Search results for: © Learning Network
4076 Process-Oriented Learning Requirements for Employees and for Organizations
Authors: Richard Pircher, Lukas Zenk, Hanna Risku
Abstract:
Using activity theory, organisational theory and didactics as theoretical foundations, a comprehensive model of the organisational dimensions relevant for learning and knowledge transfer will be developed. In a second step, a Learning Assessment Guideline will be elaborated. This guideline will be designed to permit a targeted analysis of organisations to identify the status quo in those areas crucial to the implementation of learning and knowledge transfer. In addition, this self-analysis tool will enable learning managers to select adequate didactic models for e- and blended learning. As part of the European Integrated Project "Process-oriented Learning and Information Exchange" (PROLIX), this model of organisational prerequisites for learning and knowledge transfer will be empirically tested in four profit and non-profit organisations in Great Britain, Germany and France (to be finalized in autumn 2006). The findings concern not only the capability of the model of organisational dimensions, but also the predominant perceptions of and obstacles to learning in organisations.Keywords: Activity theory, knowledge management organisational theory, "Process-oriented Learning and Information Exchange" (PROLIX).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17454075 Open Source Implementation of M-Learning for Primary School in Malaysia
Authors: Saipunidzam Mahamad, Mohammad Noor Ibrahim, Mohamad Izzriq Ab Malek Foad, ShakirahMohd Taib
Abstract:
With the proliferation of the mobile device technologies, mobile learning can be used to complement and improve traditional learning problems. Both students and teachers need a proper and handy system to monitor and keep track the performance of the students. This paper presents an implementation of M-learning for primary school in Malaysia by using an open source technology. It focuses on learning mathematics using handheld devices for primary schools- students aged 11 and 12 years old. Main users for this system include students, teachers and the administrator. This application suggests a new mobile learning environment with mobile graph for tracking the students- progress and performance. The purpose of this system is not to replace traditional classroom but to complement the learning process. In a testing conducted, students who used this system performed better in their examination.Keywords: M-Learning, Automated Mobile Graph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24544074 Svision: Visual Identification of Scanning and Denial of Service Attacks
Authors: Iosif-Viorel Onut, Bin Zhu, Ali A. Ghorbani
Abstract:
We propose a novel graphical technique (SVision) for intrusion detection, which pictures the network as a community of hosts independently roaming in a 3D space defined by the set of services that they use. The aim of SVision is to graphically cluster the hosts into normal and abnormal ones, highlighting only the ones that are considered as a threat to the network. Our experimental results using DARPA 1999 and 2000 intrusion detection and evaluation datasets show the proposed technique as a good candidate for the detection of various threats of the network such as vertical and horizontal scanning, Denial of Service (DoS), and Distributed DoS (DDoS) attacks.Keywords: Anomaly Visualization, Network Security, Intrusion Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17104073 Optimizing Data Evaluation Metrics for Fraud Detection Using Machine Learning
Authors: Jennifer Leach, Umashanger Thayasivam
Abstract:
The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate others. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease these advancements. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent datasets, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which split and technique would lead to the most optimal results.
Keywords: Data science, fraud detection, machine learning, supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7714072 Design of Local Interconnect Network Controller for Automotive Applications
Authors: Jong-Bae Lee, Seongsoo Lee
Abstract:
Local interconnect network (LIN) is a communication protocol that combines sensors, actuators, and processors to a functional module in automotive applications. In this paper, a LIN ver. 2.2A controller was designed in Verilog hardware description language (Verilog HDL) and implemented in field-programmable gate array (FPGA). Its operation was verified by making full-scale LIN network with the presented FPGA-implemented LIN controller, commercial LIN transceivers, and commercial processors. When described in Verilog HDL and synthesized in 0.18 μm technology, its gate size was about 2,300 gates.
Keywords: Local interconnect network, controller, transceiver, processor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15874071 Efficient System for Speech Recognition using General Regression Neural Network
Authors: Abderrahmane Amrouche, Jean Michel Rouvaen
Abstract:
In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural network (GRNN). The relative performances of the proposed model are compared to the similar recognition systems based on the Multilayer Perceptron (MLP), the Recurrent Neural Network (RNN) and the well known Discrete Hidden Markov Model (HMM-VQ) that we have achieved also. Experimental results obtained with Arabic digits have shown that the use of nonparametric density estimation with an appropriate smoothing factor (spread) improves the generalization power of the neural network. The word error rate (WER) is reduced significantly over the baseline HMM method. GRNN computation is a successful alternative to the other neural network and DHMM.Keywords: Speech Recognition, General Regression NeuralNetwork, Hidden Markov Model, Recurrent Neural Network, ArabicDigits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21854070 Development of Genetic-based Machine Learning for Network Intrusion Detection (GBML-NID)
Authors: Wafa' S.Al-Sharafat, Reyadh Naoum
Abstract:
Society has grown to rely on Internet services, and the number of Internet users increases every day. As more and more users become connected to the network, the window of opportunity for malicious users to do their damage becomes very great and lucrative. The objective of this paper is to incorporate different techniques into classier system to detect and classify intrusion from normal network packet. Among several techniques, Steady State Genetic-based Machine Leaning Algorithm (SSGBML) will be used to detect intrusions. Where Steady State Genetic Algorithm (SSGA), Simple Genetic Algorithm (SGA), Modified Genetic Algorithm and Zeroth Level Classifier system are investigated in this research. SSGA is used as a discovery mechanism instead of SGA. SGA replaces all old rules with new produced rule preventing old good rules from participating in the next rule generation. Zeroth Level Classifier System is used to play the role of detector by matching incoming environment message with classifiers to determine whether the current message is normal or intrusion and receiving feedback from environment. Finally, in order to attain the best results, Modified SSGA will enhance our discovery engine by using Fuzzy Logic to optimize crossover and mutation probability. The experiments and evaluations of the proposed method were performed with the KDD 99 intrusion detection dataset.Keywords: MSSGBML, Network Intrusion Detection, SGA, SSGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16714069 Secured Session Based Profile Caching for E-Learning Systems Using WiMAX Networks
Authors: R. Chithra, B. Kalaavathi
Abstract:
E-Learning enables the users to learn at anywhere at any time. In E-Learning systems, authenticating the E-Learning user has security issues. The usage of appropriate communication networks for providing the internet connectivity for E-learning is another challenge. WiMAX networks provide Broadband Wireless Access through the Multicast Broadcast Service so these networks can be most suitable for E-Learning applications. The authentication of E-Learning user is vulnerable to session hijacking problems. The repeated authentication of users can be done to overcome these issues. In this paper, session based Profile Caching Authentication is proposed. In this scheme, the credentials of E-Learning users can be cached at authentication server during the initial authentication through the appropriate subscriber station. The proposed cache based authentication scheme performs fast authentication by using cached user profile. Thus, the proposed authentication protocol reduces the delay in repeated authentication to enhance the security in ELearning.Keywords: Authentication, E-Learning, WiMAX, Security, Profile caching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15664068 Interactive Chinese Character Learning System though Pictograph Evolution
Authors: J.H. Low, C.O. Wong, E.J. Han, K.R Kim K.C. Jung, H.K. Yang
Abstract:
This paper proposes an Interactive Chinese Character Learning System (ICCLS) based on pictorial evolution as an edutainment concept in computer-based learning of language. The advantage of the language origination itself is taken as a learning platform due to the complexity in Chinese language as compared to other types of languages. Users especially children enjoy more by utilize this learning system because they are able to memories the Chinese Character easily and understand more of the origin of the Chinese character under pleasurable learning environment, compares to traditional approach which children need to rote learning Chinese Character under un-pleasurable environment. Skeletonization is used as the representation of Chinese character and object with an animated pictograph evolution to facilitate the learning of the language. Shortest skeleton path matching technique is employed for fast and accurate matching in our implementation. User is required to either write a word or draw a simple 2D object in the input panel and the matched word and object will be displayed as well as the pictograph evolution to instill learning. The target of computer-based learning system is for pre-school children between 4 to 6 years old to learn Chinese characters in a flexible and entertaining manner besides utilizing visual and mind mapping strategy as learning methodology.Keywords: Computer-based learning, Chinese character, pictograph evolution, skeletonization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19084067 Training Radial Basis Function Networks with Differential Evolution
Authors: Bing Yu , Xingshi He
Abstract:
In this paper, Differential Evolution (DE) algorithm, a new promising evolutionary algorithm, is proposed to train Radial Basis Function (RBF) network related to automatic configuration of network architecture. Classification tasks on data sets: Iris, Wine, New-thyroid, and Glass are conducted to measure the performance of neural networks. Compared with a standard RBF training algorithm in Matlab neural network toolbox, DE achieves more rational architecture for RBF networks. The resulting networks hence obtain strong generalization abilities.
Keywords: differential evolution, neural network, Rbf function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20514066 Suggestion for Malware Detection Agent Considering Network Environment
Authors: Ji-Hoon Hong, Dong-Hee Kim, Nam-Uk Kim, Tai-Myoung Chung
Abstract:
Smartphone users are increasing rapidly. Accordingly, many companies are running BYOD (Bring Your Own Device: Policies to bring private-smartphones to the company) policy to increase work efficiency. However, smartphones are always under the threat of malware, thus the company network that is connected smartphone is exposed to serious risks. Most smartphone malware detection techniques are to perform an independent detection (perform the detection of a single target application). In this paper, we analyzed a variety of intrusion detection techniques. Based on the results of analysis propose an agent using the network IDS.
Keywords: Android malware detection, software-defined network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9254065 A Framework for the Design of Green Giga Passive Optical Fiber Access Network in Kuwait
Authors: Ali A. Hammadi
Abstract:
In this work, a practical study on a commissioned Giga Passive Optical Network (GPON) fiber to the home access network in Kuwait is presented. The work covers the framework of the conceptual design of the deployed Passive Optical Networks (PONs), access network, optical fiber cable network distribution, technologies, and standards. The work also describes methodologies applied by system engineers for design of Optical Network Terminals (ONTs) and Optical Line Terminals (OLTs) transceivers with respect to the distance, operating wavelengths, splitting ratios. The results have demonstrated and justified the limitation of transmission distance of a PON link in Fiber to The Premises (FTTP) to not exceed 20 km. Optical Time Domain Reflector (OTDR) test has been carried for this project to confirm compliance with International Telecommunication Union (ITU) specifications regarding the total length of the deployed optical cable, total loss in dB, and loss per km in dB/km with respect to the operating wavelengths. OTDR test results with traces for segments of implemented fiber network will be provided and discussed.
Keywords: Passive optical networks, fiber to the premises, access network, OTDR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10674064 Problem Based Learning in B. P. Koirala Institute of Health Sciences
Authors: Gurung S., Yadav B. N., Budhathoki SS.
Abstract:
Problem based learning is one of the highly acclaimed learning methods in medical education since its first introduction at Mc-Master University in Canada in the 1960s. It has now been adopted as a teaching learning method in many medical colleges of Nepal. B.P. Koirala Institute of Health Sciences (BPKIHS), a health science deemed university is the second institute in Nepal to establish problem-based learning academic program and need-based teaching approach hence minimizing teaching through lectures since its inception. During the first two years of MBBS course, the curriculum is divided into various organ-systems incorporated with problem-based learning exercise each of one week duration.
Keywords: PBL, medical education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23404063 Inverse Problem Methodology for the Measurement of the Electromagnetic Parameters Using MLP Neural Network
Authors: T. Hacib, M. R. Mekideche, N. Ferkha
Abstract:
This paper presents an approach which is based on the use of supervised feed forward neural network, namely multilayer perceptron (MLP) neural network and finite element method (FEM) to solve the inverse problem of parameters identification. The approach is used to identify unknown parameters of ferromagnetic materials. The methodology used in this study consists in the simulation of a large number of parameters in a material under test, using the finite element method (FEM). Both variations in relative magnetic permeability and electrical conductivity of the material under test are considered. Then, the obtained results are used to generate a set of vectors for the training of MLP neural network. Finally, the obtained neural network is used to evaluate a group of new materials, simulated by the FEM, but not belonging to the original dataset. Noisy data, added to the probe measurements is used to enhance the robustness of the method. The reached results demonstrate the efficiency of the proposed approach, and encourage future works on this subject.Keywords: Inverse problem, MLP neural network, parametersidentification, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17644062 Neural Network Learning Based on Chaos
Authors: Truong Quang Dang Khoa, Masahiro Nakagawa
Abstract:
Chaos and fractals are novel fields of physics and mathematics showing up a new way of universe viewpoint and creating many ideas to solve several present problems. In this paper, a novel algorithm based on the chaotic sequence generator with the highest ability to adapt and reach the global optima is proposed. The adaptive ability of proposal algorithm is flexible in 2 steps. The first one is a breadth-first search and the second one is a depth-first search. The proposal algorithm is examined by 2 functions, the Camel function and the Schaffer function. Furthermore, the proposal algorithm is applied to optimize training Multilayer Neural Networks.
Keywords: learning and evolutionary computing, Chaos Optimization Algorithm, Artificial Neural Networks, nonlinear optimization, intelligent computational technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17804061 Classification of Prostate Cell Nuclei using Artificial Neural Network Methods
Authors: M. Sinecen, M. Makinacı
Abstract:
The purpose of this paper is to assess the value of neural networks for classification of cancer and noncancer prostate cells. Gauss Markov Random Fields, Fourier entropy and wavelet average deviation features are calculated from 80 noncancer and 80 cancer prostate cell nuclei. For classification, artificial neural network techniques which are multilayer perceptron, radial basis function and learning vector quantization are used. Two methods are utilized for multilayer perceptron. First method has single hidden layer and between 3-15 nodes, second method has two hidden layer and each layer has between 3-15 nodes. Overall classification rate of 86.88% is achieved.
Keywords: Artificial neural networks, texture classification, cancer diagnosis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15914060 Factors of English Language Learning and Acquisition at Bisha College of Technology
Authors: Khalid Albishi
Abstract:
This paper participates in giving new vision and explains the learning and acquisition processes of English language by analyzing a certain context. Five important factors in English language acquisition and learning are discussed and suitable solutions are provided. The factors are compared with the learners' linguistic background at Bisha College of Technology BCT attempting to link the issues faced by students and the research done on similar situations. These factors are phonology, age of acquisition, motivation, psychology and courses of English. These factors are very important; because they interfere and affect specific learning processes at BCT context and general English learning situations.Keywords: Acquisition, age, factors, language, learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20184059 6D Posture Estimation of Road Vehicles from Color Images
Authors: Yoshimoto Kurihara, Tad Gonsalves
Abstract:
Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.
Keywords: AlexNet, Deep learning, image recognition, 6D posture estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5894058 Analysis of the Omnichannel Delivery Network with Application to Last Mile Delivery
Authors: Colette Malyack, Pius Egbelu
Abstract:
Business-to-Customer (B2C) delivery options have improved to meet increased demand in recent years. The change in end users has forced logistics networks to focus on customer service and sentiment that would have previously been the priority of the company or organization of origin. This has led to increased pressure on logistics companies to extend traditional B2B networks into a B2C solution while accommodating additional costs, roadblocks, and customer sentiment; the result has been the creation of the omnichannel delivery network encompassing a number of traditional and modern methods of package delivery. In this paper the many solutions within the omnichannel delivery network are defined and discussed. It can be seen through this analysis that the omnichannel delivery network can be applied to reduce the complexity of package delivery and provide customers with more options. Applied correctly the result is a reduction in cost to the logistics company over time, even with an initial increase in cost to obtain the technology.Keywords: Network planning, Last Mile Delivery, LMD, omnichannel delivery network, omnichannel logistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6654057 Understanding the Selectional Preferences of the Twitter Mentions Network
Authors: R. Sudhesh Solomon, P. Y. K. L. Srinivas, Abhay Narayan, Amitava Das
Abstract:
Users in social networks either unicast or broadcast their messages. At mention is the popular way of unicasting for Twitter whereas general tweeting could be considered as broadcasting method. Understanding the information flow and dynamics within a Social Network and modeling the same is a promising and an open research area called Information Diffusion. This paper seeks an answer to a fundamental question - understanding if the at-mention network or the unicasting pattern in social media is purely random in nature or is there any user specific selectional preference? To answer the question we present an empirical analysis to understand the sociological aspects of Twitter mentions network within a social network community. To understand the sociological behavior we analyze the values (Schwartz model: Achievement, Benevolence, Conformity, Hedonism, Power, Security, Self-Direction, Stimulation, Traditional and Universalism) of all the users. Empirical results suggest that values traits are indeed salient cue to understand how the mention-based communication network functions. For example, we notice that individuals possessing similar values unicast among themselves more often than with other value type people. We also observe that traditional and self-directed people do not maintain very close relationship in the network with the people of different values traits.Keywords: Social network analysis, information diffusion, personality and values, Twitter Mentions Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7464056 The Interaction between Accounting Students- Preference, Teaching Methodology and Performance
Authors: Dorine M. Mattar, Rim M. El Khoury
Abstract:
This paper examined the influence of matching students- learning preferences with the teaching methodology adopted, on their academic performance in an accounting course in two types of learning environment in one university in Lebanon: classes with PowerPoint (PPT) vs. conventional classes. Learning preferences were either for PPT or for Conventional methodology. A statistically significant increase in academic achievement is found in the conventionally instructed group as compared to the group taught with PPT. This low effectiveness of PPT might be attributed to the learning preferences of Lebanese students. In the PPT group, better academic performance was found among students with learning/teaching match as compared with students with learning/teaching mismatch. Since the majority of students display a preference for the conventional methodology, the result might suggest that Lebanese students- performance is not optimized by PPT in the accounting classrooms, not because of PPT itself, but because it is not matching the Lebanese students- learning preferences in such a quantitative course.Keywords: Accounting education, learning preferences, learning/teaching match, Lebanon, Student performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18394055 Building a Personalized Multidimensional Intelligent Learning System
Authors: Lun-Ping Hung, Nan-Chen Hsieh, Chia-Ling Ho, Chien-Liang Chen
Abstract:
Currently, most of distance learning courses can only deliver standard material to students. Students receive course content passively which leads to the neglect of the goal of education – “to suit the teaching to the ability of students". Providing appropriate course content according to students- ability is the main goal of this paper. Except offering a series of conventional learning services, abundant information available, and instant message delivery, a complete online learning environment should be able to distinguish between students- ability and provide learning courses that best suit their ability. However, if a distance learning site contains well-designed course content and design but fails to provide adaptive courses, students will gradually loss their interests and confidence in learning and result in ineffective learning or discontinued learning. In this paper, an intelligent tutoring system is proposed and it consists of several modules working cooperatively in order to build an adaptive learning environment for distance education. The operation of the system is based on the result of Self-Organizing Map (SOM) to divide students into different groups according to their learning ability and learning interests and then provide them with suitable course content. Accordingly, the problem of information overload and internet traffic problem can be solved because the amount of traffic accessing the same content is reduced.Keywords: Distance Learning, Intelligent Tutoring System(ITS), Self-Organizing Map (SOM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18664054 Face Recognition with PCA and KPCA using Elman Neural Network and SVM
Authors: Hossein Esbati, Jalil Shirazi
Abstract:
In this paper, in order to categorize ORL database face pictures, principle Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA) methods by using Elman neural network and Support Vector Machine (SVM) categorization methods are used. Elman network as a recurrent neural network is proposed for modeling storage systems and also it is used for reviewing the effect of using PCA numbers on system categorization precision rate and database pictures categorization time. Categorization stages are conducted with various components numbers and the obtained results of both Elman neural network categorization and support vector machine are compared. In optimum manner 97.41% recognition accuracy is obtained.Keywords: Face recognition, Principal Component Analysis, Kernel Principal Component Analysis, Neural network, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19304053 A Framework on the Critical Success Factors of E-Learning Implementation in Higher Education: A Review of the Literature
Authors: Sujit K. Basak, Marguerite Wotto, Paul Bélanger
Abstract:
This paper presents a conceptual framework on the critical success factors of e-learning implementation in higher education, derived from an in-depth survey of literature review. The aim of this study was achieved by identifying critical success factors that affect for the successful implementation of e-learning. The findings help to articulate issues that are related to e-learning implementation in both formal and non-formal higher education and in this way contribute to the development of programs designed to address the relevant issues.Keywords: Critical success factors, e-learning, higher education, life-long learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38914052 Digital Learning Environments for Joint Master in Science Programmes in Building and Construction in Europe: Experimenting with Tools and Technologies
Authors: E. Dado, R. Beheshti
Abstract:
Recent developments in information and communication technologies (ICT) have created excellent conditions for profoundly enhancing the traditional learning and teaching practices. New modes of teaching in higher education subjects can profoundly enhance ones ability to proactively constructing his or her personal learning universe. These developments have contributed to digital learning environments becoming widely available and accessible. In addition, there is a trend towards enlargement and specialization in higher education in Europe. With as a result that existing Master of Science (MSc) programmes are merged or new programmes have been established that are offered as joint MSc programmes to students. In these joint MSc programmes, the need for (common) digital learning environments capable of surmounting the barriers of time and location has become evident. This paper discusses the past and ongoing efforts to establish such common digital learning environments in two joint MSc programmes in Europe and discusses the way technology-based learning environments affect the traditional way of learning.Keywords: education, engineering, learning environments, ICT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15504051 Application of BP Neural Network Model in Sports Aerobics Performance Evaluation
Authors: Shuhe Shao
Abstract:
This article provides partial evaluation index and its standard of sports aerobics, including the following 12 indexes: health vitality, coordination, flexibility, accuracy, pace, endurance, elasticity, self-confidence, form, control, uniformity and musicality. The three-layer BP artificial neural network model including input layer, hidden layer and output layer is established. The result shows that the model can well reflect the non-linear relationship between the performance of 12 indexes and the overall performance. The predicted value of each sample is very close to the true value, with a relative error fluctuating around of 5%, and the network training is successful. It shows that BP network has high prediction accuracy and good generalization capacity if being applied in sports aerobics performance evaluation after effective training.Keywords: BP neural network, sports aerobics, performance, evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16184050 AI-based Radio Resource and Transmission Opportunity Allocation for 5G-V2X HetNets: NR and NR-U networks
Authors: Farshad Zeinali, Sajedeh Norouzi, Nader Mokari, Eduard A. Jorswieck
Abstract:
The capacity of fifth-generation (5G)vehicle-to-everything (V2X) networks poses significant challenges.To address this challenge, this paper utilizes New Radio (NR) and New Radio Unlicensed (NR-U) networks to develop a vehicular heterogeneous network (HetNet). We propose a framework, named joint BS assignment and resource allocation (JBSRA) for mobile V2X users and also consider coexistence schemes based on flexible duty cycle (DC) mechanism for unlicensed bands. Our objective is to maximize the average throughput of vehicles, while guarantying the WiFi users throughput. In simulations based on deep reinforcement learning (DRL) algorithms such as deep deterministic policy gradient (DDPG) and deep Q network (DQN), our proposed framework outperforms existing solutions that rely on fixed DC or schemes without consideration of unlicensed bands.
Keywords: Vehicle-to-everything, resource allocation, BS assignment, new radio, new radio unlicensed, coexistence NR-U and WiFi, deep deterministic policy gradient, Deep Q-network, Duty cycle mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3254049 Students’ Level of Knowledge Construction and Pattern of Social Interaction in an Online Forum
Authors: K. Durairaj, I. N. Umar
Abstract:
The asynchronous discussion forum is one of the most widely used activities in learning management system environment. Online forum allows participants to interact, construct knowledge, and can be used to complement face to face sessions in blended learning courses. However, to what extent do the students perceive the benefits or advantages of forum remain to be seen. Through content and social network analyses, instructors will be able to gauge the students’ engagement and knowledge construction level. Thus, this study aims to analyze the students’ level of knowledge construction and their participation level that occur through online discussion. It also attempts to investigate the relationship between the level of knowledge construction and their social interaction patterns. The sample involves 23 students undertaking a master course in one public university in Malaysia. The asynchronous discussion forum was conducted for three weeks as part of the course requirement. The finding indicates that the level of knowledge construction is quite low. Also, the density value of 0.11 indicating the overall communication among the participants in the forum is low. This study reveals that strong and significant correlations between SNA measures (in-degree centrality, out-degree centrality) and level of knowledge construction. Thus, allocating these active students in different group aids the interactive discussion takes place. Finally, based upon the findings, some recommendations to increase students’ level of knowledge construction and also for further research are proposed.
Keywords: Asynchronous Discussion Forums, Content Analysis, Knowledge Construction, Social Network Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22114048 A Compact Pi Network for Reducing Bit Error Rate in Dispersive FIR Channel Noise Model
Authors: Kavita Burse, R.N. Yadav, S.C. Shrivastava, Vishnu Pratap Singh Kirar
Abstract:
During signal transmission, the combined effect of the transmitter filter, the transmission medium, and additive white Gaussian noise (AWGN) are included in the channel which distort and add noise to the signal. This causes the well defined signal constellation to spread causing errors in bit detection. A compact pi neural network with minimum number of nodes is proposed. The replacement of summation at each node by multiplication results in more powerful mapping. The resultant pi network is tested on six different channels.Keywords: Additive white Gaussian noise, digitalcommunication system, multiplicative neuron, Pi neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16684047 The Classification Model for Hard Disk Drive Functional Tests under Sparse Data Conditions
Authors: S. Pattanapairoj, D. Chetchotsak
Abstract:
This paper proposed classification models that would be used as a proxy for hard disk drive (HDD) functional test equitant which required approximately more than two weeks to perform the HDD status classification in either “Pass" or “Fail". These models were constructed by using committee network which consisted of a number of single neural networks. This paper also included the method to solve the problem of sparseness data in failed part, which was called “enforce learning method". Our results reveal that the constructed classification models with the proposed method could perform well in the sparse data conditions and thus the models, which used a few seconds for HDD classification, could be used to substitute the HDD functional tests.Keywords: Sparse data, Classifications, Committee network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736