Search results for: Early stage prediction
2074 Case Study: Oncological Management of a Patient with Papillary Thyroid Cancer
Authors: A. Taqaddas
Abstract:
The following case study presents the management of stage III Differentiated Thyroid Cancer (DTC) patient in an NHS hospital in London, UK during period of 2004-2005.
Keywords: Differentiated Thyroid Cancer, Oncological Management, Papillary, Thyroid Cancer, Stage III.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31852073 Applications of Prediction and Identification Using Adaptive DCMAC Neural Networks
Authors: Yu-Lin Liao, Ya-Fu Peng
Abstract:
An adaptive dynamic cerebellar model articulation controller (DCMAC) neural network used for solving the prediction and identification problem is proposed in this paper. The proposed DCMAC has superior capability to the conventional cerebellar model articulation controller (CMAC) neural network in efficient learning mechanism, guaranteed system stability and dynamic response. The recurrent network is embedded in the DCMAC by adding feedback connections in the association memory space so that the DCMAC captures the dynamic response, where the feedback units act as memory elements. The dynamic gradient descent method is adopted to adjust DCMAC parameters on-line. Moreover, the analytical method based on a Lyapunov function is proposed to determine the learning-rates of DCMAC so that the variable optimal learning-rates are derived to achieve most rapid convergence of identifying error. Finally, the adaptive DCMAC is applied in two computer simulations. Simulation results show that accurate identifying response and superior dynamic performance can be obtained because of the powerful on-line learning capability of the proposed DCMAC.Keywords: adaptive, cerebellar model articulation controller, CMAC, prediction, identification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14012072 A Two-Step, Temperature-Staged Direct Coal Liquefaction Process
Authors: Reyna Singh, David Lokhat, Milan Carsky
Abstract:
The world crude oil demand is projected to rise to 108.5 million bbl/d by the year 2035. With reserves estimated at 869 billion tonnes worldwide, coal remains an abundant resource. The aim of this work was to produce a high value hydrocarbon liquid product using a Direct Coal Liquefaction (DCL) process at, relatively mild operating conditions. Via hydrogenation, the temperature-staged approach was investigated in a dual reactor lab-scale pilot plant facility. The objectives included maximising thermal dissolution of the coal in the presence of tetralin as the hydrogen donor solvent in the first stage with 2:1 and 3:1 solvent: coal ratios. Subsequently, in the second stage, hydrogen saturation, in particular, hydrodesulphurization (HDS) performance was assessed. Two commercial hydrotreating catalysts were investigated viz. NickelMolybdenum (Ni-Mo) and Cobalt-Molybdenum (Co-Mo). GC-MS results identified 77 compounds and various functional groups present in the first and second stage liquid product. In the first stage 3:1 ratios and liquid product yields catalysed by magnetite were favoured. The second stage product distribution showed an increase in the BTX (Benzene, Toluene, Xylene) quality of the liquid product, branched chain alkanes and a reduction in the sulphur concentration. As an HDS performer and selectivity to the production of long and branched chain alkanes, Ni-Mo had an improved performance over Co-Mo. Co-Mo is selective to a higher concentration of cyclohexane. For 16 days on stream each, Ni-Mo had a higher activity than Co-Mo. The potential to cover the demand for low–sulphur, crude diesel and solvents from the production of high value hydrocarbon liquid in the said process, is thus demonstrated.
Keywords: Catalyst, coal, liquefaction, temperature-staged.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16412071 Network Reconfiguration of Distribution System Using Artificial Bee Colony Algorithm
Authors: S. Ganesh
Abstract:
Power distribution systems typically have tie and sectionalizing switches whose states determine the topological configuration of the network. The aim of network reconfiguration of the distribution network is to minimize the losses for a load arrangement at a particular time. Thus the objective function is to minimize the losses of the network by satisfying the distribution network constraints. The various constraints are radiality, voltage limits and the power balance condition. In this paper the status of the switches is obtained by using Artificial Bee Colony (ABC) algorithm. ABC is based on a particular intelligent behavior of honeybee swarms. ABC is developed based on inspecting the behaviors of real bees to find nectar and sharing the information of food sources to the bees in the hive. The proposed methodology has three stages. In stage one ABC is used to find the tie switches, in stage two the identified tie switches are checked for radiality constraint and if the radilaity constraint is satisfied then the procedure is proceeded to stage three otherwise the process is repeated. In stage three load flow analysis is performed. The process is repeated till the losses are minimized. The ABC is implemented to find the power flow path and the Forward Sweeper algorithm is used to calculate the power flow parameters. The proposed methodology is applied for a 33–bus single feeder distribution network using MATLAB.
Keywords: Artificial Bee Colony (ABC) algorithm, Distribution system, Loss reduction, Network reconfiguration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38102070 Design of CMOS CFOA Based on Pseudo Operational Transconductance Amplifier
Authors: Hassan Jassim Motlak
Abstract:
A novel design technique employing CMOS Current Feedback Operational Amplifier (CFOA) is presented. The feature of consumption very low power in designing pseudo-OTA is used to decreasing the total power consumption of the proposed CFOA. This design approach applies pseudo-OTA as input stage cascaded with buffer stage. Moreover, the DC input offset voltage and harmonic distortion (HD) of the proposed CFOA are very low values compared with the conventional CMOS CFOA due to the symmetrical input stage. P-Spice simulation results are obtained using 0.18μm MIETEC CMOS process parameters and supply voltage of ±1.2V, 50μA biasing current. The p-spice simulation shows excellent improvement of the proposed CFOA over existing CMOS CFOA. Some of these performance parameters, for example, are DC gain of 62. dB, openloop gain bandwidth product of 108 MHz, slew rate (SR+) of +71.2V/μS, THD of -63dB and DC consumption power (PC) of 2mW.
Keywords: Pseudo-OTA used CMOS CFOA, low power CFOA, high-performance CFOA, novel CFOA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28512069 The Development of Speaking Using Folk Tales Based On Performance Activities for Early Childhood Student
Authors: Yaowaluck Ruampol, Suthakorn Wasupokin
Abstract:
The research on the development of speaking using folk tales based on performance activities aimed to (1) study the development of speaking skill for early- childhood students, and (2) evaluate the development of speaking skill before and after speaking activities. Ten students of Kindergarten level 2, who have enrolled in the subject of the research for speaking development of semester 2 in 2013 were purposively selected as the research cohort. The research tools were lesson plans for speaking activities and pre-post test for speaking development that were approved as content validity and reliability (IOC=.66-1.00,α=0.967). The research found that the development of speaking skill of the research samples before using performance activities on folk tales in developing speaking skill was in the normal high level. Additionally, the results appeared that the preschoolers after applying speaking skill on performance activities also imaginatively created their speaking skill.
Keywords: Speaking development, folk tales, performance activities, early-childhood students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32032068 Mixtures of Monotone Networks for Prediction
Authors: Marina Velikova, Hennie Daniels, Ad Feelders
Abstract:
In many data mining applications, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. In this paper we consider partially monotone prediction problems, where the target variable depends monotonically on some of the input variables but not on all. We propose a novel method to construct prediction models, where monotone dependences with respect to some of the input variables are preserved by virtue of construction. Our method belongs to the class of mixture models. The basic idea is to convolute monotone neural networks with weight (kernel) functions to make predictions. By using simulation and real case studies, we demonstrate the application of our method. To obtain sound assessment for the performance of our approach, we use standard neural networks with weight decay and partially monotone linear models as benchmark methods for comparison. The results show that our approach outperforms partially monotone linear models in terms of accuracy. Furthermore, the incorporation of partial monotonicity constraints not only leads to models that are in accordance with the decision maker's expertise, but also reduces considerably the model variance in comparison to standard neural networks with weight decay.Keywords: mixture models, monotone neural networks, partially monotone models, partially monotone problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12462067 Complex Dynamic Behaviors in an Ivlev-type Stage-structured Predator-prey System Concerning Impulsive Control Strategy
Authors: Shunyi Li, Zhifang He, Xiangui Xue
Abstract:
An Ivlev-type predator-prey system and stage-structured for predator concerning impulsive control strategy is considered. The conditions for the locally asymptotically stable prey-eradication periodic solution is obtained, by using Floquet theorem and small amplitude perturbation skills——when the impulsive period is less than the critical value. Otherwise, the system is permanence. Numerical examples show that the system considered has more complicated dynamics, including high-order quasi-periodic and periodic oscillating, period-doubling and period-halving bifurcation, chaos and attractor crisis, etc. Finally, the biological implications of the results and the impulsive control strategy are discussed.
Keywords: Stage-structured predator-prey system, Impulsive, Permanence, Bifurcation, Chaos.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16632066 Nurse’s Role in Early Detection of Breast Cancer through Mammography and Genetic Screening and Its Impact on Patient's Outcome
Authors: Salwa Hagag Abdelaziz, Dorria Salem, Hoda Zaki, Suzan Atteya
Abstract:
Early detection of breast cancer saves many thousands of lives each year via application of mammography and genetic screening and many more lives could be saved if nurses are involved in breast care screening practices. So, the aim of the study was to identify nurse's role in early detection of breast cancer through mammography and genetic screening and its impact on patient's outcome. In order to achieve this aim, 400 women above 40 years, asymptomatic were recruited for mammography and genetic screening. In addition, 50 nurses and 6 technologists were involved in the study. A descriptive analytical design was used. Five tools were utilized: sociodemographic, mammographic examination and risk factors, women's before, during and after mammography, items relaying to technologists, and items related to nurses were also obtained. The study finding revealed that 3% of women detected for malignancy and 7.25% for fibroadenoma. Statistically significant differences were found between mammography results and age, family history, genetic screening, exposure to smoke, and using contraceptive pills. Nurses have insufficient knowledge about screening tests. Based on these findings the present study recommended involvement of nurses in breast care which is very important to in force population about screening practices.
Keywords: Early detection, Genetic Screening, Mammography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42392065 Prediction of Basic Wind Speed for Ayeyarwady
Authors: Chaw Su Mon
Abstract:
Abstract— The paper presents a preliminary study on modeling and estimation of basic wind speed ( extreme wind gusts ) for the consideration of vulnerability and design of building in Ayeyarwady Region. The establishment of appropriate design wind speeds is a critical step towards the calculation of design wind loads for structures. In this paper the extreme value analysis of this prediction work is based on the anemometer data (1970-2009) maintained by the department of meteorology and hydrology of Pathein. Statistical and probabilistic approaches are used to derive formulas for estimating 3-second gusts from recorded data (10-minute sustained mean wind speeds).
Keywords: Basic Wind Speed, Building, Gusts, Statistical and probabilistic approaches
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12792064 Estimation of OPC, Fly Ash and Slag Contents in Blended and Composite Cements by Selective Dissolution Method
Authors: Suresh Palla, Suresh Vanguri, Anitha, B. N. Mohapatra
Abstract:
This paper presents the results of the study on the estimation of fly ash, slag and cement contents in blended and composite cements by selective dissolution method. Types of cement samples investigated include Ordinary Portland Cement (OPC) with fly ash as performance improver, OPC with slag as performance improver, Portland Pozzolana Cement (PPC), Portland Slag Cement (PSC) and composite cement confirming to respective Indian Standards. Slag and OPC contents in PSC were estimated by selectively dissolving OPC in stage 1 and selectively dissolving slag in stage 2. In the case of composite cement sample, the percentage of cement, slag and fly ash were estimated systematically by selective dissolution of cement, slag and fly ash in three stages. In the first stage, cement is dissolved and separated by leaving the residue of slag and fly ash, designated as R1. The second stage involves gravimetric estimation of fractions of OPC, residue and selective dissolution of fly ash and slag contents. Fly ash content, R2 was estimated through gravimetric analysis. Thereafter, the difference between the R1 and R2 is considered as slag content. The obtained results of cement, fly ash and slag using selective dissolution method showed 10% of standard deviation with the corresponding percentage of respective constituents. The results suggest that this selective dissolution method can be successfully used for estimation of OPC and Supplementary Cementitious material (SCM) contents in different types of cements.
Keywords: Selective dissolution method, fly ash, Ground Granulated blast furnace slag, EDTA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4052063 Teachers and Sports Coaches Supporting Young People-s Mental Health: Promotion, Prevention, and Early Intervention
Authors: Kelly R. Mazzer, Debra J. Rickwood, Thea Vanags
Abstract:
Young people have a high prevalence of mental health problems, yet tend not to seek help. Trusted adults in young people-s lives, such as teachers and sports coaches, can make a major positive contribution to the mental health of young people. Teachers and sports coaches may be in a position to be effective in supporting young people-s mental health through promotion, prevention and early intervention. This study reports findings from interviews with 21 teachers and 13 sports coaches of young people aged 12 to 18 in Canberra, Australia, regarding their perceptions of the relevance and effectiveness of their role in supporting young people-s mental health. Both teachers and coaches perceived having influential but slightly different roles to play in supporting mental health. There may be potential to elevate the influence of teachers and coaches as sources of support for young people and their mental health care.Keywords: Early intervention, mental health promotion, coaches, teachers, young people
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28502062 Automatic Classification of Initial Categories of Alzheimer's Disease from Structural MRI Phase Images: A Comparison of PSVM, KNN and ANN Methods
Authors: Ahsan Bin Tufail, Ali Abidi, Adil Masood Siddiqui, Muhammad Shahzad Younis
Abstract:
An early and accurate detection of Alzheimer's disease (AD) is an important stage in the treatment of individuals suffering from AD. We present an approach based on the use of structural magnetic resonance imaging (sMRI) phase images to distinguish between normal controls (NC), mild cognitive impairment (MCI) and AD patients with clinical dementia rating (CDR) of 1. Independent component analysis (ICA) technique is used for extracting useful features which form the inputs to the support vector machines (SVM), K nearest neighbour (kNN) and multilayer artificial neural network (ANN) classifiers to discriminate between the three classes. The obtained results are encouraging in terms of classification accuracy and effectively ascertain the usefulness of phase images for the classification of different stages of Alzheimer-s disease.
Keywords: Biomedical image processing, classification algorithms, feature extraction, statistical learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27652061 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches
Authors: H. Bonakdari, I. Ebtehaj
Abstract:
The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.
Keywords: Adaptive neuro-fuzzy inference system, ANFIS, artificial neural network, ANN, bridge pier, scour depth, nonlinear regression, NLR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9302060 Assessment of Sediment Remediation Potential using Microbial Fuel Cell Technology
Authors: S. W. Hong, Y. S. Choi, T. H. Chung, J. H. Song, H. S. Kim
Abstract:
Bio-electrical responses obtained from freshwater sediments by employing microbial fuel cell (MFC) technology were investigated in this experimental study. During the electricity generation, organic matter in the sediment was microbially oxidized under anaerobic conditions with an electrode serving as a terminal electron acceptor. It was found that the sediment organic matter (SOM) associated with electrochemically-active electrodes became more humified, aromatic, and polydispersed, and had a higher average molecular weight, together with the decrease in the quantity of SOM. The alteration of characteristics of the SOM was analogous to that commonly observed in the early stage of SOM diagenetic process (i.e., humification). These findings including an elevation of the sediment redox potential present a possibility of the MFC technology as a new soil/sediment remediation technique based on its potential benefits: non-destructive electricity generation and bioremediation.Keywords: Anaerobic oxidation, microbial fuel cell, remediation, sediment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20402059 Trial of Fecal Microbial Transplantation for the Prevention of Canine Atopic Dermatitis
Authors: Caroline F. Moeser
Abstract:
The skin-gut axis defines the relationship between the intestinal microbiota and the development of pathological skin diseases. Low diversity within the gut can predispose to the development of allergic skin conditions, and a greater diversity of the gastrointestinal microflora has been associated with a reduction of skin flares in people with atopic dermatitis. Manipulation of the gut microflora has been used as a treatment option for several conditions in people, but there is limited data available on the use of fecal transplantation as a preventative measure in either people or dogs. Six, 4-month-old pups from a litter of 10 were presented for diarrhea and/or signs of skin disease (chronic scratching, otitis externa). Of these pups, two were given probiotics with a resultant resolution of diarrhea. The other four pups were given fecal transplantation, either as a sole treatment or in combination with other treatments. Follow-up on the litter of 10 pups was performed at 18 months of age. At this stage, three out of the four pups that had received fecal transplantation had resolved all clinical signs and had no recurrence of either skin or gastrointestinal symptoms, the other pup had one episode of Malassezia otitis. Of the remaining six pups from the litter, all had developed at least one episode of Malassezia otitis externa within the period of five to 18 months of age. Two pups had developed two Malassezia otitis infections, and one had developed three Malassezia otitis infections during this period. Favrot’s criteria for the diagnosis of canine atopic dermatitis include chronic or recurrent Malassezia infections by the age of three years. Early results from this litter predict a reduction in the development of canine atopic disease in dogs given fecal microbial transplantation. Follow-up studies at three years of age and within a larger population of dogs can enhance understanding of the impact of early fecal transplantation in the prevention of canine atopic dermatitis.
Keywords: Canine atopic dermatitis, fecal microbial transplant, skin-gut axis, otitis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8262058 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: Crime prediction, machine learning, public safety, smart city.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13242057 Oral Examination: An Important Adjunct to the Diagnosis of Dermatological Disorders
Authors: Sanjay Saraf
Abstract:
The oral cavity can be the site for early manifestations of mucocutaneous disorders (MD) or the only site for occurrence of these disorders. It can also exhibit oral lesions with simultaneous associated skin lesions. The MD involving the oral mucosa commonly presents with signs such as ulcers, vesicles and bullae. The unique environment of the oral cavity may modify these signs of the disease, thereby making the clinical diagnosis an arduous task. In addition to the unique environment of oral cavity, the overlapping of the signs of various mucocutaneous disorders, also makes the clinical diagnosis more intricate. The aim of this review is to present the oral signs of dermatological disorders having common oral involvement and emphasize their importance in early detection of the systemic disorders. The aim is also to highlight the necessity of oral examination by a dermatologist while examining the skin lesions. Prior to the oral examination, it must be imperative for the dermatologists and the dental clinicians to have the knowledge of oral anatomy. It is also important to know the impact of various diseases on oral mucosa, and the characteristic features of various oral mucocutaneous lesions. An initial clinical oral examination is may help in the early diagnosis of the MD. Failure to identify the oral manifestations may reduce the likelihood of early treatment and lead to more serious problems. This paper reviews the oral manifestations of immune mediated dermatological disorders with common oral manifestations.
Keywords: Vesiculobullous lesions, Desquamative gingivitis, Nikolsky’s sign, Erythema.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16212056 Introducing Sequence-Order Constraint into Prediction of Protein Binding Sites with Automatically Extracted Templates
Authors: Yi-Zhong Weng, Chien-Kang Huang, Yu-Feng Huang, Chi-Yuan Yu, Darby Tien-Hao Chang
Abstract:
Search for a tertiary substructure that geometrically matches the 3D pattern of the binding site of a well-studied protein provides a solution to predict protein functions. In our previous work, a web server has been built to predict protein-ligand binding sites based on automatically extracted templates. However, a drawback of such templates is that the web server was prone to resulting in many false positive matches. In this study, we present a sequence-order constraint to reduce the false positive matches of using automatically extracted templates to predict protein-ligand binding sites. The binding site predictor comprises i) an automatically constructed template library and ii) a local structure alignment algorithm for querying the library. The sequence-order constraint is employed to identify the inconsistency between the local regions of the query protein and the templates. Experimental results reveal that the sequence-order constraint can largely reduce the false positive matches and is effective for template-based binding site prediction.Keywords: Protein structure, binding site, functional prediction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14612055 Relations of Progression in Cognitive Decline with Initial EEG Resting-State Functional Network in Mild Cognitive Impairment
Authors: Chia-Feng Lu, Yuh-Jen Wang, Yu-Te Wu, Sui-Hing Yan
Abstract:
This study aimed at investigating whether the functional brain networks constructed using the initial EEG (obtained when patients first visited hospital) can be correlated with the progression of cognitive decline calculated as the changes of mini-mental state examination (MMSE) scores between the latest and initial examinations. We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions, and the network analysis based on graph theory to investigate the organization of functional networks in aMCI. Our finding suggested that higher integrated functional network with sufficient connection strengths, dense connection between local regions, and high network efficiency in processing information at the initial stage may result in a better prognosis of the subsequent cognitive functions for aMCI. In conclusion, the functional connectivity can be a useful biomarker to assist in prediction of cognitive declines in aMCI.
Keywords: Cognitive decline, functional connectivity, MCI, MMSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24102054 Landslide Susceptibility Mapping: A Comparison between Logistic Regression and Multivariate Adaptive Regression Spline Models in the Municipality of Oudka, Northern of Morocco
Authors: S. Benchelha, H. C. Aoudjehane, M. Hakdaoui, R. El Hamdouni, H. Mansouri, T. Benchelha, M. Layelmam, M. Alaoui
Abstract:
The logistic regression (LR) and multivariate adaptive regression spline (MarSpline) are applied and verified for analysis of landslide susceptibility map in Oudka, Morocco, using geographical information system. From spatial database containing data such as landslide mapping, topography, soil, hydrology and lithology, the eight factors related to landslides such as elevation, slope, aspect, distance to streams, distance to road, distance to faults, lithology map and Normalized Difference Vegetation Index (NDVI) were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by the two mentioned methods. Before the calculation, this database was divided into two parts, the first for the formation of the model and the second for the validation. The results of the landslide susceptibility analysis were verified using success and prediction rates to evaluate the quality of these probabilistic models. The result of this verification was that the MarSpline model is the best model with a success rate (AUC = 0.963) and a prediction rate (AUC = 0.951) higher than the LR model (success rate AUC = 0.918, rate prediction AUC = 0.901).
Keywords: Landslide susceptibility mapping, regression logistic, multivariate adaptive regression spline, Oudka, Taounate, Morocco.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9892053 Prediction of Post Underwater Shock Properties of Polymer - Clay/Silica Hybrid Nanocomposites through Regression Models
Authors: D. Lingaraju, K. Ramji, M. Pramiladevi, U. Rajyalakshmi
Abstract:
Exploding concentrated underwater charges to damage underwater structures such as ship hulls is a part of naval warfare strategies. Adding small amounts of foreign particles (like clay or silica) of nanosize significantly improves the engineering properties of the polymers. In the present work the clay in terms 1, 2 and 3 percent by weight was surface treated with a suitable silane agent. The hybrid nanocomposite was prepared by the hand lay-up technique. Mathematical regression models have been employed for theoretical prediction. This will result in considerable savings in terms of project time, effort and cost.Keywords: ANOVA, clay, halloysite, nanocomposites, underwater shock, regression, silica.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21882052 Automatic Sleep Stage Scoring with Wavelet Packets Based on Single EEG Recording
Authors: Luay A. Fraiwan, Natheer Y. Khaswaneh, Khaldon Y. Lweesy
Abstract:
Sleep stage scoring is the process of classifying the stage of the sleep in which the subject is in. Sleep is classified into two states based on the constellation of physiological parameters. The two states are the non-rapid eye movement (NREM) and the rapid eye movement (REM). The NREM sleep is also classified into four stages (1-4). These states and the state wakefulness are distinguished from each other based on the brain activity. In this work, a classification method for automated sleep stage scoring based on a single EEG recording using wavelet packet decomposition was implemented. Thirty two ploysomnographic recording from the MIT-BIH database were used for training and validation of the proposed method. A single EEG recording was extracted and smoothed using Savitzky-Golay filter. Wavelet packets decomposition up to the fourth level based on 20th order Daubechies filter was used to extract features from the EEG signal. A features vector of 54 features was formed. It was reduced to a size of 25 using the gain ratio method and fed into a classifier of regression trees. The regression trees were trained using 67% of the records available. The records for training were selected based on cross validation of the records. The remaining of the records was used for testing the classifier. The overall correct rate of the proposed method was found to be around 75%, which is acceptable compared to the techniques in the literature.Keywords: Features selection, regression trees, sleep stagescoring, wavelet packets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23292051 Verification of the Simultaneous Local Extraction Method of Base and Thermal Resistance of Bipolar Transistors
Authors: Robert Setekera, Luuk Tiemeijer, Ramses van der Toorn
Abstract:
In this paper an extensive verification of the extraction method (published earlier) that consistently accounts for self-heating and Early effect to accurately extract both base and thermal resistance of bipolar junction transistors is presented. The method verification is demonstrated on advanced RF SiGe HBTs were the extracted results for the thermal resistance are compared with those from another published method that ignores the effect of Early effect on internal base-emitter voltage and the extracted results of the base resistance are compared with those determined from noise measurements. A self-consistency of our method in the extracted base resistance and thermal resistance using compact model simulation results is also carried out in order to study the level of accuracy of the method.
Keywords: Avalanche, Base resistance, Bipolar transistor, Compact modeling, Early voltage, Thermal resistance, Self-heating, parameter extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20502050 Evaluation of Evolution Strategy, Genetic Algorithm and their Hybrid on Evolving Simulated Car Racing Controllers
Authors: Hidehiko Okada, Jumpei Tokida
Abstract:
Researchers have been applying tional intelligence (AI/CI) methods to computer games. In this research field, further researchesare required to compare AI/CI methods with respect to each game application. In th our experimental result on the comparison of three evolutionary algorithms – evolution strategy, genetic algorithm, and their hybrid applied to evolving controller agents for the CIG 2007 Simulated Car Racing competition. Our experimental result shows that, premature convergence of solutions was observed in the case of ES, and GA outperformed ES in the last half of generations. Besides, a hybrid which uses GA first and ES next evolved the best solution among the whole solutions being generated. This result shows the ability of GA in globally searching promising areas in the early stage and the ability of ES in locally searching the focused area (fine-tuning solutions).Keywords: Evolutionary algorithm, autonomous agent, neuroevolutions, simulated car racing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18092049 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features
Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli
Abstract:
Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.
Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23122048 Prediction of Writer Using Tamil Handwritten Document Image Based on Pooled Features
Authors: T. Thendral, M. S. Vijaya, S. Karpagavalli
Abstract:
Tamil handwritten document is taken as a key source of data to identify the writer. Tamil is a classical language which has 247 characters include compound characters, consonants, vowels and special character. Most characters of Tamil are multifaceted in nature. Handwriting is a unique feature of an individual. Writer may change their handwritings according to their frame of mind and this place a risky challenge in identifying the writer. A new discriminative model with pooled features of handwriting is proposed and implemented using support vector machine. It has been reported on 100% of prediction accuracy by RBF and polynomial kernel based classification model.Keywords: Classification, Feature extraction, Support vector machine, Training, Writer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17012047 SMCC: Self-Managing Congestion Control Algorithm
Authors: Sh. Jamali, A. Eftekhari
Abstract:
Transmission control protocol (TCP) Vegas detects network congestion in the early stage and successfully prevents periodic packet loss that usually occurs in TCP Reno. It has been demonstrated that TCP Vegas outperforms TCP Reno in many aspects. However, TCP Vegas suffers several problems that affect its congestion avoidance mechanism. One of the most important weaknesses in TCP Vegas is that alpha and beta depend on a good expected throughput estimate, which as we have seen, depends on a good minimum RTT estimate. In order to make the system more robust alpha and beta must be made responsive to network conditions (they are currently chosen statically). This paper proposes a modified Vegas algorithm, which can be adjusted to present good performance compared to other transmission control protocols (TCPs). In order to do this, we use PSO algorithm to tune alpha and beta. The simulation results validate the advantages of the proposed algorithm in term of performance.Keywords: Self-managing, Congestion control, TCP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14662046 Progressive AAM Based Robust Face Alignment
Authors: Daehwan Kim, Jaemin Kim, Seongwon Cho, Yongsuk Jang, Sun-Tae Chung, Boo-Gyoun Kim
Abstract:
AAM has been successfully applied to face alignment, but its performance is very sensitive to initial values. In case the initial values are a little far distant from the global optimum values, there exists a pretty good possibility that AAM-based face alignment may converge to a local minimum. In this paper, we propose a progressive AAM-based face alignment algorithm which first finds the feature parameter vector fitting the inner facial feature points of the face and later localize the feature points of the whole face using the first information. The proposed progressive AAM-based face alignment algorithm utilizes the fact that the feature points of the inner part of the face are less variant and less affected by the background surrounding the face than those of the outer part (like the chin contour). The proposed algorithm consists of two stages: modeling and relation derivation stage and fitting stage. Modeling and relation derivation stage first needs to construct two AAM models: the inner face AAM model and the whole face AAM model and then derive relation matrix between the inner face AAM parameter vector and the whole face AAM model parameter vector. In the fitting stage, the proposed algorithm aligns face progressively through two phases. In the first phase, the proposed algorithm will find the feature parameter vector fitting the inner facial AAM model into a new input face image, and then in the second phase it localizes the whole facial feature points of the new input face image based on the whole face AAM model using the initial parameter vector estimated from using the inner feature parameter vector obtained in the first phase and the relation matrix obtained in the first stage. Through experiments, it is verified that the proposed progressive AAM-based face alignment algorithm is more robust with respect to pose, illumination, and face background than the conventional basic AAM-based face alignment algorithm.Keywords: Face Alignment, AAM, facial feature detection, model matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16392045 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model
Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David
Abstract:
The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an Artificial Neural Network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study include granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R2), Root Mean Square Error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.
Keywords: National development, granite, profitability assessment, ANN models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82