Search results for: Artificial Immune Systems
4760 Pre-Clinical Studying of Antitumor Ramon Preparation: Chronic Toxicity
Authors: Raissa A. Muzychkina, Irina M. Korulkina, Dmitriy Yu. Korulkin
Abstract:
In article the data of chronic toxicity for pre-clinical researches of Ramon preparation is described. Ramon effects to hormone system and gastrointestinal tract; local irritative effect, allergic, pyrogenic properties and reaction to the immune system were studied.
Keywords: Cancer, toxicity, antitumor activity, pre-clinical testing, anthraquinones, phytopreparation, Ramon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15854759 Innovation and Technologies Synthesis of Various Components: A Contribution to the Precision Irrigation Development for Open-Field Fruit Orchards
Authors: P. Chatrabhuti, S. Visessri, T. Charinpanitkul
Abstract:
Precision irrigation (PI) technology has emerged as a solution to optimize water usage in agriculture, aiming to maximize crop yields while minimizing water waste. Developing a PI for commercialization requires developers to research, synthesize, evaluate, and select appropriate technologies and make use of such information to produce innovative products. The objective of this review is to facilitate innovators by providing them with a summary of existing knowledge and the identification of gaps in research linking to the innovative development of PI. This paper reviews and synthesizes technologies and components relevant to precision irrigation, highlighting its potential benefits and challenges. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) framework is used for the review. As a result of this review, the different technologies have limitations and may only be suitable for specific orchards or spatial settings. The current technologies are readily available in a range of options, from affordable controllers to high-performance systems that are both reliable and precise. Furthermore, the future prospects for incorporating artificial intelligence and machine learning techniques hold promise for advancing autonomous irrigation systems.
Keywords: Innovation synthesis, technology assessment, precision irrigation technologies, precision irrigation components, new product development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 254758 Tool Wear and Surface Roughness Prediction using an Artificial Neural Network (ANN) in Turning Steel under Minimum Quantity Lubrication (MQL)
Authors: S. M. Ali, N. R. Dhar
Abstract:
Tool wear and surface roughness prediction plays a significant role in machining industry for proper planning and control of machining parameters and optimization of cutting conditions. This paper deals with developing an artificial neural network (ANN) model as a function of cutting parameters in turning steel under minimum quantity lubrication (MQL). A feed-forward backpropagation network with twenty five hidden neurons has been selected as the optimum network. The co-efficient of determination (R2) between model predictions and experimental values are 0.9915, 0.9906, 0.9761 and 0.9627 in terms of VB, VM, VS and Ra respectively. The results imply that the model can be used easily to forecast tool wear and surface roughness in response to cutting parameters.Keywords: ANN, MQL, Surface Roughness, Tool Wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38684757 F-IVT Actuation System to Power Artificial Knee Joint
Authors: Alò Roberta, Bottiglione Francesco, Mantriota Giacomo
Abstract:
The efficiency of the actuation system of exoskeletons and active orthoses for lower limbs is a significant aspect of the design of such devices because it affects their efficacy. The F-IVT is an innovative actuation system to power artificial knee joint with energy recovery capabilities. Its key and non-conventional elements are a flywheel that acts as a mechanical energy storage system, and an Infinitely Variable Transmission (IVT). The design of the F-IVT can be optimized for a certain walking condition, resulting in a heavy reduction of both the electric energy consumption and of the electric peak power. In this work, by means of simulations of level ground walking at different speeds, it is demonstrated that the F-IVT is still an advantageous actuator which permits to save energy consumption and to downsize the electric motor even when it does not work in nominal conditions.Keywords: Active orthoses, actuators, lower extremity exoskeletons, knee joint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24584756 Anticipation of Bending Reinforcement Based on Iranian Concrete Code Using Meta-Heuristic Tools
Authors: Seyed Sadegh Naseralavi, Najmeh Bemani
Abstract:
In this paper, different concrete codes including America, New Zealand, Mexico, Italy, India, Canada, Hong Kong, Euro Code and Britain are compared with the Iranian concrete design code. First, by using Adaptive Neuro Fuzzy Inference System (ANFIS), the codes having the most correlation with the Iranian ninth issue of the national regulation are determined. Consequently, two anticipated methods are used for comparing the codes: Artificial Neural Network (ANN) and Multi-variable regression. The results show that ANN performs better. Predicting is done by using only tensile steel ratio and with ignoring the compression steel ratio.
Keywords: Concrete design code, anticipate method, artificial neural network, multi-variable regression, adaptive neuro fuzzy inference system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8174755 Perceptions toward Adopting Virtual Reality as a Learning Aid in Information Technology
Authors: S. Alfalah, J. Falah, T. Alfalah, M. Elfalah, O. Falah
Abstract:
The field of education is an ever-evolving area constantly enriched by newly discovered techniques provided by active research in all areas of technologies. The recent years have witnessed the introduction of a number of promising technologies and applications to enhance the teaching and learning experience. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing education in many fields. VR creates an artificial environment, using computer hardware and software, which is similar to the real world. This simulation provides a solution to improve the delivery of materials, which facilitates the teaching process by providing a useful aid to instructors, and enhances the learning experience by providing a beneficial learning aid. In order to assure future utilization of such systems, students’ perceptions were examined toward utilizing VR as an educational tool in the Faculty of Information Technology (IT) in The University of Jordan. A questionnaire was administered to IT undergraduates investigating students’ opinions about the potential opportunities that VR technology could offer and its implications as learning and teaching aid. The results confirmed the end users’ willingness to adopt VR systems as a learning aid. The result of this research forms a solid base for investing in a VR system for IT education.
Keywords: Education, information, technology, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11484754 Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression
Authors: Zhi-Jun Lu, Qi Lu, Meng Wu, Qian Xiang, Jun Gu
Abstract:
The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising.Keywords: Artificial neural network, finite element method, perforated sections, thin-walled steel, ultimate load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10754753 Optical Fish Tracking in Fishways using Neural Networks
Authors: Alvaro Rodriguez, Maria Bermudez, Juan R. Rabuñal, Jeronimo Puertas
Abstract:
One of the main issues in Computer Vision is to extract the movement of one or several points or objects of interest in an image or video sequence to conduct any kind of study or control process. Different techniques to solve this problem have been applied in numerous areas such as surveillance systems, analysis of traffic, motion capture, image compression, navigation systems and others, where the specific characteristics of each scenario determine the approximation to the problem. This paper puts forward a Computer Vision based algorithm to analyze fish trajectories in high turbulence conditions in artificial structures called vertical slot fishways, designed to allow the upstream migration of fish through obstructions in rivers. The suggested algorithm calculates the position of the fish at every instant starting from images recorded with a camera and using neural networks to execute fish detection on images. Different laboratory tests have been carried out in a full scale fishway model and with living fishes, allowing the reconstruction of the fish trajectory and the measurement of velocities and accelerations of the fish. These data can provide useful information to design more effective vertical slot fishways.
Keywords: Computer Vision, Neural Network, Fishway, Fish Trajectory, Tracking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20014752 Emotional Learning based Intelligent Robust Adaptive Controller for Stable Uncertain Nonlinear Systems
Authors: Ali Reza Mehrabian, Caro Lucas
Abstract:
In this paper a new control strategy based on Brain Emotional Learning (BEL) model has been introduced. A modified BEL model has been proposed to increase the degree of freedom, controlling capability, reliability and robustness, which can be implemented in real engineering systems. The performance of the proposed BEL controller has been illustrated by applying it on different nonlinear uncertain systems, showing very good adaptability and robustness, while maintaining stability.Keywords: Learning control systems, emotional decision making, nonlinear systems, adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20904751 Regularization of the Trajectories of Dynamical Systems by Adjusting Parameters
Authors: Helle Hein, Ülo Lepik
Abstract:
A gradient learning method to regulate the trajectories of some nonlinear chaotic systems is proposed. The method is motivated by the gradient descent learning algorithms for neural networks. It is based on two systems: dynamic optimization system and system for finding sensitivities. Numerical results of several examples are presented, which convincingly illustrate the efficiency of the method.Keywords: Chaos, Dynamical Systems, Learning, Neural Networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13664750 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study
Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple
Abstract:
There is a dramatic surge in the adoption of Machine Learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. Artificial Intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and two defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt ML techniques without rigorous testing, since they may be vulnerable to adversarial attacks, especially in security-critical areas such as the nuclear industry. We observed that while the adopted defence methods can effectively defend against different attacks, none of them could protect against all five adversarial attacks entirely.
Keywords: Resilient Machine Learning, attacks, defences, nuclear industry, crack detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5004749 Reflections on Opportunities and Challenges for Systems Engineering
Authors: Ali E. Abbas
Abstract:
This paper summarizes some of the discussions that occurred in a workshop in West Virginia, U.S.A which was sponsored by the National Science Foundation (NSF) in February 2016. The goal of the workshop was to explore the opportunities and challenges for applying systems engineering in large enterprises, and some of the issues that still persist. The main topics of the discussion included challenges with elaboration and abstraction in large systems, interfacing physical and social systems, and the need for axiomatic frameworks for large enterprises. We summarize these main points of discussion drawing parallels with decision making in organizations to instigate research in these discussion areas.Keywords: Decision analysis, systems engineering, framing, value creation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9304748 Identification of Vessel Class with LSTM using Kinematic Features in Maritime Traffic Control
Authors: Davide Fuscà, Kanan Rahimli, Roberto Leuzzi
Abstract:
Prevent abuse and illegal activities in a given area of the sea is a very difficult and expensive task. Artificial intelligence offers the possibility to implement new methods to identify the vessel class type from the kinematic features of the vessel itself. The task strictly depends on the quality of the data. This paper explores the application of a deep Long Short-Term Memory model by using AIS flow only with a relatively low quality. The proposed model reaches high accuracy on detecting nine vessel classes representing the most common vessel types in the Ionian-Adriatic Sea. The model has been applied during the Adriatic-Ionian trial period of the international EU ANDROMEDA H2020 project to identify vessels performing behaviours far from the expected one, depending on the declared type.
Keywords: maritime surveillance, artificial intelligence, behaviour analysis, LSTM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13404747 Pharmaceutical Applications and Clinical Efficiency of Anti-Inflammatory Ramon Preparation
Authors: Dmitriy Yu. Korulkin, Raissa A. Muzychkina
Abstract:
The Ramon preparation is received from a plant; it is destined for external treatment of inflammations in post-surgery period. The Ramon is a biogenic immune stimulator accelerating metabolism, contributing to improvement of blood indexes, having general tonic, anti-inflammatory and bactericidal effect.
Keywords: Anti-inflammatory, anthraquinones, bactericidal activity, Ramon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15794746 Structuring and Visualizing Healthcare Claims Data Using Systems Architecture Methodology
Authors: Inas S. Khayal, Weiping Zhou, Jonathan Skinner
Abstract:
Healthcare delivery systems around the world are in crisis. The need to improve health outcomes while decreasing healthcare costs have led to an imminent call to action to transform the healthcare delivery system. While Bioinformatics and Biomedical Engineering have primarily focused on biological level data and biomedical technology, there is clear evidence of the importance of the delivery of care on patient outcomes. Classic singular decomposition approaches from reductionist science are not capable of explaining complex systems. Approaches and methods from systems science and systems engineering are utilized to structure healthcare delivery system data. Specifically, systems architecture is used to develop a multi-scale and multi-dimensional characterization of the healthcare delivery system, defined here as the Healthcare Delivery System Knowledge Base. This paper is the first to contribute a new method of structuring and visualizing a multi-dimensional and multi-scale healthcare delivery system using systems architecture in order to better understand healthcare delivery.Keywords: Health informatics, systems thinking, systems architecture, healthcare delivery system, data analytics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11384745 Modeling Stress-Induced Regulatory Cascades with Artificial Neural Networks
Authors: Maria E. Manioudaki, Panayiota Poirazi
Abstract:
Yeast cells live in a constantly changing environment that requires the continuous adaptation of their genomic program in order to sustain their homeostasis, survive and proliferate. Due to the advancement of high throughput technologies, there is currently a large amount of data such as gene expression, gene deletion and protein-protein interactions for S. Cerevisiae under various environmental conditions. Mining these datasets requires efficient computational methods capable of integrating different types of data, identifying inter-relations between different components and inferring functional groups or 'modules' that shape intracellular processes. This study uses computational methods to delineate some of the mechanisms used by yeast cells to respond to environmental changes. The GRAM algorithm is first used to integrate gene expression data and ChIP-chip data in order to find modules of coexpressed and co-regulated genes as well as the transcription factors (TFs) that regulate these modules. Since transcription factors are themselves transcriptionally regulated, a three-layer regulatory cascade consisting of the TF-regulators, the TFs and the regulated modules is subsequently considered. This three-layer cascade is then modeled quantitatively using artificial neural networks (ANNs) where the input layer corresponds to the expression of the up-stream transcription factors (TF-regulators) and the output layer corresponds to the expression of genes within each module. This work shows that (a) the expression of at least 33 genes over time and for different stress conditions is well predicted by the expression of the top layer transcription factors, including cases in which the effect of up-stream regulators is shifted in time and (b) identifies at least 6 novel regulatory interactions that were not previously associated with stress-induced changes in gene expression. These findings suggest that the combination of gene expression and protein-DNA interaction data with artificial neural networks can successfully model biological pathways and capture quantitative dependencies between distant regulators and downstream genes.
Keywords: gene modules, artificial neural networks, yeast, stress
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14654744 Application of Neural Network for Contingency Ranking Based on Combination of Severity Indices
Authors: S. Jadid, S. Jalilzadeh
Abstract:
In this paper, an improved technique for contingency ranking using artificial neural network (ANN) is presented. The proposed approach is based on multi-layer perceptrons trained by backpropagation to contingency analysis. Severity indices in dynamic stability assessment are presented. These indices are based on the concept of coherency and three dot products of the system variables. It is well known that some indices work better than others for a particular power system. This paper along with test results using several different systems, demonstrates that combination of indices with ANN provides better ranking than a single index. The presented results are obtained through the use of power system simulation (PSS/E) and MATLAB 6.5 software.Keywords: composite indices, transient stability, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22254743 IntelligentLogger: A Heavy-Duty Vehicles Fleet Management System Based on IoT and Smart Prediction Techniques
Authors: D. Goustouridis, A. Sideris, I. Sdrolias, G. Loizos, N.-Alexander Tatlas, S. M. Potirakis
Abstract:
Both daily and long-term management of a heavy-duty vehicles and construction machinery fleet is an extremely complicated and hard to solve issue. This is mainly due to the diversity of the fleet vehicles – machinery, which concerns not only the vehicle types, but also their age/efficiency, as well as the fleet volume, which is often of the order of hundreds or even thousands of vehicles/machineries. In the present paper we present “InteligentLogger”, a holistic heavy-duty fleet management system covering a wide range of diverse fleet vehicles. This is based on specifically designed hardware and software for the automated vehicle health status and operational cost monitoring, for smart maintenance. InteligentLogger is characterized by high adaptability that permits to be tailored to practically any heavy-duty vehicle/machinery (of different technologies -modern or legacy- and of dissimilar uses). Contrary to conventional logistic systems, which are characterized by raised operational costs and often errors, InteligentLogger provides a cost-effective and reliable integrated solution for the e-management and e-maintenance of the fleet members. The InteligentLogger system offers the following unique features that guarantee successful heavy-duty vehicles/machineries fleet management: (a) Recording and storage of operating data of motorized construction machinery, in a reliable way and in real time, using specifically designed Internet of Things (IoT) sensor nodes that communicate through the available network infrastructures, e.g., 3G/LTE; (b) Use on any machine, regardless of its age, in a universal way; (c) Flexibility and complete customization both in terms of data collection, integration with 3rd party systems, as well as in terms of processing and drawing conclusions; (d) Validation, error reporting & correction, as well as update of the system’s database; (e) Artificial intelligence (AI) software, for processing information in real time, identifying out-of-normal behavior and generating alerts; (f) A MicroStrategy based enterprise BI, for modeling information and producing reports, dashboards, and alerts focusing on vehicles– machinery optimal usage, as well as maintenance and scraping policies; (g) Modular structure that allows low implementation costs in the basic fully functional version, but offers scalability without requiring a complete system upgrade.
Keywords: E-maintenance, predictive maintenance, IoT sensor nodes, cost optimization, artificial intelligence, heavy-duty vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7684742 H∞ Approach to Functional Projective Synchronization for Chaotic Systems with Disturbances
Authors: S. M. Lee, J. H. Park, H. Y. Jung
Abstract:
This paper presents a method for functional projective H∞ synchronization problem of chaotic systems with external disturbance. Based on Lyapunov theory and linear matrix inequality (LMI) formulation, the novel feedback controller is established to not only guarantee stable synchronization of both drive and response systems but also reduce the effect of external disturbance to an H∞ norm constraint.
Keywords: Chaotic systems, functional projective H∞ synchronization, LMI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13084741 Modeling and Simulation of Photovoltaic based LED Lighting System
Authors: Ankit R Patel, Ankit A Patel, Mahesh A Patel, Dhaval R Vyas
Abstract:
Although lighting systems powered by Photovoltaic (PV) cells have existed for many years, they are not widely used, especially in lighting for buildings, due to their high initial cost and low conversion efficiency. One of the technical challenges facing PV powered lighting systems has been how to use dc power generated by the PV module to energize common light sources that are designed to operate efficiently under ac power. Usually, the efficiency of the dc light sources is very poor compared to ac light sources. Rapid developments in LED lighting systems have made this technology a potential candidate for PV powered lighting systems. This study analyzed the efficiency of each component of PV powered lighting systems to identify optimum system configurations for different applications.Keywords: Energy Efficiency, LED, Modeling of systems, Photovoltaic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32014740 The Alignment of Information Systems and Environmental Organizations Model in Perspective Capability
Authors: Wartika, Kridanto Surendro, Husni Sastramiharja, Iping Supriana S.
Abstract:
The condition of the market is currently very dynamic, demanding organizations which is use system information to support the achievement of objectives should be necessarily improve the ability of information systems in accordance with the changes. Improved information systems capabilities need to align with the resource capabilities in internal environment of the organization, and vice versa. Alignment model between information systems and environment organizational in this capability perspective is expected can assist management in making the strategy for enhance the capability of information systems in accordance with resources internally within the organization, efficiency in the process of development, and optimization of contributions information systems in achieving organizational goals.
Keywords: Capability, alignment, information system, environmental organizations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16844739 Applications of Artificial Neural Network to Building Statistical Models for Qualifying and Indexing Radiation Treatment Plans
Authors: Pei-Ju Chao, Tsair-Fwu Lee, Wei-Luen Huang, Long-Chang Chen, Te-Jen Su, Wen-Ping Chen
Abstract:
The main goal in this paper is to quantify the quality of different techniques for radiation treatment plans, a back-propagation artificial neural network (ANN) combined with biomedicine theory was used to model thirteen dosimetric parameters and to calculate two dosimetric indices. The correlations between dosimetric indices and quality of life were extracted as the features and used in the ANN model to make decisions in the clinic. The simulation results show that a trained multilayer back-propagation neural network model can help a doctor accept or reject a plan efficiently. In addition, the models are flexible and whenever a new treatment technique enters the market, the feature variables simply need to be imported and the model re-trained for it to be ready for use.Keywords: neural network, dosimetric index, radiation treatment, tumor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16904738 Accounting Information Systems of Kuwaiti Companies: Obstacles and Barriers
Authors: Haya Y Alobaid
Abstract:
The aim of this paper is to identify and discuss the obstacles to the ability of the accounting information systems of Kuwaiti companies to deal with electronic commerce, and then to propose appropriate solutions to overcome the barriers. The study revealed a remarkable decrease in external auditors who have professional certification. The results also showed an agreement regarding the accounting systems and the ability to deal with e-commerce, with a different degree of importance, despite the presence of obstacles to the ability of accounting systems in dealing with different companies.Keywords: Accounting information systems, obstacle, barriers, electronic commerce, Kuwait companies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13994737 Fast Facial Feature Extraction and Matching with Artificial Face Models
Authors: Y. H. Tsai, Y. W. Chen
Abstract:
Facial features are frequently used to represent local properties of a human face image in computer vision applications. In this paper, we present a fast algorithm that can extract the facial features online such that they can give a satisfying representation of a face image. It includes one step for a coarse detection of each facial feature by AdaBoost and another one to increase the accuracy of the found points by Active Shape Models (ASM) in the regions of interest. The resulted facial features are evaluated by matching with artificial face models in the applications of physiognomy. The distance measure between the features and those in the fate models from the database is carried out by means of the Hausdorff distance. In the experiment, the proposed method shows the efficient performance in facial feature extractions and online system of physiognomy.Keywords: Facial feature extraction, AdaBoost, Active shapemodel, Hausdorff distance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18124736 Thermal Performance Rating of Solar Water Heating Systems in ASEAN
Authors: E. Halawa
Abstract:
Solar water heating (SWH) systems are gaining popularity in ASEAN in the midst of increasing number of affluent population in society and environmental concerns from seemingly unchanged reliance on fossil-based fuels. The penetration of these systems and technologies into ASEAN markets is a welcome development; however there is a need for the method of assessment of their thermal performances. This paper discusses the reasons for this need and a suitable method for thermal performance evaluation of SWH systems in ASEAN. The paper also calls on research to be focused on the establishment of reliable data to be entered into the performance rating software. The establishment of accredited solar systems testing facilities can help boost the competitiveness of ASEAN solar industry.
Keywords: ASEAN, solar industry, solar water heating systems, thermal performance rating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19954735 The Core and Shapley Function for Games on Augmenting Systems with a Coalition Structure
Authors: Fan-Yong Meng
Abstract:
In this paper, we first introduce the model of games on augmenting systems with a coalition structure, which can be seen as an extension of games on augmenting systems. The core of games on augmenting systems with a coalition structure is defined, and an equivalent form is discussed. Meantime, the Shapley function for this type of games is given, and two axiomatic systems of the given Shapley function are researched. When the given games are quasi convex, the relationship between the core and the Shapley function is discussed, which does coincide as in classical case. Finally, a numerical example is given.
Keywords: Cooperative game, augmenting system, Shapley function, core.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11944734 Cognition Technique for Developing a World Music
Authors: Haider Javed Uppal, Javed Yunas Uppal
Abstract:
In today's globalized world, it is necessary to develop a form of music that is able to evoke equal emotional responses among people from diverse cultural backgrounds. Indigenous cultures throughout history have developed their own music cognition, specifically in terms of the connections between music and mood. With the advancements in artificial intelligence technologies, it has become possible to analyze and categorize music features such as timbre, harmony, melody, and rhythm, and relate them to the resulting mood effects experienced by listeners. This paper presents a model that utilizes a screenshot translator to convert music from different origins into waveforms, which are then analyzed using machine learning and information retrieval techniques. By connecting these waveforms with Thayer's matrix of moods, a mood classifier has been developed using fuzzy logic algorithms to determine the emotional impact of different types of music on listeners from various cultures.
Keywords: Cognition, world music, artificial intelligence, Thayer’s matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1534733 Modeling of the Process Parameters using Soft Computing Techniques
Authors: Miodrag T. Manić, Dejan I. Tanikić, Miloš S. Stojković, Dalibor M. ðenadić
Abstract:
The design of technological procedures for manufacturing certain products demands the definition and optimization of technological process parameters. Their determination depends on the model of the process itself and its complexity. Certain processes do not have an adequate mathematical model, thus they are modeled using heuristic methods. First part of this paper presents a state of the art of using soft computing techniques in manufacturing processes from the perspective of applicability in modern CAx systems. Methods of artificial intelligence which can be used for this purpose are analyzed. The second part of this paper shows some of the developed models of certain processes, as well as their applicability in the actual calculation of parameters of some technological processes within the design system from the viewpoint of productivity.Keywords: fuzzy logic, manufacturing, neural networks
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19104732 Software Improvements of the Accuracy in the Air-Electronic Measurement Systems for Geometrical Dimensions
Authors: Miroslav H. Hristov, Velizar A. Vassilev, Georgi K. Dukendjiev
Abstract:
Due to the constant development of measurement systems and the aim for computerization, unavoidable improvements are made for the main disadvantages of air gauges. With the appearance of the air-electronic measuring devices, some of their disadvantages are solved. The output electrical signal allows them to be included in the modern systems for measuring information processing and process management. Producer efforts are aimed at reducing the influence of supply pressure and measurement system setup errors. Increased accuracy requirements and preventive error measures are due to the main uses of air electronic systems - measurement of geometric dimensions in the automotive industry where they are applied as modules in measuring systems to measure geometric parameters, form, orientation and location of the elements.
Keywords: Air-electronic, geometrical parameters, improvement, measurement systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7994731 Object-Oriented Simulation of Simulating Anticipatory Systems
Authors: Eugene Kindler
Abstract:
The present paper is oriented to problems of simulation of anticipatory systems, namely those that use simulation models for the aid of anticipation. A certain analogy between use of simulation and imagining will be applied to make the explication more comprehensible. The paper will be completed by notes of problems and by some existing applications. The problems consist in the fact that simulation of the mentioned anticipatory systems end is simulation of simulating systems, i.e. in computer models handling two or more modeled time axes that should be mapped to real time flow in a nondescent manner. Languages oriented to objects, processes and blocks can be used to surmount the problems.
Keywords: Anticipatory systems, Nested computer models, Discrete event simulation, Simula.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439