Search results for: a posteriori error estimate.
1531 Dynamic State Estimation with Optimal PMU and Conventional Measurements for Complete Observability
Authors: M. Ravindra, R. Srinivasa Rao
Abstract:
This paper presents a Generalized Binary Integer Linear Programming (GBILP) method for optimal allocation of Phasor Measurement Units (PMUs) and to generate Dynamic State Estimation (DSE) solution with complete observability. The GBILP method is formulated with Zero Injection Bus (ZIB) constraints to reduce the number of locations for placement of PMUs in the case of normal and single line contingency. The integration of PMU and conventional measurements is modeled in DSE process to estimate accurate states of the system. To estimate the dynamic behavior of the power system with proposed method, load change up to 40% considered at a bus in the power system network. The proposed DSE method is compared with traditional Weighted Least Squares (WLS) state estimation method in presence of load changes to show the impact of PMU measurements. MATLAB simulations are carried out on IEEE 14, 30, 57, and 118 bus systems to prove the validity of the proposed approach.
Keywords: Observability, phasor measurement units, PMU, state estimation, dynamic state estimation, SCADA measurements, zero injection bus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12711530 Evaluation of Model Evaluation Criterion for Software Development Effort Estimation
Authors: S. K. Pillai, M. K. Jeyakumar
Abstract:
Estimation of model parameters is necessary to predict the behavior of a system. Model parameters are estimated using optimization criteria. Most algorithms use historical data to estimate model parameters. The known target values (actual) and the output produced by the model are compared. The differences between the two form the basis to estimate the parameters. In order to compare different models developed using the same data different criteria are used. The data obtained for short scale projects are used here. We consider software effort estimation problem using radial basis function network. The accuracy comparison is made using various existing criteria for one and two predictors. Then, we propose a new criterion based on linear least squares for evaluation and compared the results of one and two predictors. We have considered another data set and evaluated prediction accuracy using the new criterion. The new criterion is easy to comprehend compared to single statistic. Although software effort estimation is considered, this method is applicable for any modeling and prediction.
Keywords: Software effort estimation, accuracy, Radial Basis Function, linear least squares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20451529 Modeling of Reinforcement in Concrete Beams Using Machine Learning Tools
Authors: Yogesh Aggarwal
Abstract:
The paper discusses the results obtained to predict reinforcement in singly reinforced beam using Neural Net (NN), Support Vector Machines (SVM-s) and Tree Based Models. Major advantage of SVM-s over NN is of minimizing a bound on the generalization error of model rather than minimizing a bound on mean square error over the data set as done in NN. Tree Based approach divides the problem into a small number of sub problems to reach at a conclusion. Number of data was created for different parameters of beam to calculate the reinforcement using limit state method for creation of models and validation. The results from this study suggest a remarkably good performance of tree based and SVM-s models. Further, this study found that these two techniques work well and even better than Neural Network methods. A comparison of predicted values with actual values suggests a very good correlation coefficient with all four techniques.Keywords: Linear Regression, M5 Model Tree, Neural Network, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20371528 The Predictability and Abstractness of Language: A Study in Understanding and Usage of the English Language through Probabilistic Modeling and Frequency
Authors: Revanth Sai Kosaraju, Michael Ramscar, Melody Dye
Abstract:
Accounts of language acquisition differ significantly in their treatment of the role of prediction in language learning. In particular, nativist accounts posit that probabilistic learning about words and word sequences has little to do with how children come to use language. The accuracy of this claim was examined by testing whether distributional probabilities and frequency contributed to how well 3-4 year olds repeat simple word chunks. Corresponding chunks were the same length, expressed similar content, and were all grammatically acceptable, yet the results of the study showed marked differences in performance when overall distributional frequency varied. It was found that a distributional model of language predicted the empirical findings better than a number of other models, replicating earlier findings and showing that children attend to distributional probabilities in an adult corpus. This suggested that language is more prediction-and-error based, rather than on abstract rules which nativist camps suggest.
Keywords: Abstractness, child psychology, language acquisition, prediction and error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21021527 Feature Selection and Predictive Modeling of Housing Data Using Random Forest
Authors: Bharatendra Rai
Abstract:
Predictive data analysis and modeling involving machine learning techniques become challenging in presence of too many explanatory variables or features. Presence of too many features in machine learning is known to not only cause algorithms to slow down, but they can also lead to decrease in model prediction accuracy. This study involves housing dataset with 79 quantitative and qualitative features that describe various aspects people consider while buying a new house. Boruta algorithm that supports feature selection using a wrapper approach build around random forest is used in this study. This feature selection process leads to 49 confirmed features which are then used for developing predictive random forest models. The study also explores five different data partitioning ratios and their impact on model accuracy are captured using coefficient of determination (r-square) and root mean square error (rsme).
Keywords: Housing data, feature selection, random forest, Boruta algorithm, root mean square error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17211526 BasWilCalc – Basket Willow (Salix viminalis) Biomass Yield Calculator
Authors: Wiesław Szulczewski, Wojciech Jakubowski, Andrzej Żyromski, Małgorzata Biniak-Pieróg
Abstract:
The aim of the paper was to elaborate a novel calculator BasWilCalc, that allows to estimate the actual amount of biomass on the basket willow plantations. The proposed method is based on the results of field experiment conducted during years 2011-2013 on basket willow plantation in the south-western part of Poland. As input data the results of destructive measurements of the diameter, length and weight of willow stems and non-destructive biometric measurements of diameter in the middle of stems and their length during the growing season performed at weekly intervals were used. Performed analysis enabled to develop the algorithm which, due to the fact that energy plantations are of known and constant planting structure, allows to estimate the actual amount of willow basket biomass on the plantation with a given probability and accuracy specified by the model, based on the number of stems measured and the age of the plantation.
Keywords: Basket willow (Salix viminalis) biomass, biometric measurements, yield, biomass calculator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16711525 Bayesian Networks for Earthquake Magnitude Classification in a Early Warning System
Authors: G. Zazzaro, F.M. Pisano, G. Romano
Abstract:
During last decades, worldwide researchers dedicated efforts to develop machine-based seismic Early Warning systems, aiming at reducing the huge human losses and economic damages. The elaboration time of seismic waveforms is to be reduced in order to increase the time interval available for the activation of safety measures. This paper suggests a Data Mining model able to correctly and quickly estimate dangerousness of the running seismic event. Several thousand seismic recordings of Japanese and Italian earthquakes were analyzed and a model was obtained by means of a Bayesian Network (BN), which was tested just over the first recordings of seismic events in order to reduce the decision time and the test results were very satisfactory. The model was integrated within an Early Warning System prototype able to collect and elaborate data from a seismic sensor network, estimate the dangerousness of the running earthquake and take the decision of activating the warning promptly.Keywords: Bayesian Networks, Decision Support System, Magnitude Classification, Seismic Early Warning System
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36021524 Input Variable Selection for RBFN-based Electric Utility's CO2 Emissions Forecasting
Authors: I. Falconett, K. Nagasaka
Abstract:
This study investigates the performance of radial basis function networks (RBFN) in forecasting the monthly CO2 emissions of an electric power utility. We also propose a method for input variable selection. This method is based on identifying the general relationships between groups of input candidates and the output. The effect that each input has on the forecasting error is examined by removing all inputs except the variable to be investigated from its group, calculating the networks parameter and performing the forecast. Finally, the new forecasting error is compared with the reference model. Eight input variables were identified as the most relevant, which is significantly less than our reference model with 30 input variables. The simulation results demonstrate that the model with the 8 inputs selected using the method introduced in this study performs as accurate as the reference model, while also being the most parsimonious.
Keywords: Correlation analysis, CO2 emissions forecasting, electric power utility, radial basis function networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15401523 The Study of Formal and Semantic Errors of Lexis by Persian EFL Learners
Authors: Mohammad J. Rezai, Fereshteh Davarpanah
Abstract:
Producing a text in a language which is not one’s mother tongue can be a demanding task for language learners. Examining lexical errors committed by EFL learners is a challenging area of investigation which can shed light on the process of second language acquisition. Despite the considerable number of investigations into grammatical errors, few studies have tackled formal and semantic errors of lexis committed by EFL learners. The current study aimed at examining Persian learners’ formal and semantic errors of lexis in English. To this end, 60 students at three different proficiency levels were asked to write on 10 different topics in 10 separate sessions. Finally, 600 essays written by Persian EFL learners were collected, acting as the corpus of the study. An error taxonomy comprising formal and semantic errors was selected to analyze the corpus. The formal category covered misselection and misformation errors, while the semantic errors were classified into lexical, collocational and lexicogrammatical categories. Each category was further classified into subcategories depending on the identified errors. The results showed that there were 2583 errors in the corpus of 9600 words, among which, 2030 formal errors and 553 semantic errors were identified. The most frequent errors in the corpus included formal error commitment (78.6%), which were more prevalent at the advanced level (42.4%). The semantic errors (21.4%) were more frequent at the low intermediate level (40.5%). Among formal errors of lexis, the highest number of errors was devoted to misformation errors (98%), while misselection errors constituted 2% of the errors. Additionally, no significant differences were observed among the three semantic error subcategories, namely collocational, lexical choice and lexicogrammatical. The results of the study can shed light on the challenges faced by EFL learners in the second language acquisition process.
Keywords: Collocational errors, lexical errors, Persian EFL learners, semantic errors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12321522 Study of Remote Sensing and Satellite Images Ability in Preparing Agricultural Land Use Map (ALUM)
Authors: Ali Gholami
Abstract:
In this research the Preparation of Land use map of scanner LISS III satellite data, belonging to the IRS in the Aghche region in Isfahan province, is studied carefully. For this purpose, the IRS satellite images of August 2008 and various land preparation uses in region including rangelands, irrigation farming, dry farming, gardens and urban areas were separated and identified. Therefore, the GPS and Erdas Imaging software were used and three methods of Maximum Likelihood, Mahalanobis Distance and Minimum Distance were analyzed. In each of these methods, matrix error and Kappa index were calculated and accuracy of each method, based on percentages: 53.13, 56.64 and 48.44, were obtained respectively. Considering the low accuracy of these methods in separation of land preparation use, the visual interpretation of the map was used. Finally, regional visits of 150 points were noted at random and no error was observed. It shows that the map prepared by visual interpretation is in high accuracy. Although the probable errors due to visual interpretation and geometric correction might happen but the desired accuracy of the map which is more than 85 percent is reliable.Keywords: Land use map, Aghche Region, Erdas Imagine, satellite images
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15751521 Continuous Wave Interference Effects on Global Position System Signal Quality
Authors: Fang Ye, Han Yu, Yibing Li
Abstract:
Radio interference is one of the major concerns in using the global positioning system (GPS) for civilian and military applications. Interference signals are produced not only through all electronic systems but also illegal jammers. Among different types of interferences, continuous wave (CW) interference has strong adverse impacts on the quality of the received signal. In this paper, we make more detailed analysis for CW interference effects on GPS signal quality. Based on the C/A code spectrum lines, the influence of CW interference on the acquisition performance of GPS receivers is further analysed. This influence is supported by simulation results using GPS software receiver. As the most important user parameter of GPS receivers, the mathematical expression of bit error probability is also derived in the presence of CW interference, and the expression is consistent with the Monte Carlo simulation results. The research on CW interference provides some theoretical gist and new thoughts on monitoring the radio noise environment and improving the anti-jamming ability of GPS receivers.Keywords: GPS, CW interference, acquisition performance, bit error probability, Monte Carlo.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18871520 Soil Stress State under Tractive Tire and Compaction Model
Authors: Prathuang Usaborisut, Dithaporn Thungsotanon
Abstract:
Soil compaction induced by a tractor towing trailer becomes a major problem associated to sugarcane productivity. Soil beneath the tractor’s tire is not only under compressing stress but also shearing stress. Therefore, in order to help to understand such effects on soil, this research aimed to determine stress state in soil and predict compaction of soil under a tractive tire. The octahedral stress ratios under the tires were higher than one and much higher under higher draft forces. Moreover, the ratio was increasing with increase of number of tire’s passage. Soil compaction model was developed using data acquired from triaxial tests. The model was then used to predict soil bulk density under tractive tire. The maximum error was about 4% at 15 cm depth under lower draft force and tended to increase with depth and draft force. At depth of 30 cm and under higher draft force, the maximum error was about 16%.
Keywords: Draft force, soil compaction model, stress state, tractive tire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10771519 An Overview of Some High Order and Multi-Level Finite Difference Schemes in Computational Aeroacoustics
Authors: Appanah Rao Appadu, Muhammad Zaid Dauhoo
Abstract:
In this paper, we have combined some spatial derivatives with the optimised time derivative proposed by Tam and Webb in order to approximate the linear advection equation which is given by = 0. Ôêé Ôêé + Ôêé Ôêé x f t u These spatial derivatives are as follows: a standard 7-point 6 th -order central difference scheme (ST7), a standard 9-point 8 th -order central difference scheme (ST9) and optimised schemes designed by Tam and Webb, Lockard et al., Zingg et al., Zhuang and Chen, Bogey and Bailly. Thus, these seven different spatial derivatives have been coupled with the optimised time derivative to obtain seven different finite-difference schemes to approximate the linear advection equation. We have analysed the variation of the modified wavenumber and group velocity, both with respect to the exact wavenumber for each spatial derivative. The problems considered are the 1-D propagation of a Boxcar function, propagation of an initial disturbance consisting of a sine and Gaussian function and the propagation of a Gaussian profile. It is known that the choice of the cfl number affects the quality of results in terms of dissipation and dispersion characteristics. Based on the numerical experiments solved and numerical methods used to approximate the linear advection equation, it is observed in this work, that the quality of results is dependent on the choice of the cfl number, even for optimised numerical methods. The errors from the numerical results have been quantified into dispersion and dissipation using a technique devised by Takacs. Also, the quantity, Exponential Error for Low Dispersion and Low Dissipation, eeldld has been computed from the numerical results. Moreover, based on this work, it has been found that when the quantity, eeldld can be used as a measure of the total error. In particular, the total error is a minimum when the eeldld is a minimum.
Keywords: Optimised time derivative, dissipation, dispersion, cfl number, Nomenclature: k : time step, h : spatial step, β :advection velocity, r: cfl/Courant number, hkrβ= , w =θ, h : exact wave number, n :time level, RPE : Relative phase error per unit time step, AFM :modulus of amplification factor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16381518 Could Thermal Oceanic Hotspot Increase Climate Changes Activities in North Tropical Atlantic: Example of the 2005 Caribbean Coral Bleaching Hotspot and Hurricane Katrina Interaction
Authors: J- L. Siméon
Abstract:
This paper reviews recent studies and particularly the effects of Climate Change in the North Tropical Atlantic by studying atmospheric conditions that prevailed in 2005 ; Coral Bleaching HotSpot and Hurricane Katrina. In the aim to better understand and estimate the impact of the physical phenomenon, i.e. Thermal Oceanic HotSpot (TOHS), isotopic studies of δ18O and δ13C on marine animals from Guadeloupe (French Caribbean Island) were carried out. Recorded measures show Sea Surface Temperature (SST) up to 35°C in August which is much higher than data recorded by NOAA satellites 32°C. After having reviewed the process that led to the creation of Hurricane Katrina which hit New Orleans in August 29, 2005, it will be shown that the climatic conditions in the Caribbean from August to October 2005 have influenced Katrina evolution. This TOHS is a combined effect of various phenomenon which represent an additional factor to estimate future climate changes.Keywords: Climate Change, Thermal Ocean HotSpot, Isotope, Hurricane, Connection, Uncertainty, Sea, Science.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16871517 The New Semi-Experimental Method for Simulation of Turbine Flow Meters Rotation in the Transitional Flow
Authors: J. Tonkonogij, A. Pedišius, A. Stankevičius
Abstract:
The new semi-experimental method for simulation of the turbine flow meters rotation in the transitional flow has been developed. The method is based on the experimentally established exponential low of changing of dimensionless relative turbine gas meter rotation frequency and meter inertia time constant. For experimental evaluation of the meter time constant special facility has been developed. The facility ensures instant switching of turbine meter under test from one channel to the other channel with different flow rate and measuring the meter response. The developed method can be used for evaluation and predication of the turbine meters response and dynamic error in the transitional flow with any arbitrary law of flow rate changing. The examples of the method application are presented.Keywords: Dynamic error, pulsing flow, numerical simulation, response, turbine gas meters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22051516 Neural Networks and Particle Swarm Optimization Based MPPT for Small Wind Power Generator
Authors: Chun-Yao Lee, Yi-Xing Shen, Jung-Cheng Cheng, Yi-Yin Li, Chih-Wen Chang
Abstract:
This paper proposes the method combining artificial neural network (ANN) with particle swarm optimization (PSO) to implement the maximum power point tracking (MPPT) by controlling the rotor speed of the wind generator. First, the measurements of wind speed, rotor speed of wind power generator and output power of wind power generator are applied to train artificial neural network and to estimate the wind speed. Second, the method mentioned above is applied to estimate and control the optimal rotor speed of the wind turbine so as to output the maximum power. Finally, the result reveals that the control system discussed in this paper extracts the maximum output power of wind generator within the short duration even in the conditions of wind speed and load impedance variation.Keywords: Maximum power point tracking, artificial neuralnetwork, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22111515 An Approach to Measure Snow Depth of Winter Accumulation at Basin Scale Using Satellite Data
Authors: M. Geetha Priya, D. Krishnaveni
Abstract:
Snow depth estimation and monitoring studies have been carried out for decades using empirical relationship or extrapolation of point measurements carried out in field. With the development of advanced satellite based remote sensing techniques, a modified approach is proposed in the present study to estimate the winter accumulated snow depth at basin scale. Assessment of snow depth by differencing Digital Elevation Model (DEM) generated at the beginning and end of winter season can be experimented for the region of interest (Himalayan and polar regions) accounting for winter accumulation (solid precipitation). The proposed approach is based on existing geodetic method that is being used for glacier mass balance estimation. Considering the satellite datasets purely acquired during beginning and end of winter season, it is possible to estimate the change in depth or thickness for the snow that is accumulated during the winter as it takes one year for the snow to get transformed into firn (snow that has survived one summer or one-year old snow).
Keywords: Digital elevation model, snow depth, geodetic method, snow cover.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7181514 The Link between Money Market and Economic Growth in Nigeria: Vector Error Correction Model Approach
Authors: Ehigiamusoe, Uyi Kizito
Abstract:
The paper examines the impact of money market on economic growth in Nigeria using data for the period 1980-2012. Econometrics techniques such as Ordinary Least Squares Method, Johanson’s Co-integration Test and Vector Error Correction Model were used to examine both the long-run and short-run relationship. Evidence from the study suggest that though a long-run relationship exists between money market and economic growth, but the present state of the Nigerian money market is significantly and negatively related to economic growth. The link between the money market and the real sector of the economy remains very weak. This implies that the market is not yet developed enough to produce the needed growth that will propel the Nigerian economy because of several challenges. It was therefore recommended that government should create the appropriate macroeconomic policies, legal framework and sustain the present reforms with a view to developing the market so as to promote productive activities, investments, and ultimately economic growth.
Keywords: Economic Growth, Investments, Money Market, Money Market Challenges, Money Market Instruments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 85021513 A Comparison of Artificial Neural Networks for Prediction of Suspended Sediment Discharge in River- A Case Study in Malaysia
Authors: M.R. Mustafa, M.H. Isa, R.B. Rezaur
Abstract:
Prediction of highly non linear behavior of suspended sediment flow in rivers has prime importance in the field of water resources engineering. In this study the predictive performance of two Artificial Neural Networks (ANNs) namely, the Radial Basis Function (RBF) Network and the Multi Layer Feed Forward (MLFF) Network have been compared. Time series data of daily suspended sediment discharge and water discharge at Pari River was used for training and testing the networks. A number of statistical parameters i.e. root mean square error (RMSE), mean absolute error (MAE), coefficient of efficiency (CE) and coefficient of determination (R2) were used for performance evaluation of the models. Both the models produced satisfactory results and showed a good agreement between the predicted and observed data. The RBF network model provided slightly better results than the MLFF network model in predicting suspended sediment discharge.Keywords: ANN, discharge, modeling, prediction, suspendedsediment,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17271512 Joint Microstatistic Multiuser Detection and Cancellation of Nonlinear Distortion Effects for the Uplink of MC-CDMA Systems Using Golay Codes
Authors: Peter Drotar, Juraj Gazda, Pavol Galajda, Dusan Kocur
Abstract:
The study in this paper underlines the importance of correct joint selection of the spreading codes for uplink of multicarrier code division multiple access (MC-CDMA) at the transmitter side and detector at the receiver side in the presence of nonlinear distortion due to high power amplifier (HPA). The bit error rate (BER) of system for different spreading sequences (Walsh code, Gold code, orthogonal Gold code, Golay code and Zadoff-Chu code) and different kinds of receivers (minimum mean-square error receiver (MMSE-MUD) and microstatistic multi-user receiver (MSF-MUD)) is compared by means of simulations for MC-CDMA transmission system. Finally, the results of analysis will show, that the application of MSF-MUD in combination with Golay codes can outperform significantly the other tested spreading codes and receivers for all mostly used models of HPA.Keywords: HPA, MC-CDMA, microstatistic filter, multi-user receivers, PAPR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17641511 Optimum Neural Network Architecture for Precipitation Prediction of Myanmar
Authors: Khaing Win Mar, Thinn Thu Naing
Abstract:
Nowadays, precipitation prediction is required for proper planning and management of water resources. Prediction with neural network models has received increasing interest in various research and application domains. However, it is difficult to determine the best neural network architecture for prediction since it is not immediately obvious how many input or hidden nodes are used in the model. In this paper, neural network model is used as a forecasting tool. The major aim is to evaluate a suitable neural network model for monthly precipitation mapping of Myanmar. Using 3-layerd neural network models, 100 cases are tested by changing the number of input and hidden nodes from 1 to 10 nodes, respectively, and only one outputnode used. The optimum model with the suitable number of nodes is selected in accordance with the minimum forecast error. In measuring network performance using Root Mean Square Error (RMSE), experimental results significantly show that 3 inputs-10 hiddens-1 output architecture model gives the best prediction result for monthly precipitation in Myanmar.
Keywords: Precipitation prediction, monthly precipitation, neural network models, Myanmar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17531510 A Linear Regression Model for Estimating Anxiety Index Using Wide Area Frontal Lobe Brain Blood Volume
Authors: Takashi Kaburagi, Masashi Takenaka, Yosuke Kurihara, Takashi Matsumoto
Abstract:
Major depressive disorder (MDD) is one of the most common mental illnesses today. It is believed to be caused by a combination of several factors, including stress. Stress can be quantitatively evaluated using the State-Trait Anxiety Inventory (STAI), one of the best indices to evaluate anxiety. Although STAI scores are widely used in applications ranging from clinical diagnosis to basic research, the scores are calculated based on a self-reported questionnaire. An objective evaluation is required because the subject may intentionally change his/her answers if multiple tests are carried out. In this article, we present a modified index called the “multi-channel Laterality Index at Rest (mc-LIR)” by recording the brain activity from a wider area of the frontal lobe using multi-channel functional near-infrared spectroscopy (fNIRS). The presented index aims to measure multiple positions near the Fpz defined by the international 10-20 system positioning. Using 24 subjects, the dependencies on the number of measuring points used to calculate the mc-LIR and its correlation coefficients with the STAI scores are reported. Furthermore, a simple linear regression was performed to estimate the STAI scores from mc-LIR. The cross-validation error is also reported. The experimental results show that using multiple positions near the Fpz will improve the correlation coefficients and estimation than those using only two positions.
Keywords: Stress, functional near-infrared spectroscopy, frontal lobe, state-trait anxiety inventory score.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11711509 Improving Air Temperature Prediction with Artificial Neural Networks
Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom
Abstract:
The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. Previous work established that the Ward-style artificial neural network (ANN) is a suitable tool for developing such models. The current research focused on developing ANN models with reduced average prediction error by increasing the number of distinct observations used in training, adding additional input terms that describe the date of an observation, increasing the duration of prior weather data included in each observation, and reexamining the number of hidden nodes used in the network. Models were created to predict air temperature at hourly intervals from one to 12 hours ahead. Each ANN model, consisting of a network architecture and set of associated parameters, was evaluated by instantiating and training 30 networks and calculating the mean absolute error (MAE) of the resulting networks for some set of input patterns. The inclusion of seasonal input terms, up to 24 hours of prior weather information, and a larger number of processing nodes were some of the improvements that reduced average prediction error compared to previous research across all horizons. For example, the four-hour MAE of 1.40°C was 0.20°C, or 12.5%, less than the previous model. Prediction MAEs eight and 12 hours ahead improved by 0.17°C and 0.16°C, respectively, improvements of 7.4% and 5.9% over the existing model at these horizons. Networks instantiating the same model but with different initial random weights often led to different prediction errors. These results strongly suggest that ANN model developers should consider instantiating and training multiple networks with different initial weights to establish preferred model parameters.Keywords: Decision support systems, frost protection, fruit, time-series prediction, weather modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27331508 Optimal Combination for Modal Pushover Analysis by Using Genetic Algorithm
Authors: K. Shakeri, M. Mohebbi
Abstract:
In order to consider the effects of the higher modes in the pushover analysis, during the recent years several multi-modal pushover procedures have been presented. In these methods the response of the considered modes are combined by the square-rootof- sum-of-squares (SRSS) rule while application of the elastic modal combination rules in the inelastic phases is no longer valid. In this research the feasibility of defining an efficient alternative combination method is investigated. Two steel moment-frame buildings denoted SAC-9 and SAC-20 under ten earthquake records are considered. The nonlinear responses of the structures are estimated by the directed algebraic combination of the weighted responses of the separate modes. The weight of the each mode is defined so that the resulted response of the combination has a minimum error to the nonlinear time history analysis. The genetic algorithm (GA) is used to minimize the error and optimize the weight factors. The obtained optimal factors for each mode in different cases are compared together to find unique appropriate weight factors for each mode in all cases.Keywords: Genetic Algorithm, Modal Pushover, Optimalweight.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18071507 Image Haze Removal Using Scene Depth Based Spatially Varying Atmospheric Light in Haar Lifting Wavelet Domain
Authors: Prabh Preet Singh, Harpreet Kaur
Abstract:
This paper presents a method for single image dehazing based on dark channel prior (DCP). The property that the intensity of the dark channel gives an approximate thickness of the haze is used to estimate the transmission and atmospheric light. Instead of constant atmospheric light, the proposed method employs scene depth to estimate spatially varying atmospheric light as it truly occurs in nature. Haze imaging model together with the soft matting method has been used in this work to produce high quality haze free image. Experimental results demonstrate that the proposed approach produces better results than the classic DCP approach as color fidelity and contrast of haze free image are improved and no over-saturation in the sky region is observed. Further, lifting Haar wavelet transform is employed to reduce overall execution time by a factor of two to three as compared to the conventional approach.
Keywords: Depth based atmospheric light, dark channel prior, lifting wavelet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5591506 Development of Predictive Model for Surface Roughness in End Milling of Al-SiCp Metal Matrix Composites using Fuzzy Logic
Authors: M. Chandrasekaran, D. Devarasiddappa
Abstract:
Metal matrix composites have been increasingly used as materials for components in automotive and aerospace industries because of their improved properties compared with non-reinforced alloys. During machining the selection of appropriate machining parameters to produce job for desired surface roughness is of great concern considering the economy of manufacturing process. In this study, a surface roughness prediction model using fuzzy logic is developed for end milling of Al-SiCp metal matrix composite component using carbide end mill cutter. The surface roughness is modeled as a function of spindle speed (N), feed rate (f), depth of cut (d) and the SiCp percentage (S). The predicted values surface roughness is compared with experimental result. The model predicts average percentage error as 4.56% and mean square error as 0.0729. It is observed that surface roughness is most influenced by feed rate, spindle speed and SiC percentage. Depth of cut has least influence.Keywords: End milling, fuzzy logic, metal matrix composites, surface roughness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21741505 Improving Human Hand Localization in Indoor Environment by Using Frequency Domain Analysis
Authors: Wipassorn Vinicchayakul, Pichaya Supanakoon, Sathaporn Promwong
Abstract:
A human’s hand localization is revised by using radar cross section (RCS) measurements with a minimum root mean square (RMS) error matching algorithm on a touchless keypad mock-up model. RCS and frequency transfer function measurements are carried out in an indoor environment on the frequency ranged from 3.0 to 11.0 GHz to cover federal communications commission (FCC) standards. The touchless keypad model is tested in two different distances between the hand and the keypad. The initial distance of 19.50 cm is identical to the heights of transmitting (Tx) and receiving (Rx) antennas, while the second distance is 29.50 cm from the keypad. Moreover, the effects of Rx angles relative to the hand of human factor are considered. The RCS input parameters are compared with power loss parameters at each frequency. From the results, the performance of the RCS input parameters with the second distance, 29.50 cm at 3 GHz is better than the others.
Keywords: Radar cross section (RCS), fingerprint-based localization, minimum root mean square (RMS) error matching algorithm, touchless keypad model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13581504 Experimental Investigation into Chaotic Features of Flow Gauges in Automobile Fuel Metering System
Authors: S. K. Fasogbon
Abstract:
Chaotic system may lead to instability, extreme sensitivity and performance reduction in control systems. It is therefore important to understand the causes of such undesirable characteristics in control system especially in the automobile fuel gauges. This is because without accurate fuel gauges in automobile systems, it will be difficult if not impossible to embark on a journey whether during odd hours of the day or where fuel is difficult to obtain. To this end, this work studied the impacts of fuel tank rust and faulty component of fuel gauge system (voltage stabilizer) on the chaotic characteristics of fuel gauges. The results obtained were analyzed using Graph iSOFT package. Over the range of experiments conducted, the results obtained showed that rust effect of the fuel tank would alter the flow density, consequently the fluid pressure and ultimately the flow velocity of the fuel. The responses of the fuel gauge pointer to the faulty voltage stabilizer were erratic causing noticeable instability of gauge measurands indicated. The experiment also showed that the fuel gauge performed optimally by indicating the highest degree of accuracy when combined the effect of rust free tank and non-faulty voltage stabilizer conditions (± 6.75% measurand error) as compared to only the rust free tank situation (± 15% measurand error) and only the non-faulty voltage stabilizer condition (± 40% measurand error). The study concludes that both the fuel tank rust and the faulty voltage stabilizer gauge component have a significant effect on the sensitivity of fuel gauge and its accuracy ultimately. Also, by the reason of literature, our findings can also be said to be valid for all other fluid meters and gauges applicable in plant machineries and most hydraulic systems.Keywords: Chaotic system, degree of accuracy, measurand, sensitivity of fuel gauge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9551503 Conjugate Heat Transfer Analysis of a Combustion Chamber using ANSYS Computational Fluid Dynamics to Estimate the Thermocouple Positioning in a Chamber Wall
Authors: Muzna Tariq, Ihtzaz Qamar
Abstract:
In most engineering cases, the working temperatures inside a combustion chamber are high enough that they lie beyond the operational range of thermocouples. Furthermore, design and manufacturing limitations restrict the use of internal thermocouples in many applications. Heat transfer inside a combustion chamber is caused due to interaction of the post-combustion hot fluid with the chamber wall. Heat transfer that involves an interaction between the fluid and solid is categorized as Conjugate Heat Transfer (CHT). Therefore, to satisfy the needs of CHT, CHT Analysis is performed by using ANSYS CFD tool to estimate theoretically precise thermocouple positions at the combustion chamber wall where excessive temperatures (beyond thermocouple range) can be avoided. In accordance with these Computational Fluid Dynamics (CFD) results, a combustion chamber is designed, and a prototype is manufactured with multiple thermocouple ports positioned at the specified distances so that the temperature of hot gases can be measured on the chamber wall where the temperatures do not exceed the thermocouple working range.
Keywords: Computational Fluid Dynamics, CFD, conduction, conjugate heat transfer, CHT, convection, fluid flow, thermocouples.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6991502 Using Linear Quadratic Gaussian Optimal Control for Lateral Motion of Aircraft
Authors: A. Maddi, A. Guessoum, D. Berkani
Abstract:
The purpose of this paper is to provide a practical example to the Linear Quadratic Gaussian (LQG) controller. This method includes a description and some discussion of the discrete Kalman state estimator. One aspect of this optimality is that the estimator incorporates all information that can be provided to it. It processes all available measurements, regardless of their precision, to estimate the current value of the variables of interest, with use of knowledge of the system and measurement device dynamics, the statistical description of the system noises, measurement errors, and uncertainty in the dynamics models. Since the time of its introduction, the Kalman filter has been the subject of extensive research and application, particularly in the area of autonomous or assisted navigation. For example, to determine the velocity of an aircraft or sideslip angle, one could use a Doppler radar, the velocity indications of an inertial navigation system, or the relative wind information in the air data system. Rather than ignore any of these outputs, a Kalman filter could be built to combine all of this data and knowledge of the various systems- dynamics to generate an overall best estimate of velocity and sideslip angle.Keywords: Aircraft motion, Kalman filter, LQG control, Lateral stability, State estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473