration Heat Duty
Authors: Arash Esmaeili, Zhibang Liu, Yang Xiang, Jimmy Yun, Lei Shao
Abstract:
High pressure carbon dioxide (CO2) absorption from a specific off-gas in a conventional column has been evaluated for the environmental concerns by the Aspen HYSYS simulator using a wide range of single absorbents and piperazine (PZ) blended solutions to estimate the outlet CO2 concentration, CO2 loading, reboiler power supply and regeneration heat duty to choose the most efficient solution in terms of CO2 removal and required heat duty. The property package, which is compatible with all applied solutions for the simulation in this study, estimates the properties based on electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for vapor phase and liquid hydrocarbon phase properties. The results of the simulation indicate that PZ in addition to the mixture of PZ and monoethanolamine (MEA) demand the highest regeneration heat duty compared with other studied single and blended amine solutions respectively. The blended amine solutions with the lowest PZ concentrations (5wt% and 10wt%) were considered and compared to reduce the cost of process, among which the blended solution of 10wt%PZ+35wt%MDEA (methyldiethanolamine) was found as the most appropriate solution in terms of CO2 content in the outlet gas, rich-CO2 loading and regeneration heat duty.
Keywords: Absorption, amine solutions, Aspen HYSYS, CO2 loading, piperazine, regeneration heat duty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6152733 Applying Different Working Fluids in a Combined Power and Ejector Refrigeration Cycle with Low Temperature Heat Sources
Authors: Samad Jafarmadar, Amin Habibzadeh
Abstract:
A power and cooling cycle, which combines the organic Rankine cycle and the ejector refrigeration cycle supplied by waste heat energy sources, is discussed in this paper. 13 working fluids including wet, dry, and isentropic fluids are studied in order to find their performances on the combined cycle. Various operating conditions’ effects on the proposed cycle are examined by fixing power/refrigeration ratio. According to the results, dry and isentropic fluids have better performance compared with wet fluids.
Keywords: Combined power and refrigeration cycle, low temperature heat sources, organic rankine cycle, working fluids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8602732 Experimental Evaluation of Methane Adsorptionon Granular Activated Carbon (GAC) and Determination of Model Isotherm
Authors: M. Delavar, A.A. Ghoreyshi, M. Jahanshahi, M. Irannejad
Abstract:
This study investigates the capacity of granular activated carbon (GAC) for the storage of methane through the equilibrium adsorption. An experimental apparatus consist of a dual adsorption vessel was set up for the measurement of equilibrium adsorption of methane on GAC using volumetric technique (pressure decay). Experimental isotherms of methane adsorption were determined by the measurement of equilibrium uptake of methane in different pressures (0-50 bar) and temperatures (285.15-328.15°K). The experimental data was fitted to Freundlich and Langmuir equations to determine the model isotherm. The results show that the experimental data is equally well fitted by the both model isotherms. Using the experimental data obtained in different temperatures the isosteric heat of methane adsorption was also calculated by the Clausius-Clapeyron equation from the Sips isotherm model. Results of isosteric heat of adsorption show that decreasing temperature or increasing methane uptake by GAC decrease the isosteric heat of methane adsorption.Keywords: Methane adsorption, Activated carbon, Modelisotherm, Isosteric heat
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24792731 Thermophoresis Particle Precipitate on Heated Surfaces
Authors: Rebhi A. Damseh, H. M. Duwairi, Benbella A. Shannak
Abstract:
This work deals with heat and mass transfer by steady laminar boundary layer flow of a Newtonian, viscous fluid over a vertical flat plate with variable surface heat flux embedded in a fluid saturated porous medium in the presence of thermophoresis particle deposition effect. The governing partial differential equations are transformed into no-similar form by using special transformation and solved numerically by using an implicit finite difference method. Many results are obtained and a representative set is displaced graphically to illustrate the influence of the various physical parameters on the wall thermophoresis deposition velocity and concentration profiles. It is found that the increasing of thermophoresis constant or temperature differences enhances heat transfer rates from vertical surfaces and increase wall thermophoresis velocities; this is due to favorable temperature gradients or buoyancy forces. It is also found that the effect of thermophoresis phenomena is more pronounced near pure natural convection heat transfer limit; because this phenomenon is directly a temperature gradient or buoyancy forces dependent. Comparisons with previously published work in the limits are performed and the results are found to be in excellent agreement.
Keywords: Thermophoresis, porous medium, variable surface heat flux.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22532730 The Situation in the Public Procurement Market in Post-Communist Countries: The Case of the Czech Republic
Authors: Jan Pavel
Abstract:
Public procurement is one of the most important areas in the public sector that introduces a possibility for a corruption. Due to the volume of the funds that are allocated through this institution (in the EU countries it is between 10 – 15% of GDP), it has very serious implications for the efficiency of public expenditures and the overall economic efficiency as well. Indicators that are usually used for the measurement of the corruption (such as Corruption Perceptions Index - CPI) show that the worst situation is in the post-communist countries and Mediterranean countries. The presented paper uses the Czech Republic as an example of a post-communist country and analyses the factors which influence the scope of corruption in public procurement. Moreover, the paper discusses indicators that could point at the public procurement market inefficiency. The presented results show that post-communist states use the institute of public contracts significantly more than the old member countries of the continental Europe. It has a very important implication because it gives more space for corruption. Furthermore, it appears that the inefficient functioning of public procurement market is clearly manifested in the low number of bids, low level of market transparency and an ineffective control system. Some of the observed indicators are statistically significantly correlated with the CPI.Keywords: Czech Republic, Corruption, Public Procurement, Post-Communist Countries
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17762729 A Review of Pharmacological Prevention of Peri-and Post-Procedural Myocardial Injury after Percutaneous Coronary Intervention
Authors: Syed Dawood Md. Taimur, Md. Hasanur Rahman, Syeda Fahmida Afrin, Farzana Islam
Abstract:
The concept of myocardial injury, although first recognized from animal studies, is now recognized as a clinical phenomenon that may result in microvascular damage, no-reflow phenomenon, myocardial stunning, myocardial hibernation and ischemic preconditioning. The final consequence of this event is left ventricular (LV) systolic dysfunction leading to increased morbidity and mortality. The typical clinical case of reperfusion injury occurs in acute myocardial infarction (MI) with ST segment elevation in which an occlusion of a major epicardial coronary artery is followed by recanalization of the artery. This may occur spontaneously or by means of thrombolysis and/or by primary percutaneous coronary intervention (PCI) with efficient platelet inhibition by aspirin (acetylsalicylic acid), clopidogrel and glycoprotein IIb/IIIa inhibitors. In recent years, percutaneous coronary intervention (PCI) has become a well-established technique for the treatment of coronary artery disease. PCI improves symptoms in patients with coronary artery disease and it has been increasing safety of procedures. However, peri- and post-procedural myocardial injury, including angiographical slow coronary flow, microvascular embolization, and elevated levels of cardiac enzyme, such as creatine kinase and troponin-T and -I, has also been reported even in elective cases. Furthermore, myocardial reperfusion injury at the beginning of myocardial reperfusion, which causes tissue damage and cardiac dysfunction, may occur in cases of acute coronary syndrome. Because patients with myocardial injury is related to larger myocardial infarction and have a worse long-term prognosis than those without myocardial injury, it is important to prevent myocardial injury during and/or after PCI in patients with coronary artery disease. To date, many studies have demonstrated that adjunctive pharmacological treatment suppresses myocardial injury and increases coronary blood flow during PCI procedures. In this review, we highlight the usefulness of pharmacological treatment in combination with PCI in attenuating myocardial injury in patients with coronary artery disease.
Keywords: Coronary artery disease, Percutaneous coronary intervention, Myocardial injury, Pharmacology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23292728 Experimental Investigation of Karanja Oil as a Fuel for Diesel Engine-Using Shell and Tube Heat Exchanger
Authors: Nabnit Panigrahi, M. K. Mohanty, S. K. Acharya, S. R Mishra, R. C. Mohanty
Abstract:
This paper presents experimental investigation carried out on an unmodified four stroke diesel engine running with preheated straight vegetable oil (SVO) of Karanja. The viscosity of straight karanja oil was reduced by preheating the oil up to 1600C under different load condition. The preheating was done with the help of a Shell and Tube heat exchanger equipment without using any external power source. The heat exchanger was designed in the lab and the heating source was by waste exhaust gas from engine. The experimental results data were analyzed by using 20% blends of svo of Karanja with 80% diesel by volume and 100% preheated svo of karanja for various parameters like specific fuel consumption, brake thermal efficiency and emission of exhaust gas like CO, CO2, HC and NOx. The results indicated that by using straight karanja oil, the emission parameter increases as compared to diesel but regarding engine performance it was found to be very close to that of diesel. All total it can be a replacement of diesel with a small efficiency drop.
Keywords: Karanja oil, Performance analysis, Shell &Tube heat exchanger, SVO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30572727 A Study of Performance of Wastewater Treatment Systems for Small Sites
Authors: Fu E. Tang, Vun J. Ngu
Abstract:
The pollutant removal efficiency of the Intermittently Decanted Extended Aeration (IDEA) wastewater treatment system at Curtin University Sarawak Campus, and conventional activated sludge wastewater treatment system at a local resort, Resort A, is monitored. The influent and effluent characteristics are tested during wet and dry weather conditions, and peak and off peak periods. For the wastewater treatment systems at Curtin Sarawak and Resort A, during dry weather and peak season, it was found that the BOD5 concentration in the influent is 121.7mg/L and 80.0mg/L respectively, and in the effluent, 18.7mg/L and and 18.0mg/L respectively. Analysis of the performance of the IDEA treatment system showed that the operational costs can be minimized by 3%, by decreasing the number of operating cycles. As for the treatment system in Resort A, by utilizing a smaller capacity air blower, a saving of 12% could be made in the operational costs.Keywords: Conventional Activated Sludge, IDEA, Performance Monitoring, Wastewater Treatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34052726 Natural Convection Heat Transfer from Inclined Cylinders: A Unified Correlation
Authors: Neetu Rani, Hema Setia, Marut Dutt. R.K. Wanchoo
Abstract:
An empirical correlation for predicting the heat transfer coefficient for a cylinder under free convection, inclined at any arbitrary angle with the horizontal has been developed in terms of Nusselt number, Prandtl number and Grashof number. Available experimental data was used to determine the parameters for the proposed correlation. The proposed correlation predicts the available data well within ±10%, for Prandtl number in the range 0.68-0.72 and Grashof number in the range 1.4×104–1.2×1010.
Keywords: Heat transfer, inclined cylinders, natural convection, Nusselt number, Prandtl number, Grashof number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59532725 Nuclear Medical Image Treatment System Based On FPGA in Real Time
Authors: B. Mahmoud, M.H. Bedoui, R. Raychev, H. Essabbah
Abstract:
We present in this paper an acquisition and treatment system designed for semi-analog Gamma-camera. It consists of a nuclear medical Image Acquisition, Treatment and Display chain(IATD) ensuring the acquisition, the treatment of the signals(resulting from the Gamma-camera detection head) and the scintigraphic image construction in real time. This chain is composed by an analog treatment board and a digital treatment board. We describe the designed systems and the digital treatment algorithms in which we have improved the performance and the flexibility. The digital treatment algorithms are implemented in a specific reprogrammable circuit FPGA (Field Programmable Gate Array).interface for semi-analog cameras of Sopha Medical Vision(SMVi) by taking as example SOPHY DS7. The developed system consists of an Image Acquisition, Treatment and Display (IATD) ensuring the acquisition and the treatment of the signals resulting from the DH. The developed chain is formed by a treatment analog board and a digital treatment board designed around a DSP [2]. In this paper we have presented the architecture of a new version of our chain IATD in which the integration of the treatment algorithms is executed on an FPGA (Field Programmable Gate Array)
Keywords: Nuclear medical image, scintigraphic image, digitaltreatment, linearity, spectrometry, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16762724 Heat and Mass Transfer in a Solar Dryer with Biomass Backup Burner
Authors: Andrew R.H. Rigit, Patrick T.K. Low
Abstract:
Majority of pepper farmers in Malaysia are using the open-sun method for drying the pepper berries. This method is time consuming and exposed the berries to rain and contamination. A maintenance-friendly and properly enclosed dryer is therefore desired. A dryer design with a solar collector and a chimney was studied and adapted to suit the needs of small-scale pepper farmers in Malaysia. The dryer will provide an environment with an optimum operating temperature meant for drying pepper berries. The dryer model was evaluated by using commercially available computational fluid dynamic (CFD) software in order to understand the heat and mass transfer inside the dryer. Natural convection was the only mode of heat transportation considered in this study as in accordance to the idea of having a simple and maintenance-friendly design. To accommodate the effect of low buoyancy found in natural convection driers, a biomass burner was integrated into the solar dryer design.Keywords: Computational fluid dynamics, heat and masstransfer, solar dryer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36642723 Sensitivity Analysis of the Heat Exchanger Design in Net Power Oxy-Combustion Cycle for Carbon Capture
Authors: Hirbod Varasteh, Hamidreza Gohari Darabkhani
Abstract:
The global warming and its impact on climate change is one of main challenges for current century. Global warming is mainly due to the emission of greenhouse gases (GHG) and carbon dioxide (CO2) is known to be the major contributor to the GHG emission profile. Whilst the energy sector is the primary source for CO2 emission, Carbon Capture and Storage (CCS) are believed to be the solution for controlling this emission. Oxyfuel combustion (Oxy-combustion) is one of the major technologies for capturing CO2 from power plants. For gas turbines, several Oxy-combustion power cycles (Oxyturbine cycles) have been investigated by means of thermodynamic analysis. NetPower cycle is one of the leading oxyturbine power cycles with almost full carbon capture capability from a natural gas fired power plant. In this manuscript, sensitivity analysis of the heat exchanger design in NetPower cycle is completed by means of process modelling. The heat capacity variation and supercritical CO2 with gaseous admixtures are considered for multi-zone analysis with Aspen Plus software. It is found that the heat exchanger design has a major role to increase the efficiency of NetPower cycle. The pinch-point analysis is done to extract the composite and grand composite curve for the heat exchanger. In this paper, relationship between the cycle efficiency and the minimum approach temperature (∆Tmin) of the heat exchanger has also been evaluated. Increase in ∆Tmin causes a decrease in the temperature of the recycle flue gases (RFG) and an overall decrease in the required power for the recycled gas compressor. The main challenge in the design of heat exchangers in power plants is a tradeoff between the capital and operational costs. To achieve lower ∆Tmin, larger size of heat exchanger is required. This means a higher capital cost but leading to a better heat recovery and lower operational cost. To achieve this, ∆Tmin is selected from the minimum point in the diagrams of capital and operational costs. This study provides an insight into the NetPower Oxy-combustion cycle’s performance analysis and operational condition based on its heat exchanger design.
Keywords: Carbon capture and storage, oxy-combustion, netpower cycle, oxyturbine power cycles, heat exchanger design, supercritical carbon dioxide, pinch point analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16882722 Toxicity Depletion Rates of Water Lettuce (Pistia stratoites) in an Aquaculture Effluent Hydroponic System
Authors: E. A. Kiridi, A. O. Ogunlela
Abstract:
The control of ammonia build-up and its by-product is a limiting factor for a successful commercial aquaculture in a developing country like Nigeria. The technology for an advanced treatment of fish tank effluent is uneconomical to local fish farmers which have led to indiscriminate disposal of aquaculture wastewater, thereby increasing the concentrations of these nitrogenous compound and other contaminants in surface and groundwater above the permissible level. Phytoremediation using water lettuce could offer cheaper and sustainable alternative. On the first day of experimentation, approximately 100 g of water lettuce were replicated in four hydroponic units containing aquaculture effluents. The water quality parameters measured were concentration of ammonium–nitrogen (NH4+-N), nitrite-nitrogen (NO2--N), nitrate-nitrogen (NO3--N), and phosphate–phosphorus (PO43--P). Others were total suspended solids (TSS), pH, electrical conductivity (EC), and biomass value. At phytoremediation intervals of 7, 14, 21 and 28 days, the biomass recorded were 361.2 g, 498.7 g, 561.2 g, and 623.7 g. Water lettuce was able to reduce the pollutant concentration of all the selected parameter. The percentage reduction of pH ranged from 3.9% to 14.4%, EC from 49.8% to 96.2%, TDS from 50.4% to 96.2%, TSS from 38.3% to 81.7%, NH4+-N from 38.9% to 90.7%, NO2--N from 0% to 74.9%, NO3--N from 63.2% to 95.9% and PO43--P from 0% to 76.3%. At 95% confidence level, the analysis of variance shows that F(critical) is less than F(cal) and p < 0.05; therefore, it can be concluded statistically that the inequality between the pre-treatment and post-treatment values are significant. This suggests the potency of water lettuce for remediation of aquaculture effluent.
Keywords: Aquaculture effluent, nitrification, phytoremediation, water lettuce.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11332721 Numerical Optimization of Pin-Fin Heat Sink with Forced Cooling
Authors: Y. T. Yang, H. S. Peng, H. T. Hsu
Abstract:
This study presents the numerical simulation of optimum pin-fin heat sink with air impinging cooling by using Taguchi method. 9 L ( 4 3 ) orthogonal array is selected as a plan for the four design-parameters with three levels. The governing equations are discretized by using the control-volume-based-finite-difference method with a power-law scheme on the non-uniform staggered grid. We solved the coupling of the velocity and the pressure terms of momentum equations using SIMPLEC algorithm. We employ the k −ε two-equations turbulence model to describe the turbulent behavior. The parameters studied include fin height H (35mm-45mm), inter-fin spacing a , b , and c (2 mm-6.4 mm), and Reynolds number ( Re = 10000- 25000). The objective of this study is to examine the effects of the fin spacings and fin height on the thermal resistance and to find the optimum group by using the Taguchi method. We found that the fin spacings from the center to the edge of the heat sink gradually extended, and the longer the fin’s height the better the results. The optimum group is 3 1 2 3 H a b c . In addition, the effects of parameters are ranked by importance as a , H , c , and b .
Keywords: Heat sink, Optimum, Electronics cooling, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37052720 The Impact of Post-Disaster Relocation on Community Solidarity: The Case of Post-Disaster Reconstruction after Typhoon Morakot in Taiwan
Authors: Tsung-Hsi Fu, Wan-I Lin, Jyh-Cherng Shieh
Abstract:
Typhoon Morakot hit Taiwan in 2009 and caused severe damages. The government employs a compulsory relocation strategy for post-disaster reconstruction. This study analyzes the impact of this strategy on community solidarity. It employs a multiple approach for data collection, including semi-structural interview, secondary data, and documentation. The results indicate that the government-s strategy for distributing housing has led to conflicts within the communities. In addition, the relocating process has stimulated tensions between victims of the disaster and those residents whose lands were chosen to be new sites for relocation. The government-s strategy of “collective relocation" also worsened community integration. In addition, the fact that a permanent housing community may accommodate people from different places also posts challenge for the development of new inter-personal relations in the communities. This study concludes by emphasizing the importance of bringing social, economic and cultural aspects into consideration for post-disaster relocation..Keywords: community solidarity, permanent housing, post-disaster reconstruction, relocation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21392719 A National Survey of Clinical Psychology Graduate Student Attitudes toward Psychotherapy Treatment Manuals: A Replication Study
Authors: B. Bergström, A. Ladd, A. Jones, L. Rosso, P. Michael
Abstract:
Attitudes toward treatment manuals serve as a meaningful predictor of general attitudes toward evidence-based practice. Despite demonstrating high effectiveness in treating many mental disorders, manualized treatments have been underutilized by practitioners. Thus, one can assess the state of the field regarding the adoption of evidence-based practices by surveying practitioner attitudes towards manualized treatments. This study is an adapted replication that assesses psychology graduate student attitudes towards manualized treatments, as a general marker for attitudes towards evidence-based practice. Training programs provide future clinicians with the foundation for critical skills in clinical practice. Research demonstrates that post-graduate continuing education has little to no effect on clinical practice; thus, graduate programs serve as the primary, and often final platform for all future practice. However, there are little empirical data identifying the attitudes and training of graduate students in utilizing manualized treatments. The empirical analysis of this study indicates an increase in positive attitudes among graduate student attitudes towards manualized treatments (within the United States), when compared to past surveys of professional psychologists. Findings from this study may inform graduate programs of barriers for students in developing positive attitudes toward manualized treatments and evidence-based practice. This study also serves as a preliminary predictor of the state-of-the field, in regards to professional psychologists attitudes towards evidence-based practice, if attitudes remain stable. This study indicates that the attitudes toward utilizing evidence-based practices, such as treatment manuals, has become more positive since year 2000.
Keywords: Evidence based treatment, Future of clinical science, Manualized treatment, Student attitudes towards evidence based treatments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830