Search results for: cartesian genetic programming
947 Dynamic Routing to Multiple Destinations in IP Networks using Hybrid Genetic Algorithm (DRHGA)
Authors: K. Vijayalakshmi, S. Radhakrishnan
Abstract:
In this paper we have proposed a novel dynamic least cost multicast routing protocol using hybrid genetic algorithm for IP networks. Our protocol finds the multicast tree with minimum cost subject to delay, degree, and bandwidth constraints. The proposed protocol has the following features: i. Heuristic local search function has been devised and embedded with normal genetic operation to increase the speed and to get the optimized tree, ii. It is efficient to handle the dynamic situation arises due to either change in the multicast group membership or node / link failure, iii. Two different crossover and mutation probabilities have been used for maintaining the diversity of solution and quick convergence. The simulation results have shown that our proposed protocol generates dynamic multicast tree with lower cost. Results have also shown that the proposed algorithm has better convergence rate, better dynamic request success rate and less execution time than other existing algorithms. Effects of degree and delay constraints have also been analyzed for the multicast tree interns of search success rate.
Keywords: Dynamic Group membership change, Hybrid Genetic Algorithm, Link / node failure, QoS Parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447946 Preemptive Possibilistic Linear Programming:Application to Aggregate Production Planning
Authors: Phruksaphanrat B.
Abstract:
This research proposes a Preemptive Possibilistic Linear Programming (PPLP) approach for solving multiobjective Aggregate Production Planning (APP) problem with interval demand and imprecise unit price and related operating costs. The proposed approach attempts to maximize profit and minimize changes of workforce. It transforms the total profit objective that has imprecise information to three crisp objective functions, which are maximizing the most possible value of profit, minimizing the risk of obtaining the lower profit and maximizing the opportunity of obtaining the higher profit. The change of workforce level objective is also converted. Then, the problem is solved according to objective priorities. It is easier than simultaneously solve the multiobjective problem as performed in existing approach. Possible range of interval demand is also used to increase flexibility of obtaining the better production plan. A practical application of an electronic company is illustrated to show the effectiveness of the proposed model.Keywords: Aggregate production planning, Fuzzy sets theory, Possibilistic linear programming, Preemptive priority
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1859945 Optimal Embedded Generation Allocation in Distribution System Employing Real Coded Genetic Algorithm Method
Authors: Mohd Herwan Sulaiman, Omar Aliman, Siti Rafidah Abdul Rahim
Abstract:
This paper proposes a new methodology for the optimal allocation and sizing of Embedded Generation (EG) employing Real Coded Genetic Algorithm (RCGA) to minimize the total power losses and to improve voltage profiles in the radial distribution networks. RCGA is a method that uses continuous floating numbers as representation which is different from conventional binary numbers. The RCGA is used as solution tool, which can determine the optimal location and size of EG in radial system simultaneously. This method is developed in MATLAB. The effect of EG units- installation and their sizing to the distribution networks are demonstrated using 24 bus system.Keywords: Embedded generation (EG), load flow study, optimal allocation, real coded genetic algorithm (RCGA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901944 Finding a Solution, all Solutions, or the Most Probable Solution to a Temporal Interval Algebra Network
Authors: André Trudel, Haiyi Zhang
Abstract:
Over the years, many implementations have been proposed for solving IA networks. These implementations are concerned with finding a solution efficiently. The primary goal of our implementation is simplicity and ease of use. We present an IA network implementation based on finite domain non-binary CSPs, and constraint logic programming. The implementation has a GUI which permits the drawing of arbitrary IA networks. We then show how the implementation can be extended to find all the solutions to an IA network. One application of finding all the solutions, is solving probabilistic IA networks.Keywords: Constraint logic programming, CSP, logic, temporalreasoning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398943 Protein Residue Contact Prediction using Support Vector Machine
Authors: Chan Weng Howe, Mohd Saberi Mohamad
Abstract:
Protein residue contact map is a compact representation of secondary structure of protein. Due to the information hold in the contact map, attentions from researchers in related field were drawn and plenty of works have been done throughout the past decade. Artificial intelligence approaches have been widely adapted in related works such as neural networks, genetic programming, and Hidden Markov model as well as support vector machine. However, the performance of the prediction was not generalized which probably depends on the data used to train and generate the prediction model. This situation shown the importance of the features or information used in affecting the prediction performance. In this research, support vector machine was used to predict protein residue contact map on different combination of features in order to show and analyze the effectiveness of the features.Keywords: contact map, protein residue contact, support vector machine, protein structure prediction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895942 A Hybrid Approach for Selection of Relevant Features for Microarray Datasets
Authors: R. K. Agrawal, Rajni Bala
Abstract:
Developing an accurate classifier for high dimensional microarray datasets is a challenging task due to availability of small sample size. Therefore, it is important to determine a set of relevant genes that classify the data well. Traditionally, gene selection method often selects the top ranked genes according to their discriminatory power. Often these genes are correlated with each other resulting in redundancy. In this paper, we have proposed a hybrid method using feature ranking and wrapper method (Genetic Algorithm with multiclass SVM) to identify a set of relevant genes that classify the data more accurately. A new fitness function for genetic algorithm is defined that focuses on selecting the smallest set of genes that provides maximum accuracy. Experiments have been carried on four well-known datasets1. The proposed method provides better results in comparison to the results found in the literature in terms of both classification accuracy and number of genes selected.
Keywords: Gene selection, genetic algorithm, microarray datasets, multi-class SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056941 Improved Ant Colony Optimization for Solving Reliability Redundancy Allocation Problems
Authors: Phakhapong Thanitakul, Worawat Sa-ngiamvibool, Apinan Aurasopon, Saravuth Pothiya
Abstract:
This paper presents an improved ant colony optimization (IACO) for solving the reliability redundancy allocation problem (RAP) in order to maximize system reliability. To improve the performance of ACO algorithm, two additional techniques, i.e. neighborhood search, and re-initialization process are presented. To show its efficiency and effectiveness, the proposed IACO is applied to solve three RAPs. Additionally, the results of the proposed IACO are compared with those of the conventional heuristic approaches i.e. genetic algorithm (GA), particle swarm optimization (PSO) and ant colony optimization (ACO). The experimental results show that the proposed IACO approach is comparatively capable of obtaining higher quality solution and faster computational time.
Keywords: Ant colony optimization, Heuristic algorithm, Mixed-integer nonlinear programming, Redundancy allocation problem, Reliability optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093940 Heuristic Continuous-time Associative Memories
Authors: Truong Quang Dang Khoa, Masahiro Nakagawa
Abstract:
In this paper, a novel associative memory model will be proposed and applied to memory retrievals based on the conventional continuous time model. The conventional model presents memory capacity is very low and retrieval process easily converges to an equilibrium state which is very different from the stored patterns. Genetic Algorithms is well-known with the capability of global optimal search escaping local optimum on progress to reach a global optimum. Based on the well-known idea of Genetic Algorithms, this work proposes a heuristic rule to make a mutation when the state of the network is trapped in a spurious memory. The proposal heuristic associative memory show the stored capacity does not depend on the number of stored patterns and the retrieval ability is up to ~ 1.Keywords: Artificial Intelligent, Soft Computing, NeuralNetworks, Genetic Algorithms, Hopfield Neural Networks, andAssociative Memories.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401939 Power System Voltage Control using LP and Artificial Neural Network
Authors: A. Sina, A. Aeenmehr, H. Mohamadian
Abstract:
Optimization and control of reactive power distribution in the power systems leads to the better operation of the reactive power resources. Reactive power control reduces considerably the power losses and effective loads and improves the power factor of the power systems. Another important reason of the reactive power control is improving the voltage profile of the power system. In this paper, voltage and reactive power control using Neural Network techniques have been applied to the 33 shines- Tehran Electric Company. In this suggested ANN, the voltages of PQ shines have been considered as the input of the ANN. Also, the generators voltages, tap transformers and shunt compensators have been considered as the output of ANN. Results of this techniques have been compared with the Linear Programming. Minimization of the transmission line power losses has been considered as the objective function of the linear programming technique. The comparison of the results of the ANN technique with the LP shows that the ANN technique improves the precision and reduces the computation time. ANN technique also has a simple structure and this causes to use the operator experience.Keywords: voltage control, linear programming, artificial neural network, power systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759938 Optimizing and Evaluating Performance Quality Control of the Production Process of Disposable Essentials Using Approach Vague Goal Programming
Authors: Hadi Gholizadeh, Ali Tajdin
Abstract:
To have effective production planning, it is necessary to control the quality of processes. This paper aims at improving the performance of the disposable essentials process using statistical quality control and goal programming in a vague environment. That is expressed uncertainty because there is always a measurement error in the real world. Therefore, in this study, the conditions are examined in a vague environment that is a distance-based environment. The disposable essentials process in Kach Company was studied. Statistical control tools were used to characterize the existing process for four factor responses including the average of disposable glasses’ weights, heights, crater diameters, and volumes. Goal programming was then utilized to find the combination of optimal factors setting in a vague environment which is measured to apply uncertainty of the initial information when some of the parameters of the models are vague; also, the fuzzy regression model is used to predict the responses of the four described factors. Optimization results show that the process capability index values for disposable glasses’ average of weights, heights, crater diameters and volumes were improved. Such increasing the quality of the products and reducing the waste, which will reduce the cost of the finished product, and ultimately will bring customer satisfaction, and this satisfaction, will mean increased sales.Keywords: Goal programming, quality control, vague environment, disposable glasses’ optimization, fuzzy regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1039937 Simulation of Increased Ambient Ozone to Estimate Nutrient Content and Genetic Change in Two Thai Soybean Cultivars
Authors: Orose Rugchati, Kanita Thanacharoenchanaphas
Abstract:
This research studied the simulation of increased ambient ozone to estimate nutrient content and genetic changes in two Thai soybean cultivars (Chiang Mai 60 and Srisumrong 1). Ozone stress conditions affected proteins and lipids. It was found that proteins decreased, but lipids increased. Srisumrong 1 cultivars were more sensitive to ozone stress than Chiang Mai 60 cultivars. The effect of ozone stress conditions on plant phenotype and genotype was analyzed using the AFLP technique for the 2 Thai soybean cultivars (Chiang Mai 60 and Srisumrong 1).Keywords: simulation, ambient ozone estimate, nutrient content, genetic changes , Thai soybean
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381936 Heuristic Methods for the Capacitated Location- Allocation Problem with Stochastic Demand
Authors: Salinee Thumronglaohapun
Abstract:
The proper number and appropriate locations of service centers can save cost, raise revenue and gain more satisfaction from customers. Establishing service centers is high-cost and difficult to relocate. In long-term planning periods, several factors may affect the service. One of the most critical factors is uncertain demand of customers. The opened service centers need to be capable of serving customers and making a profit although the demand in each period is changed. In this work, the capacitated location-allocation problem with stochastic demand is considered. A mathematical model is formulated to determine suitable locations of service centers and their allocation to maximize total profit for multiple planning periods. Two heuristic methods, a local search and genetic algorithm, are used to solve this problem. For the local search, five different chances to choose each type of moves are applied. For the genetic algorithm, three different replacement strategies are considered. The results of applying each method to solve numerical examples are compared. Both methods reach to the same best found solution in most examples but the genetic algorithm provides better solutions in some cases.Keywords: Location-allocation problem, stochastic demand, local search, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 750935 Hybrid Algorithm for Hammerstein System Identification Using Genetic Algorithm and Particle Swarm Optimization
Authors: Tomohiro Hachino, Kenji Shimoda, Hitoshi Takata
Abstract:
This paper presents a method of model selection and identification of Hammerstein systems by hybridization of the genetic algorithm (GA) and particle swarm optimization (PSO). An unknown nonlinear static part to be estimated is approximately represented by an automatic choosing function (ACF) model. The weighting parameters of the ACF and the system parameters of the linear dynamic part are estimated by the linear least-squares method. On the other hand, the adjusting parameters of the ACF model structure are properly selected by the hybrid algorithm of the GA and PSO, where the Akaike information criterion is utilized as the evaluation value function. Simulation results are shown to demonstrate the effectiveness of the proposed hybrid algorithm.Keywords: Hammerstein system, identification, automatic choosing function model, genetic algorithm, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500934 Multi-matrix Real-coded Genetic Algorithm for Minimising Total Costs in Logistics Chain Network
Authors: Pupong Pongcharoen, Aphirak Khadwilard, Anothai Klakankhai
Abstract:
The importance of supply chain and logistics management has been widely recognised. Effective management of the supply chain can reduce costs and lead times and improve responsiveness to changing customer demands. This paper proposes a multi-matrix real-coded Generic Algorithm (MRGA) based optimisation tool that minimises total costs associated within supply chain logistics. According to finite capacity constraints of all parties within the chain, Genetic Algorithm (GA) often produces infeasible chromosomes during initialisation and evolution processes. In the proposed algorithm, chromosome initialisation procedure, crossover and mutation operations that always guarantee feasible solutions were embedded. The proposed algorithm was tested using three sizes of benchmarking dataset of logistic chain network, which are typical of those faced by most global manufacturing companies. A half fractional factorial design was carried out to investigate the influence of alternative crossover and mutation operators by varying GA parameters. The analysis of experimental results suggested that the quality of solutions obtained is sensitive to the ways in which the genetic parameters and operators are set.Keywords: Genetic Algorithm, Logistics, Optimisation, Supply Chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809933 Optimal Planning of Waste-to-Energy through Mixed Integer Linear Programming
Authors: S. T. Tan, H. Hashim, W. S. Ho, C. T. Lee
Abstract:
Rapid economic development and population growth in Malaysia had accelerated the generation of solid waste. This issue gives pressure for effective management of municipal solid waste (MSW) to take place in Malaysia due to the increased cost of landfill. This paper discusses optimal planning of waste-to-energy (WTE) using a combinatorial simulation and optimization model through mixed integer linear programming (MILP) approach. The proposed multi-period model is tested in Iskandar Malaysia (IM) as case study for a period of 12 years (2011 -2025) to illustrate the economic potential and tradeoffs involved in this study. In this paper, 3 scenarios have been used to demonstrate the applicability of the model: (1) Incineration scenario (2) Landfill scenario (3) Optimal scenario. The model revealed that the minimum cost of electricity generation from 9,995,855 tonnes of MSW is estimated as USD 387million with a total electricity generation of 50MW /yr in the optimal scenario.Keywords: Mixed Integer Linear Programming (MILP), optimization, solid waste management (SWM), Waste-to-energy (WTE).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2986932 An Automated Approach for Assembling Modular Fixtures Using SolidWorks
Authors: Uday Hameed Farhan, Majid Tolouei-Rad, Simona O'Brien
Abstract:
Modular fixtures (MFs) are very important tools in manufacturing processes in terms of reduction the cost and the production time. This paper introduces an automated approach for assembling MFs elements by employing SolidWorks as a powerful 3D CAD software. Visual Basic (VB) programming language was applied integrating with SolidWorks API (Application programming interface) functions. This integration allowed creating plug-in file and generating new menus in the SolidWorks environment. The menus allow the user to select, insert, and assemble MFs elements.Keywords: Assembly automation, modular fixtures, SolidWorks, Visual Basic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779931 E-Appointment Scheduling (EAS)
Authors: Noraziah Ahmad, Roslina Mohd Sidek, Mohd Affendy Omardin
Abstract:
E-Appointment Scheduling (EAS) has been developed to handle appointment for UMP students, lecturers in Faculty of Computer Systems & Software Engineering (FCSSE) and Student Medical Center. The schedules are based on the timetable and university activities. Constraints Logic Programming (CLP) has been implemented to solve the scheduling problems by giving recommendation to the users in part of determining any available slots from the lecturers and doctors- timetable. By using this system, we can avoid wasting time and cost because this application will set an appointment by auto-generated. In addition, this system can be an alternative to the lecturers and doctors to make decisions whether to approve or reject the appointments.Keywords: EAS, Constraint Logic Programming, PHP, Apache.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4606930 The Effect of Dopamine D2 Receptor TAQ A1 Allele on Sprinter and Endurance Athlete
Authors: Öznur Özge Özcan, Canan Sercan, Hamza Kulaksız, Mesut Karahan, Korkut Ulucan
Abstract:
Genetic structure is very important to understand the brain dopamine system which is related to athletic performance. Hopefully, there will be enough studies about athletics performance in the terms of addiction-related genetic markers in the future. In the present study, we intended to investigate the Receptor-2 Gene (DRD2) rs1800497, which is related to brain dopaminergic system. 10 sprinter and 10 endurance athletes were enrolled in the study. Real-Time Polymerase Chain Reaction method was used for genotyping. According to results, A1A1, A1A2 and A2A2 genotypes in athletes were 0 (%0), 3 (%15) and 17 (%85). A1A1 genotype was not found and A2 allele was counted as the dominating allele in our cohort. These findings show that dopaminergic mechanism effects on sport genetic may be explained by the polygenic and multifactorial view.
Keywords: Addiction, athletic performance, genotype, polymorphism, sport genetics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052929 Optimization of Transmitter Aperture by Genetic Algorithm in Optical Satellite
Authors: Karim Kemih, Yacine Yaiche, Malek Benslama
Abstract:
To establish optical communication between any two satellites, the transmitter satellite must track the beacon of the receiver satellite and point the information optical beam in its direction. Optical tracking and pointing systems for free space suffer during tracking from high-amplitude vibration because of background radiation from interstellar objects such as the Sun, Moon, Earth, and stars in the tracking field of view or the mechanical impact from satellite internal and external sources. The vibrations of beam pointing increase the bit error rate and jam communication between the two satellites. One way to overcome this problem is the use of very small transmitter beam divergence angles of too narrow divergence angle is that the transmitter beam may sometimes miss the receiver satellite, due to pointing vibrations. In this paper we propose the use of genetic algorithm to optimize the BER as function of transmitter optics aperture.Keywords: Optical Satellite Communication, Genetic Algorithm, Transmitter Optics Aperture
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989928 Genetic Algorithm for Feature Subset Selection with Exploitation of Feature Correlations from Continuous Wavelet Transform: a real-case Application
Authors: G. Van Dijck, M. M. Van Hulle, M. Wevers
Abstract:
A genetic algorithm (GA) based feature subset selection algorithm is proposed in which the correlation structure of the features is exploited. The subset of features is validated according to the classification performance. Features derived from the continuous wavelet transform are potentially strongly correlated. GA-s that do not take the correlation structure of features into account are inefficient. The proposed algorithm forms clusters of correlated features and searches for a good candidate set of clusters. Secondly a search within the clusters is performed. Different simulations of the algorithm on a real-case data set with strong correlations between features show the increased classification performance. Comparison is performed with a standard GA without use of the correlation structure.Keywords: Classification, genetic algorithm, hierarchicalagglomerative clustering, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223927 The Contribution of the PCR-Enzymatic Digestion in the Positive Diagnosis of Proximal Spinal Muscular Atrophy in the Moroccan Population
Authors: H. Merhni, A. Sbiti, I. Ratbi, A. Sefiani
Abstract:
The proximal spinal muscular atrophy (SMA) is a group of neuromuscular disorders characterized by progressive muscle weakness due to the degeneration and loss of anterior motor neurons of the spinal cord. Depending on the age of onset of symptoms and their evolution, four types of SMA, varying in severity, result in a mutations of the SMN gene (survival of Motor neuron). We have analyzed the DNA of 295 patients referred to our genetic counseling; since January 1996 until October 2014; for suspected SMA. The homozygous deletion of exon 7 of the SMN gene was found in 133 patients; of which, 40.6% were born to consanguineous parents. In countries like Morocco, where the frequency of heterozygotes for SMA is high, genetic testing should be offered as first-line and, after careful clinical assessment, especially in newborns and infants with congenital hypotonia unexplained and prognosis compromise. The molecular diagnosis of SMA allows a quick and certainly diagnosis, provide adequate genetic counseling for families at risk and suggest, for couples who want prenatal diagnosis. The analysis of the SMN gene is a perfect example of genetic testing with an excellent cost/benefit ratio that can be of great interest in public health, especially in low-income countries. We emphasize in this work for the benefit of the generalization of molecular diagnosis of SMA by the technique of PCR-enzymatic digestion in other centers in Morocco.Keywords: Exon7, PCR-digestion, SMA, SMN gene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117926 Mining of Interesting Prediction Rules with Uniform Two-Level Genetic Algorithm
Authors: Bilal Alatas, Ahmet Arslan
Abstract:
The main goal of data mining is to extract accurate, comprehensible and interesting knowledge from databases that may be considered as large search spaces. In this paper, a new, efficient type of Genetic Algorithm (GA) called uniform two-level GA is proposed as a search strategy to discover truly interesting, high-level prediction rules, a difficult problem and relatively little researched, rather than discovering classification knowledge as usual in the literatures. The proposed method uses the advantage of uniform population method and addresses the task of generalized rule induction that can be regarded as a generalization of the task of classification. Although the task of generalized rule induction requires a lot of computations, which is usually not satisfied with the normal algorithms, it was demonstrated that this method increased the performance of GAs and rapidly found interesting rules.
Keywords: Classification rule mining, data mining, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592925 Optimal Path Planning under Priori Information in Stochastic, Time-varying Networks
Authors: Siliang Wang, Minghui Wang, Jun Hu
Abstract:
A novel path planning approach is presented to solve optimal path in stochastic, time-varying networks under priori traffic information. Most existing studies make use of dynamic programming to find optimal path. However, those methods are proved to be unable to obtain global optimal value, moreover, how to design efficient algorithms is also another challenge. This paper employs a decision theoretic framework for defining optimal path: for a given source S and destination D in urban transit network, we seek an S - D path of lowest expected travel time where its link travel times are discrete random variables. To solve deficiency caused by the methods of dynamic programming, such as curse of dimensionality and violation of optimal principle, an integer programming model is built to realize assignment of discrete travel time variables to arcs. Simultaneously, pruning techniques are also applied to reduce computation complexity in the algorithm. The final experiments show the feasibility of the novel approach.Keywords: pruning method, stochastic, time-varying networks, optimal path planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852924 Intelligent Heart Disease Prediction System Using CANFIS and Genetic Algorithm
Authors: Latha Parthiban, R. Subramanian
Abstract:
Heart disease (HD) is a major cause of morbidity and mortality in the modern society. Medical diagnosis is an important but complicated task that should be performed accurately and efficiently and its automation would be very useful. All doctors are unfortunately not equally skilled in every sub specialty and they are in many places a scarce resource. A system for automated medical diagnosis would enhance medical care and reduce costs. In this paper, a new approach based on coactive neuro-fuzzy inference system (CANFIS) was presented for prediction of heart disease. The proposed CANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach which is then integrated with genetic algorithm to diagnose the presence of the disease. The performances of the CANFIS model were evaluated in terms of training performances and classification accuracies and the results showed that the proposed CANFIS model has great potential in predicting the heart disease.
Keywords: CANFIS, genetic algorithms, heart disease, membership function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3990923 Production and Remanufacturing of Returned Products in Supply Chain using Modified Genetic Algorithm
Authors: Siva Prasad Darla, C. D. Naiju, K. Annamalai, Y. Upendra Sravan
Abstract:
In recent years, environment regulation forcing manufactures to consider recovery activity of end-of- life products and/or return products for refurbishing, recycling, remanufacturing/repair and disposal in supply chain management. In this paper, a mathematical model is formulated for single product production-inventory system considering remanufacturing/reuse of return products and rate of return products follows a demand like function, dependent on purchasing price and acceptance quality level. It is useful in decision making to determine whether to go for remanufacturing or disposal of returned products along with newly produced products to satisfy a stationary demand. In addition, a modified genetic algorithm approach is proposed, inspired by particle swarm optimization method. Numerical analysis of the case study is carried out to validate the model.Keywords: Genetic Algorithm, Particle Swarm Optimization, Production, Remanufacturing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708922 Genetic Polymorphism of Main Lactoproteins of Romanian Grey Steppe Breed in Preservation
Authors: Şt. Creangâ, V. Maciuc, A.V. Bâlteanu, S.S. Chelmu
Abstract:
The paper presents a part of the results obtained in a complex research project on Romanian Grey Steppe breed, owner of some remarkable qualities such as hardiness, longevity, adaptability, special resistance to ban weather and diseases and included in the genetic fund (G.D. no. 822/2008.) from Romania. Following the researches effectuated, we identified alleles of six loci, codifying the six types of major milk proteins: alpha-casein S1 (α S1-cz); beta-casein (β-cz); kappa-casein (K-cz); beta-lactoglobulin (β-lg); alpha-lactalbumin (α-la) and alpha-casein S2 (α S2-cz). In system αS1-cz allele αs1-Cn B has the highest frequency (0.700), in system β-cz allele β-Cn A2 ( 0.550 ), in system K-cz allele k-CnA2 ( 0.583 ) and heterozygote genotype AB ( 0.416 ) and BB (0.375), in system β-lg allele β-lgA1 has the highest frequency (0.542 ) and heterozygote genotype AB ( 0.500 ), in system α-la there is monomorphism for allele α-la B and similarly in system αS2-cz for allele αs2-Cn A. The milk analysis by the isoelectric focalization technique (I.E.F.) allowed the identification of a new allele for locus αS1-casein, for two of the individuals under analysis, namely allele called αS1-casein IRV. When experiments were repeated, we noticed that this is not a proteolysis band and it really was a new allele that has not been registered in the specialized literature so far. We identified two heterozygote individuals, carriers of this allele, namely: BIRV and CIRV. This discovery is extremely important if focus is laid on the national genetic patrimony.Keywords: allele, breed, genetic preservation, lactoproteins, Romanian Grey Steppe
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691921 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System
Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García
Abstract:
In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.
Keywords: Intelligent transportation systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546920 Evolutionary Design of Polynomial Controller
Authors: R. Matousek, S. Lang, P. Minar, P. Pivonka
Abstract:
In the control theory one attempts to find a controller that provides the best possible performance with respect to some given measures of performance. There are many sorts of controllers e.g. a typical PID controller, LQR controller, Fuzzy controller etc. In the paper will be introduced polynomial controller with novel tuning method which is based on the special pole placement encoding scheme and optimization by Genetic Algorithms (GA). The examples will show the performance of the novel designed polynomial controller with comparison to common PID controller.Keywords: Evolutionary design, Genetic algorithms, PID controller, Pole placement, Polynomial controller
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156919 Designing a Novel General Sorting Network Constructor Using Artificial Evolution
Authors: Michal Bidlo, Radek Bidlo, Lukas Sekanina
Abstract:
A method is presented for the construction of arbitrary even-input sorting networks exhibiting better properties than the networks created using a conventional technique of the same type. The method was discovered by means of a genetic algorithm combined with an application-specific development. Similarly to human inventions in the area of theoretical computer science, the evolved invention was analyzed: its generality was proven and area and time complexities were determined.Keywords: Development, genetic algorithm, program, sorting network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285918 Evaluation of Antioxidant Activity as a Function of the Genetic Diversity of Canna indica Complex
Authors: A. Rattanapittayapron, O. Vanijajiva
Abstract:
Canna indica is a prominent species complex in tropical and subtropical areas. They become indigenous in Southeast Asia where they have been introduced. At present, C. indica complex comprises over hundred hybrids, are cultivated as commercial horticulture. The species complex contains starchy rhizome having economic value in terms of food and herbal medicine. In addition, bright color of the flowers makes it a valuable ornamental plant and potential source for natural colorant. This study aims to assess genetic diversity of four varieties of C. indica complex based on SRAP (sequence-related amplified polymorphism) and iPBS (inter primer binding site) markers. We also examined phytochemical characteristics and antioxidant properties of the flower extracts from four different color varieties. Results showed that despite of the genetic variation, there were no significant differences in phytochemical characteristics and antioxidant properties of flowers. The SRAP and iPBS results agree with the more primitive traits showed by morphological information and phytochemical and antioxidant characteristics from the flowers. Since Canna flowers has long been used as natural colorants together with the antioxidant activities from the ethanol extracts in this study, there are likely to be good source for cosmetics additives.
Keywords: Canna indica, antioxidant activity, genetic diversity, SRAP, iPBS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 374