The Effect of Dopamine D2 Receptor TAQ A1 Allele on Sprinter and Endurance Athlete
Authors: Öznur Özge Özcan, Canan Sercan, Hamza Kulaksız, Mesut Karahan, Korkut Ulucan
Abstract:
Genetic structure is very important to understand the brain dopamine system which is related to athletic performance. Hopefully, there will be enough studies about athletics performance in the terms of addiction-related genetic markers in the future. In the present study, we intended to investigate the Receptor-2 Gene (DRD2) rs1800497, which is related to brain dopaminergic system. 10 sprinter and 10 endurance athletes were enrolled in the study. Real-Time Polymerase Chain Reaction method was used for genotyping. According to results, A1A1, A1A2 and A2A2 genotypes in athletes were 0 (%0), 3 (%15) and 17 (%85). A1A1 genotype was not found and A2 allele was counted as the dominating allele in our cohort. These findings show that dopaminergic mechanism effects on sport genetic may be explained by the polygenic and multifactorial view.
Keywords: Addiction, athletic performance, genotype, polymorphism, sport genetics.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1474429
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066References:
[1] Bray M. S., Hagberg J. M., Perusse L. et al. The human gene map for performance and health-related fitness phenotypes. Med Sci Sports Exercise, 2009, pp. 35–73.
[2] Bouchard C, Genomic predictors of trainability. Exp Physiol, 2012, pp. 347– 352.
[3] Wolfarth, B. Rankinen, T. Hagberg, J. M., Loos, R. J., Pérusse, L. Roth, S. M., Sarzynski, M. A., Bouchard, C. Advances in exercise, fitness, and performance genomics in 2013. Med Sci Sports Exercise. 2014, pp. 46 (5): 851- 9.
[4] Tucker R. Collins, M. What makes champions? A review of the relative contribution of genes and training to sporting success. Br J Sports Med. 2012, pp. 46:555–561.
[5] Calvo M, Rodas G, Vallejo M, et al. Heritability of explosive power and anaerobic capacity in humans. Eur J Appl Physiol. 2002, pp. 86(3): 218–25.
[6] Dahlström, A. Fuxe, K. Localization of monoamines in the lower brain system. Experientia.. 1964, 20(7): 398-9.
[7] Stahl, S. M. Psychosis and schizophrenia”. Stahl’s Essential Psychopharmacology. Neuroscientific Basic and Practical Applications. 2013, Stahl S. M. with illustrations by Nancy Muntner. Cambridge University Press
[8] Hornykiewicz, O. The action of dopamine on the arterial pressure of the guinea pig. Br J Pharmacol. 1958, pp. 13: 91- 94.
[9] Foley, T. Fleshner, E. M. Neuroplasticity of dopamine circuits after exercise: 498implications for central fatigue. 2008, pp. Neuromolecular Med. 10: 67-80.
[10] Greco, B., Melis, M. Tonini, R. Interplay between synaptic endocannabinoid signaling and metaplasticity in neuronal circuit function and dysfunction. The European Journal of Neuroscience. 2014, pp. 39: 1189–1201.
[11] Kent C. Berridge Is Addiction a Brain Disease? Neuroethics. 2016, pp. 10(1): 29-33.
[12] Thompson, J. Thomas, N. Singleton, A. Piggott, M. L., loyd, S. Perry, E. K., Morris, C. M., Perry, R. H., Ferrier, I. N., Court, J. A. D2 dopamine receptor gene (DRD2) Taq1 A polymorphism reduced dopamine D2 receptor bindingin the human striatum asso-ciated with the A1 allele. Pharmacogenetics. 1997, pp. 7: 479±84.
[13] Rabelo, P. C., Almeida, T. F., Guimaraes, J. B., Barcellos, L. A., Cordeiro L. M., Moraes, M. M., Coimbra, C. C., Szawka, R. E., Soares, D. D. Intrinsic exercise capacity is related to differential monoaminergic activity in the rat forebrain. Brain Res Bull. 2015, pp. 112: 7-13.
[14] Romain, M. Meirleir, K. D. Exercise and Brain Neurotransmission. Sports Medicine. 1995, pp. 20(3): 160–188.
[15] Baik, J. Dopamine Signaling in reward-related behaviours Front Neural Circuits. 2013, pp. 7: 152.
[16] Terry, M. Elrath, Y. M., O’Malley, P. M. Substance use and exercise participation among young adults: parallel trajectories in a national cohort-sequential study. Addiction. 2011, pp. 106(10): 1855–1865.
[17] Volkow, N. D., Wang, G. J., Newcorn, J. Fowler, J. S., Telang, F. Solanto, M. V., Logan, J. Wong, C. Ma, Y. Swanson, J. M., Schulz, K. Pradhan, K. Brain dopamine transporter levels in treatment and drug naive adults with ADHD. Neuroimage 2007, pp. 34: 1182– 1190.
[18] Vuckovic, M. G., Li, Q. Fisher, B. Nacca, A. Leahy, R. M., Walsh, J. P. Exercise elevates dopamine D2 receptor in a mouse model of Parkinson’s disease: in vivo imaging with ((1)(8)F)fallypride. Mov Disord. 2010, pp. 25: 2777–2784.
[19] Carek, P. J., Laibstain, S. E. Exercise for the treatment of depression and anxiety. The International Journal of Psychiatry in Medicine. 2011, pp. 41(1): 15–28.
[20] Haslacher, H. Michlmayr, M. Batmyagmar, D. Perkmann, T. Ponocny-Seliger, E. Scheichenberger, V. Scherzer, T. M., Nistler, S. Pilger, A. Dal-Bianco, P. Lehrner, J. Pezawas, L. Wagner, O. F., Winker, R. rs6295 (C)-Allele Protects Against Depressive Mood in Elderly Endurance Athletes. J Sport Exerc Psychol. 2015, pp. 37(6): 637-45.
[21] Noble, E. P., Özkaragöz, T. Z., Ritchie, T. Zhang, L. X., Belin, R. T., Sparkes, R. S. D2 and D4 Dopamine Receptor Polymorphisms and Personality. American Journal of Medical Genetics (Neuropsychiatric Genetics). 1998, pp. 81: 257- 267.
[22] Ford, C. P., Gantz, S. C., Phillips, P. E., Williams, J. T. Control of extracellular dopamine at dendrite and axon terminals. J. Neurosci.: Off. J. Soc. Neuroscience. 2010, pp. 30, 6975–6983.
[23] Savitz, J. Hodgkinson, C. A., Martin-Soelch, C. Shen, P. H., Szczepanik, J., Nugent, A.C., Herscovitch, P., Grace, A. A., Goldman, D. Drevets, W .C. DRD2/ANKK1 Taq1A polymorphism (rs1800497) has opposing effects on D2/3 receptor binding in healthy controls and patients with major depressive disorder. Int. J. Neuropsychopharmacol./Off. Sci. J. Coll. Int. Neuropsychopharmacol. (CINP). 2013, pp. 1–7.
[24] Malo M. L., Brive, K. Luthman, Svensson P. Selective pharmacophore models of dopamine D1 and D2 full agonists based on extended pharmacophore features, ChemMedChem. 2010, pp. 5: 232-246.
[25] Cooper, J. R., Bloom, F. E., Roth, R. H. The Biochemical Basis of Neuropharmacology. 2003, 8. Ed. Oxford University Press, New York, USA.
[26] Balthazar, C. H., Leite, L. H., Rodrigues, A.G., Coimbra C.C. Performance-enhancing and thermoregulatory effects of intracerebroventricular dopamine in running rats. Pharmacol Biochem Behav. 2009, pp. 93: 465.
[27] Gerald, M. C. Effects of (+)-amphetamine on the treadmill endurance performance of rate. Neuropharmacology. 1978, pp. 17:703.
[28] Sedvall, G. Farde L. Chemical brain anatomy in schizophrenia. Lancet. 1995, pp. 346: 743- 749.
[29] Meador-Woodruff, J. H., Damask, S. P., Wang, J. Haroutunian, V. Davis, K. L. Watson, S. J. Dopamine receptor mRNA expression in human striatum and neocortex. Neuropsychopharmacology. 1996, 15(1): 17-29.
[30] Lahti, R. A., Roberts, R. C., Cochrane, E. V., Primus, R. J., Gallager, D. W., Conley, R. R., Tamminga, C. A. Direct determination of dopamine D4 receptors in normal and schizophrenic postmortem brain tissue: a (3H)NGD-94-1 study. Molecular Psychiatry Stockton Press. 1998, 3: 528- 533.
[31] Bunzow, J. R., Van, T. H., Grandy, H. M., D. K. Cloning and expression of a rat D2 dopamine receptor cDNA. Nature 1988, pp. 336: 783– 787.
[32] Arinami, T., Itokawa, M., Aoki, J., Shibuya, H., Ookubo, Y., Iwawaki, A., Ota, K. Shimizu, H. Hamaguchi, H., Toru, M. Further association study on dopamine D2 receptor S311C in schizophrenia and affective disorders. Am. J. Med. Genet. 1996, pp. 67: 133-138.
[33] Hirschfeld, R. M. History and evolution of the monoamine hypothesis of depression. The Journal of Clinical Psychiatry. 2000, pp. 61 (6): 4- 6.
[34] Kishi, T., Okochi, T., Tsunoka, T., Okumura, T., Kitajima, T., Kawashima, K. Iwata, N. Serotonin 1A receptor gene, schizophrenia and bipolar disorder: An association study and meta-analysis. Psychiatry Research. 2011, pp. 185(1-2): 20– 26.
[35] Carpenter, L. Angela, M. Wong, Zhaoping, L. Ernest, P. Noble, D. Heber Association of Dopamine D2 Receptor and Leptin Receptor Genes with Clinically Severe Obesity Obesity (Silver Spring). 2013, pp. 21(9): 467- 73.
[36] Gelernter, J. Yu, Y. Weiss, R. Haplotype spanning TTC12 and ANKK1, flanked by the DRD2 and NCAM1 loci, is strongly associated to nicotine dependence in two distinct American populations. Hum Mol Genet. 2006, pp. 15:3498– 3507.
[37] Munafo, M. R., Matheson, I. J., Flint, J. Association of the DRD2 gene Taq1A polymorphism and alcoholism: a meta-analysis of case-control studies and evidence of publication bias. Mol Psychiatry. 2007, pp. 12:454– 461
[38] Ariza, M., Garolera, M., Jurado, M. A., Garcia-Garcia, I., Hernan, I., Sanchez-Garre, C., Vernet-Vernet, M., Sender-Palacios, M. J., Marques-Iturria, I., Pueyo, R. Segura, B., Narberhaus, A. Dopamine Genes (DRD2/ANKK1-TaqA1 and DRD4-7R) and Executive Function: Their Interaction with Obesity. Plos One. 2012, pp. 7(7): 41482
[39] Thompson, J. Thomas, N. Singleton, A. Piggott, M. L., loyd, S. Perry, E. K., Morris, C. M., Perry, R. H., Ferrier, I. N., Court, J. A. D2 dopamine receptor gene (DRD2) Taq1 A polymorphism reduced dopamine D2 receptor bindingin the human striatum asso-ciated with the A1 allele. Pharmacogenetics. 1997, pp. 7: 479±84.
[40] Noble, E. P., Özkaragöz, T. Z., Ritchie, T. Zhang, L. X., Belin, R. T., Sparkes, R. S. D2 and D4 Dopamine Receptor Polymorphisms and Personality. American Journal of Medical Genetics (Neuropsychiatric Genetics). 1998, pp. 81: 257- 267.
[41] Hamilton, M. T., Hamilton, D. G., Zderic, T. W. (2007) “Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes. 2007, pp. 56: 2655–2667.
[42] Vilhena S., D. M., Katzmarzyk, P. T., Seabra, A. F., Maia, J. A. Genetics of physical activity and physical inactivity in humans. Behav Genetic. 2012, pp. 42:559-78.
[43] Haslacher, H. Michlmayr, M. Batmyagmar, D. Perkmann, T. Ponocny-Seliger, E. Scheichenberger, V. Scherzer, T. M., Nistler, S. Pilger, A. Dal-Bianco, P. Lehrner, J. Pezawas, L. Wagner, O. F., Winker, R. rs6295 (C)-Allele Protects Against Depressive Mood in Elderly Endurance Athletes. J Sport Exerc Psychol. 2015, pp. 37(6): 637-45
[44] Dishman, R. K., Sallis, J. F., Orenstein, D. R. The determinants of physical activity and exercise. Public Health Rep. 1984, pp. 100:158–171.
[45] Charlotte, H., Bartels, M., Groen-Blokhuis, M. M., Dolan, C. V., de Moor, M. H. M., Abdellaoui, A., Beijsterveldt, V., C. M., Ehli, E. A., Hottenga, J. J., Willemsen, G., Xiao, X., Scheet, P., Davies, G. E., Boomsma, D. I., Hudziak, J. J., De Geus, J. C. The Dopaminergic Reward System and Leisure Time Exercise Behavior: A Candidate Allele Study. BioMed Research International Volume, Article ID 591717, 2014, pp. 9.
[46] Hamajima, N. Ito, H. Matsuo, K. Saito, T. Tajima, K. Ando, M. Association between smoking habits and dopamine receptor D2 taq1A A2 allele in Japanese males: a confirmatory study. J Epidemiol. 2002, pp. 12:297–304.
[47] Winter, B. Breitenstein, C. Mooren, F. C., Voelker, K. Fobker, M. Lechtermann, A. High impact running improves learning. Neurobiol Learn Mem. 2007, pp. 87: 597-609.
[48] İpek Yüksel, Sezgin Kapıcı, Canan Sercan, Hamza Kulaksız, Tolga Polat, Güllü Turan, Korkut Ulucan. Addiction related DRD2 rs1800497 polymorphism distribution in volleyball players and bodybuılders. The Journal of Neurobehavioral Sciences, 4(3), 122-125, 2017.