Search results for: generalized quotient
71 Effect of Single Overload Ratio and Stress Ratio on Fatigue Crack Growth
Authors: M. Benachour, N. Benachour, M. Benguediab
Abstract:
In this investigation variation of cyclic loading effect on fatigue crack growth is the studied. This study is performed on 2024 T351 and 7050-T74 aluminum alloys, used in aeronautical structures. The propagation model used in this study is NASGRO model. In constant amplitude loading (CA), effect of stress ratio has been investigated. Fatigue life and fatigue crack growth rate were affected by this factor. Results showed an increasing in fatigue crack growth rates (FCGRs) with increasing stress ratio. Variable amplitude loading (VAL) can take many forms i.e. with a single overload, overload band… etc. The shape of these loads affects strongly the fracture life and FCGRs. The application of a single overload (ORL) decrease the FCGR and increase the delay crack length caused by the formation of a larger plastic zone compared to the plastic zone due without VAL. The fatigue behavior of the both material under single overload has been compared.
Keywords: Fatigue crack growth, overload ratio, stress ratio, generalized willenborg model, retardation, Al-alloys.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 360270 On the Efficient Implementation of a Serial and Parallel Decomposition Algorithm for Fast Support Vector Machine Training Including a Multi-Parameter Kernel
Authors: Tatjana Eitrich, Bruno Lang
Abstract:
This work deals with aspects of support vector machine learning for large-scale data mining tasks. Based on a decomposition algorithm for support vector machine training that can be run in serial as well as shared memory parallel mode we introduce a transformation of the training data that allows for the usage of an expensive generalized kernel without additional costs. We present experiments for the Gaussian kernel, but usage of other kernel functions is possible, too. In order to further speed up the decomposition algorithm we analyze the critical problem of working set selection for large training data sets. In addition, we analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our tests and conclusions led to several modifications of the algorithm and the improvement of overall support vector machine learning performance. Our method allows for using extensive parameter search methods to optimize classification accuracy.
Keywords: Support Vector Machine Training, Multi-ParameterKernels, Shared Memory Parallel Computing, Large Data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144369 Net Fee and Commission Income Determinants of European Cooperative Banks
Authors: Karolína Vozková, Matěj Kuc
Abstract:
Net fee and commission income is one of the key elements of a bank’s core income. In the current low-interest rate environment, this type of income is gaining importance relative to net interest income. This paper analyses the effects of bank and country specific determinants of net fee and commission income on a set of cooperative banks from European countries in the 2007-2014 period. In order to do that, dynamic panel data methods (system Generalized Methods of Moments) were employed. Subsequently, alternative panel data methods were run as robustness checks of the analysis. Strong positive impact of bank concentration on the share of net fee and commission income was found, which proves that cooperative banks tend to display a higher share of fee income in less competitive markets. This is probably connected with the fact that they stick with their traditional deposit-taking and loan-providing model and fees on these services are driven down by the competitors. Moreover, compared to commercial banks, cooperatives do not expand heavily into non-traditional fee bearing services under competition and their overall fee income share is therefore decreasing with the increased competitiveness of the sector.
Keywords: Cooperative banking, dynamic panel data models, net fee, commission income, system GMM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 294868 The Affect of Ethnic Minority People: A Prediction by Gender and Marital Status
Authors: A. K. M. Rezaul Karim, Abu Yusuf Mahmud, S. H. Mahmud
Abstract:
The study aimed to investigate whether the affect (experience of feeling or emotion) of ethnic minority people can be predicted by gender and marital status. Toward this end, positive affect and negative affect of 103 adult indigenous persons were measured. Analysis of data in multiple regressions demonstrated that both gender and marital status are significantly associated with positive affect (Gender: β=.318, p<.001; Marital status: β=.201, p<.05), but not with negative affect. Results indicated that the indigenous males have 0.32 standard deviations increased positive affect as compared to the indigenous females and that married individuals have 0.20 standard deviations increased positive affect as compared to their unmarried counterparts. These findings advance our understanding that gender and marital status inequalities in the experience of emotion are not specific to the mainstream society; rather it is a generalized picture of all societies. In general, men possess more positive affect than females; married persons possess more positive affect than the unmarried persons.
Keywords: Positive Affect, Negative Affect, Ethnic Minority, Gender, Marital Status.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190467 A Method under Uncertain Information for the Selection of Students in Interdisciplinary Studies
Authors: José M. Merigó, Pilar López-Jurado, M.Carmen Gracia, Montserrat Casanovas
Abstract:
We present a method for the selection of students in interdisciplinary studies based on the hybrid averaging operator. We assume that the available information given in the problem is uncertain so it is necessary to use interval numbers. Therefore, we suggest a new type of hybrid aggregation called uncertain induced generalized hybrid averaging (UIGHA) operator. It is an aggregation operator that considers the weighted average (WA) and the ordered weighted averaging (OWA) operator in the same formulation. Therefore, we are able to consider the degree of optimism of the decision maker and grades of importance in the same approach. By using interval numbers, we are able to represent the information considering the best and worst possible results so the decision maker gets a more complete view of the decision problem. We develop an illustrative example of the proposed scheme in the selection of students in interdisciplinary studies. We see that with the use of the UIGHA operator we get a more complete representation of the selection problem. Then, the decision maker is able to consider a wide range of alternatives depending on his interests. We also show other potential applications that could be used by using the UIGHA operator in educational problems about selection of different types of resources such as students, professors, etc.Keywords: Decision making, Selection of students, Uncertainty, Aggregation operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139666 Selection of an Optimum Configuration of Solar PV Array under Partial Shaded Condition Using Particle Swarm Optimization
Authors: R. Ramaprabha
Abstract:
This paper presents an extraction of maximum energy from Solar Photovoltaic Array (SPVA) under partial shaded conditions by optimum selection of array size using Particle Swarm Optimization (PSO) technique. In this paper a detailed study on the output reduction of different SPVA configurations under partial shaded conditions have been carried out. A generalized MATLAB M-code based software model has been used for any required array size, configuration, shading patterns and number of bypass diodes. Comparative study has been carried out on different configurations by testing several shading scenarios. While the number of shading patterns and the rate of change are very low for stationary SPVA but these may be quite large for SPVA mounted on a mobile platforms. This paper presents the suitability of PSO technique to select optimum configuration for mobile arrays by calculating the global peak (GP) of different configurations and to transfer maximum power to the load.
Keywords: Global peak, Mobile PV arrays, Partial shading, optimization, PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 423565 A Study of Panel Logit Model and Adaptive Neuro-Fuzzy Inference System in the Prediction of Financial Distress Periods
Authors: Ε. Giovanis
Abstract:
The purpose of this paper is to present two different approaches of financial distress pre-warning models appropriate for risk supervisors, investors and policy makers. We examine a sample of the financial institutions and electronic companies of Taiwan Security Exchange (TSE) market from 2002 through 2008. We present a binary logistic regression with paned data analysis. With the pooled binary logistic regression we build a model including more variables in the regression than with random effects, while the in-sample and out-sample forecasting performance is higher in random effects estimation than in pooled regression. On the other hand we estimate an Adaptive Neuro-Fuzzy Inference System (ANFIS) with Gaussian and Generalized Bell (Gbell) functions and we find that ANFIS outperforms significant Logit regressions in both in-sample and out-of-sample periods, indicating that ANFIS is a more appropriate tool for financial risk managers and for the economic policy makers in central banks and national statistical services.Keywords: ANFIS, Binary logistic regression, Financialdistress, Panel data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 234564 The Effectiveness of National Fiscal Rules in the Asia-Pacific Countries
Authors: Chiung-Ju Huang, Yuan-Hong Ho
Abstract:
This study utilizes the International Monetary Fund (IMF) Fiscal Rules Dataset focusing on four specific fiscal rules such as expenditure rule, revenue rule, budget balance rule, and debt rule and five main characteristics of each fiscal rule those are monitoring, enforcement, coverage, legal basis, and escape clause to construct the Fiscal Rule Index for nine countries in the Asia-Pacific region from 1996 to 2015. After constructing the fiscal rule index for each country, we utilize the Panel Generalized Method of Moments (Panel GMM) by using the constructed fiscal rule index to examine the effectiveness of fiscal rules in reducing procyclicality. Empirical results show that national fiscal rules have a significantly negative impact on procyclicality of government expenditure. Additionally, stricter fiscal rules combined with high government effectiveness are effective in reducing procyclicality of government expenditure. Results of this study indicate that for nine Asia-Pacific countries, policymakers’ use of fiscal rules and government effectiveness to reducing procyclicality of fiscal policy are effective.
Keywords: Counter-cyclical policy, fiscal rules, government effectiveness, procyclical policy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 82863 Generalization of SGIP Surface Tension Force Model in Three-Dimensional Flows and Compare to Other Models in Interfacial Flows
Authors: Afshin Ahmadi Nadooshan, Ebrahim Shirani
Abstract:
In this paper, the two-dimensional stagger grid interface pressure (SGIP) model has been generalized and presented into three-dimensional form. For this purpose, various models of surface tension force for interfacial flows have been investigated and compared with each other. The VOF method has been used for tracking the interface. To show the ability of the SGIP model for three-dimensional flows in comparison with other models, pressure contours, maximum spurious velocities, norm spurious flow velocities and pressure jump error for motionless drop of liquid and bubble of gas are calculated using different models. It has been pointed out that SGIP model in comparison with the CSF, CSS and PCIL models produces the least maximum and norm spurious velocities. Additionally, the new model produces more accurate results in calculating the pressure jumps across the interface for motionless drop of liquid and bubble of gas which is generated in surface tension force. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 141462 Genetic-Based Multi Resolution Noisy Color Image Segmentation
Authors: Raghad Jawad Ahmed
Abstract:
Segmentation of a color image composed of different kinds of regions can be a hard problem, namely to compute for an exact texture fields. The decision of the optimum number of segmentation areas in an image when it contains similar and/or un stationary texture fields. A novel neighborhood-based segmentation approach is proposed. A genetic algorithm is used in the proposed segment-pass optimization process. In this pass, an energy function, which is defined based on Markov Random Fields, is minimized. In this paper we use an adaptive threshold estimation method for image thresholding in the wavelet domain based on the generalized Gaussian distribution (GGD) modeling of sub band coefficients. This method called Normal Shrink is computationally more efficient and adaptive because the parameters required for estimating the threshold depend on sub band data energy that used in the pre-stage of segmentation. A quad tree is employed to implement the multi resolution framework, which enables the use of different strategies at different resolution levels, and hence, the computation can be accelerated. The experimental results using the proposed segmentation approach are very encouraging.Keywords: Color image segmentation, Genetic algorithm, Markov random field, Scale space filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157961 Pavement Roughness Prediction Systems: A Bump Integrator Approach
Authors: Manish Pal, Rumi Sutradhar
Abstract:
Pavement surface unevenness plays a pivotal role on roughness index of road which affects on riding comfort ability. Comfort ability refers to the degree of protection offered to vehicle occupants from uneven elements in the road surface. So, it is preferable to have a lower roughness index value for a better riding quality of road users. Roughness is generally defined as an expression of irregularities in the pavement surface which can be measured using different equipments like MERLIN, Bump integrator, Profilometer etc. Among them Bump Integrator is quite simple and less time consuming in case of long road sections. A case study is conducted on low volume roads in West District in Tripura to determine roughness index (RI) using Bump Integrator at the standard speed of 32 km/h. But it becomes too tough to maintain the requisite standard speed throughout the road section. The speed of Bump Integrator (BI) has to lower or higher in some distinctive situations. So, it becomes necessary to convert these roughness index values of other speeds to the standard speed of 32 km/h. This paper highlights on that roughness index conversional model. Using SPSS (Statistical Package of Social Sciences) software a generalized equation is derived among the RI value at standard speed of 32 km/h and RI value at other speed conditions.
Keywords: Bump Integrator, Pavement Distresses, Roughness Index, SPSS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 667260 Coupling Time-Domain Analysis for Dynamic Positioning during S-Lay Installation
Authors: Sun Li-ping, Zhu Jian-xun, Liu Sheng-nan
Abstract:
In order to study the performance of dynamic positioning system during S-lay operations, dynamic positioning system is simulated with the hull-stinger-pipe coupling effect. The roller of stinger is simulated by the generalized elastic contact theory. The stinger is composed of Morrison members. Force on pipe is calculated by lumped mass method. Time domain of fully coupled barge model is analyzed combining with PID controller, Kalman filter and allocation of thrust using Sequential Quadratic Programming method. It is also analyzed that the effect of hull wave frequency motion on pipe-stinger coupling force and dynamic positioning system. Besides, it is studied that how S-lay operations affect the dynamic positioning accuracy. The simulation results are proved to be available by checking pipe stress with API criterion. The effect of heave and yaw motion cannot be ignored on hull-stinger-pipe coupling force and dynamic positioning system. It is important to decrease the barge’s pitch motion and lay pipe in head sea in order to improve safety of the S-lay installation and dynamic positioning.
Keywords: S-lay operation, dynamic positioning, coupling motion; time domain, allocation of thrust.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 277959 Design of Parity-Preserving Reversible Logic Signed Array Multipliers
Authors: Mojtaba Valinataj
Abstract:
Reversible logic as a new favorable design domain can be used for various fields especially creating quantum computers because of its speed and intangible power consumption. However, its susceptibility to a variety of environmental effects may lead to yield the incorrect results. In this paper, because of the importance of multiplication operation in various computing systems, some novel reversible logic array multipliers are proposed with error detection capability by incorporating the parity-preserving gates. The new designs are presented for two main parts of array multipliers, partial product generation and multi-operand addition, by exploiting the new arrangements of existing gates, which results in two signed parity-preserving array multipliers. The experimental results reveal that the best proposed 4×4 multiplier in this paper reaches 12%, 24%, and 26% enhancements in the number of constant inputs, number of required gates, and quantum cost, respectively, compared to previous design. Moreover, the best proposed design is generalized for n×n multipliers with general formulations to estimate the main reversible logic criteria as the functions of the multiplier size.Keywords: Array multipliers, Baugh-Wooley method, error detection, parity-preserving gates, quantum computers, reversible logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 103058 Radiation Dose Distribution for Workers in South Korean Nuclear Power Plants
Authors: B. I. Lee, S. I. Kim, D. H. Suh, J. I. Kim, Y. K. Lim
Abstract:
A total of 33,680 nuclear power plants (NPPs) workers were monitored and recorded from 1990 to 2007. According to the record, the average individual radiation dose has been decreasing continually from it 3.20 mSv/man in 1990 to 1.12 mSv/man at the end of 2007. After the International Commission on Radiological Protection (ICRP) 60 recommendation was generalized in South Korea, no nuclear power plant workers received above 20 mSv radiation, and the numbers of relatively highly exposed workers have been decreasing continuously. The age distribution of radiation workers in nuclear power plants was composed of mainly 20-30- year-olds (83%) for 1990 ~ 1994 and 30-40-year-olds (75%) for 2003 ~ 2007. The difference in individual average dose by age was not significant. Most (77%) of NPP radiation exposures from 1990 to 2007 occurred mostly during the refueling period. With regard to exposure type, the majority of exposures were external exposures, representing 95% of the total exposures, while internal exposures represented only 5%. External effective dose was affected mainly by gamma radiation exposure, with an insignificant amount of neutron exposure. As for internal effective dose, tritium (3H) in the pressurized heavy water reactor (PHWR) was the biggest cause of exposure.
Keywords: Dose distribution, External exposure, Nuclear powerplant, Occupational radiation dose
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 256857 Statistical Distributions of the Lapped Transform Coefficients for Images
Authors: Vijay Kumar Nath, Deepika Hazarika, Anil Mahanta,
Abstract:
Discrete Cosine Transform (DCT) based transform coding is very popular in image, video and speech compression due to its good energy compaction and decorrelating properties. However, at low bit rates, the reconstructed images generally suffer from visually annoying blocking artifacts as a result of coarse quantization. Lapped transform was proposed as an alternative to the DCT with reduced blocking artifacts and increased coding gain. Lapped transforms are popular for their good performance, robustness against oversmoothing and availability of fast implementation algorithms. However, there is no proper study reported in the literature regarding the statistical distributions of block Lapped Orthogonal Transform (LOT) and Lapped Biorthogonal Transform (LBT) coefficients. This study performs two goodness-of-fit tests, the Kolmogorov-Smirnov (KS) test and the 2- test, to determine the distribution that best fits the LOT and LBT coefficients. The experimental results show that the distribution of a majority of the significant AC coefficients can be modeled by the Generalized Gaussian distribution. The knowledge of the statistical distribution of transform coefficients greatly helps in the design of optimal quantizers that may lead to minimum distortion and hence achieve optimal coding efficiency.
Keywords: Lapped orthogonal transform, Lapped biorthogonal transform, Image compression, KS test,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160656 Regionalization of IDF Curves with L-Moments for Storm Events
Authors: Noratiqah Mohd Ariff, Abdul Aziz Jemain, Mohd Aftar Abu Bakar
Abstract:
The construction of Intensity-Duration-Frequency (IDF) curves is one of the most common and useful tools in order to design hydraulic structures and to provide a mathematical relationship between rainfall characteristics. IDF curves, especially those in Peninsular Malaysia, are often built using moving windows of rainfalls. However, these windows do not represent the actual rainfall events since the duration of rainfalls is usually prefixed. Hence, instead of using moving windows, this study aims to find regionalized distributions for IDF curves of extreme rainfalls based on storm events. Homogeneity test is performed on annual maximum of storm intensities to identify homogeneous regions of storms in Peninsular Malaysia. The L-moment method is then used to regionalized Generalized Extreme Value (GEV) distribution of these annual maximums and subsequently. IDF curves are constructed using the regional distributions. The differences between the IDF curves obtained and IDF curves found using at-site GEV distributions are observed through the computation of the coefficient of variation of root mean square error, mean percentage difference and the coefficient of determination. The small differences implied that the construction of IDF curves could be simplified by finding a general probability distribution of each region. This will also help in constructing IDF curves for sites with no rainfall station.
Keywords: IDF curves, L-moments, regionalization, storm events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 171655 Improved Text-Independent Speaker Identification using Fused MFCC and IMFCC Feature Sets based on Gaussian Filter
Authors: Sandipan Chakroborty, Goutam Saha
Abstract:
A state of the art Speaker Identification (SI) system requires a robust feature extraction unit followed by a speaker modeling scheme for generalized representation of these features. Over the years, Mel-Frequency Cepstral Coefficients (MFCC) modeled on the human auditory system has been used as a standard acoustic feature set for speech related applications. On a recent contribution by authors, it has been shown that the Inverted Mel- Frequency Cepstral Coefficients (IMFCC) is useful feature set for SI, which contains complementary information present in high frequency region. This paper introduces the Gaussian shaped filter (GF) while calculating MFCC and IMFCC in place of typical triangular shaped bins. The objective is to introduce a higher amount of correlation between subband outputs. The performances of both MFCC & IMFCC improve with GF over conventional triangular filter (TF) based implementation, individually as well as in combination. With GMM as speaker modeling paradigm, the performances of proposed GF based MFCC and IMFCC in individual and fused mode have been verified in two standard databases YOHO, (Microphone Speech) and POLYCOST (Telephone Speech) each of which has more than 130 speakers.Keywords: Gaussian Filter, Triangular Filter, Subbands, Correlation, MFCC, IMFCC, GMM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 245454 Improved Closed Set Text-Independent Speaker Identification by Combining MFCC with Evidence from Flipped Filter Banks
Authors: Sandipan Chakroborty, Anindya Roy, Goutam Saha
Abstract:
A state of the art Speaker Identification (SI) system requires a robust feature extraction unit followed by a speaker modeling scheme for generalized representation of these features. Over the years, Mel-Frequency Cepstral Coefficients (MFCC) modeled on the human auditory system has been used as a standard acoustic feature set for SI applications. However, due to the structure of its filter bank, it captures vocal tract characteristics more effectively in the lower frequency regions. This paper proposes a new set of features using a complementary filter bank structure which improves distinguishability of speaker specific cues present in the higher frequency zone. Unlike high level features that are difficult to extract, the proposed feature set involves little computational burden during the extraction process. When combined with MFCC via a parallel implementation of speaker models, the proposed feature set outperforms baseline MFCC significantly. This proposition is validated by experiments conducted on two different kinds of public databases namely YOHO (microphone speech) and POLYCOST (telephone speech) with Gaussian Mixture Models (GMM) as a Classifier for various model orders.
Keywords: Complementary Information, Filter Bank, GMM, IMFCC, MFCC, Speaker Identification, Speaker Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 230853 Improve Safety Performance of Un-Signalized Intersections in Oman
Authors: Siham G. Farag
Abstract:
The main objective of this paper is to provide a new methodology for road safety assessment in Oman through the development of suitable accident prediction models. GLM technique with Poisson or NBR using SAS package was carried out to develop these models. The paper utilized the accidents data of 31 un-signalized T-intersections during three years. Five goodness-of-fit measures were used to assess the overall quality of the developed models. Two types of models were developed separately; the flow-based models including only traffic exposure functions, and the full models containing both exposure functions and other significant geometry and traffic variables. The results show that, traffic exposure functions produced much better fit to the accident data. The most effective geometric variables were major-road mean speed, minor-road 85th percentile speed, major-road lane width, distance to the nearest junction, and right-turn curb radius. The developed models can be used for intersection treatment or upgrading and specify the appropriate design parameters of T-intersections. Finally, the models presented in this thesis reflect the intersection conditions in Oman and could represent the typical conditions in several countries in the middle east area, especially gulf countries.
Keywords: Accidents Prediction Models (APMs), Generalized Linear Model (GLM), T-intersections, Oman.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206752 Dynamic Stability of Axially Moving Viscoelastic Plates under Non-Uniform In-Plane Edge Excitations
Authors: T. H. Young, S. J. Huang, Y. S. Chiu
Abstract:
This paper investigates the parametric stability of an axially moving web subjected to non-uniform in-plane edge excitations on two opposite, simply-supported edges. The web is modeled as a viscoelastic plate whose constitutive relation obeys the Kelvin-Voigt model, and the in-plane edge excitations are expressed as the sum of a static tension and a periodical perturbation. Due to the in-plane edge excitations, the moving plate may bring about parametric instability under certain situations. First, the in-plane stresses of the plate due to the non-uniform edge excitations are determined by solving the in-plane forced vibration problem. Then, the dependence on the spatial coordinates in the equation of transverse motion is eliminated by the generalized Galerkin method, which results in a set of discretized system equations in time. Finally, the method of multiple scales is utilized to solve the set of system equations analytically if the periodical perturbation of the in-plane edge excitations is much smaller as compared with the static tension of the plate, from which the stability boundaries of the moving plate are obtained. Numerical results reveal that only combination resonances of the summed-type appear under the in-plane edge excitations considered in this work.Keywords: Axially moving viscoelastic plate, in-plane periodic excitation, non-uniformly distributed edge tension, dynamic stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195151 The Ecological Role of Loligo forbesii in the Moray Firth Ecosystem, Northeast Scotland
Authors: Godwin A. Otogo, Sansanee Wangvoralak, Graham J. Pierce, Lee C. Hastie, Beth Scott
Abstract:
The squid Loligo forbesii is suspected to be an important species in marine food webs, as it can strongly impact its prey and be impacted upon by predation, competition, fishing and/or climate variability. To quantify these impacts in the food web, the measurement of its trophic position and ecological role within well-studied ecosystems is essential. An Ecopath model was balanced and run for the Moray Firth ecosystem and was used to investigate the significance of this squid’s trophic roles. The network analysis routine included in Ecopath with Ecosim (EwE) was used to estimate trophic interaction, system indicators (health condition and developmental stage) and food web features. Results indicated that within the Moray Firth squid occupy a top trophic position in the food web and also a major prey item for many other species. Results from Omnivory Index (OI) showed that squid is a generalized feeder transferring energy across wide trophic levels and is more important as a predator than that as a prey in the Moray Firth ecosystem. The results highlight the importance of taking squid into account in the management of Europe’s living marine resources.
Keywords: Ecopath, Loligo forbesii, moray firth, squid, trophic-level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138250 Numerical Analysis of Thermal Conductivity of Non-Charring Material Ablation Carbon-Carbon and Graphite with Considering Chemical Reaction Effects, Mass Transfer and Surface Heat Transfer
Authors: H. Mohammadiun, A. Kianifar, A. Kargar
Abstract:
Nowadays, there is little information, concerning the heat shield systems, and this information is not completely reliable to use in so many cases. for example, the precise calculation cannot be done for various materials. In addition, the real scale test has two disadvantages: high cost and low flexibility, and for each case we must perform a new test. Hence, using numerical modeling program that calculates the surface recession rate and interior temperature distribution is necessary. Also, numerical solution of governing equation for non-charring material ablation is presented in order to anticipate the recession rate and the heat response of non-charring heat shields. the governing equation is nonlinear and the Newton- Rafson method along with TDMA algorithm is used to solve this nonlinear equation system. Using Newton- Rafson method for solving the governing equation is one of the advantages of the solving method because this method is simple and it can be easily generalized to more difficult problems. The obtained results compared with reliable sources in order to examine the accuracy of compiling code.Keywords: Ablation rate, surface recession, interior temperaturedistribution, non charring material ablation, Newton Rafson method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190349 Application of Extreme Learning Machine Method for Time Series Analysis
Authors: Rampal Singh, S. Balasundaram
Abstract:
In this paper, we study the application of Extreme Learning Machine (ELM) algorithm for single layered feedforward neural networks to non-linear chaotic time series problems. In this algorithm the input weights and the hidden layer bias are randomly chosen. The ELM formulation leads to solving a system of linear equations in terms of the unknown weights connecting the hidden layer to the output layer. The solution of this general system of linear equations will be obtained using Moore-Penrose generalized pseudo inverse. For the study of the application of the method we consider the time series generated by the Mackey Glass delay differential equation with different time delays, Santa Fe A and UCR heart beat rate ECG time series. For the choice of sigmoid, sin and hardlim activation functions the optimal values for the memory order and the number of hidden neurons which give the best prediction performance in terms of root mean square error are determined. It is observed that the results obtained are in close agreement with the exact solution of the problems considered which clearly shows that ELM is a very promising alternative method for time series prediction.Keywords: Chaotic time series, Extreme learning machine, Generalization performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 352248 Software Maintenance Severity Prediction for Object Oriented Systems
Authors: Parvinder S. Sandhu, Roma Jaswal, Sandeep Khimta, Shailendra Singh
Abstract:
As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done in time especially for the critical applications. As, Neural networks, which have been already applied in software engineering applications to build reliability growth models predict the gross change or reusability metrics. Neural networks are non-linear sophisticated modeling techniques that are able to model complex functions. Neural network techniques are used when exact nature of input and outputs is not known. A key feature is that they learn the relationship between input and output through training. In this present work, various Neural Network Based techniques are explored and comparative analysis is performed for the prediction of level of need of maintenance by predicting level severity of faults present in NASA-s public domain defect dataset. The comparison of different algorithms is made on the basis of Mean Absolute Error, Root Mean Square Error and Accuracy Values. It is concluded that Generalized Regression Networks is the best algorithm for classification of the software components into different level of severity of impact of the faults. The algorithm can be used to develop model that can be used for identifying modules that are heavily affected by the faults.Keywords: Neural Network, Software faults, Software Metric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 157647 BIDENS: Iterative Density Based Biclustering Algorithm With Application to Gene Expression Analysis
Authors: Mohamed A. Mahfouz, M. A. Ismail
Abstract:
Biclustering is a very useful data mining technique for identifying patterns where different genes are co-related based on a subset of conditions in gene expression analysis. Association rules mining is an efficient approach to achieve biclustering as in BIMODULE algorithm but it is sensitive to the value given to its input parameters and the discretization procedure used in the preprocessing step, also when noise is present, classical association rules miners discover multiple small fragments of the true bicluster, but miss the true bicluster itself. This paper formally presents a generalized noise tolerant bicluster model, termed as μBicluster. An iterative algorithm termed as BIDENS based on the proposed model is introduced that can discover a set of k possibly overlapping biclusters simultaneously. Our model uses a more flexible method to partition the dimensions to preserve meaningful and significant biclusters. The proposed algorithm allows discovering biclusters that hard to be discovered by BIMODULE. Experimental study on yeast, human gene expression data and several artificial datasets shows that our algorithm offers substantial improvements over several previously proposed biclustering algorithms.Keywords: Machine learning, biclustering, bi-dimensional clustering, gene expression analysis, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196546 Image Compression with Back-Propagation Neural Network using Cumulative Distribution Function
Authors: S. Anna Durai, E. Anna Saro
Abstract:
Image Compression using Artificial Neural Networks is a topic where research is being carried out in various directions towards achieving a generalized and economical network. Feedforward Networks using Back propagation Algorithm adopting the method of steepest descent for error minimization is popular and widely adopted and is directly applied to image compression. Various research works are directed towards achieving quick convergence of the network without loss of quality of the restored image. In general the images used for compression are of different types like dark image, high intensity image etc. When these images are compressed using Back-propagation Network, it takes longer time to converge. The reason for this is, the given image may contain a number of distinct gray levels with narrow difference with their neighborhood pixels. If the gray levels of the pixels in an image and their neighbors are mapped in such a way that the difference in the gray levels of the neighbors with the pixel is minimum, then compression ratio as well as the convergence of the network can be improved. To achieve this, a Cumulative distribution function is estimated for the image and it is used to map the image pixels. When the mapped image pixels are used, the Back-propagation Neural Network yields high compression ratio as well as it converges quickly.Keywords: Back-propagation Neural Network, Cumulative Distribution Function, Correlation, Convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 255345 Algorithms for Computing of Optimization Problems with a Common Minimum-Norm Fixed Point with Applications
Authors: Apirak Sombat, Teerapol Saleewong, Poom Kumam, Parin Chaipunya, Wiyada Kumam, Anantachai Padcharoen, Yeol Je Cho, Thana Sutthibutpong
Abstract:
This research is aimed to study a two-step iteration process defined over a finite family of σ-asymptotically quasi-nonexpansive nonself-mappings. The strong convergence is guaranteed under the framework of Banach spaces with some additional structural properties including strict and uniform convexity, reflexivity, and smoothness assumptions. With similar projection technique for nonself-mapping in Hilbert spaces, we hereby use the generalized projection to construct a point within the corresponding domain. Moreover, we have to introduce the use of duality mapping and its inverse to overcome the unavailability of duality representation that is exploit by Hilbert space theorists. We then apply our results for σ-asymptotically quasi-nonexpansive nonself-mappings to solve for ideal efficiency of vector optimization problems composed of finitely many objective functions. We also showed that the obtained solution from our process is the closest to the origin. Moreover, we also give an illustrative numerical example to support our results.Keywords: σ-asymptotically quasi-nonexpansive nonselfmapping, strong convergence, fixed point, uniformly convex and uniformly smooth Banach space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 109544 Optimal Manufacturing Scheduling for Dependent Details Processing
Authors: Ivan C. Mustakerov, Daniela I. Borissova
Abstract:
The increasing competitiveness in manufacturing industry is forcing manufacturers to seek effective processing schedules. The paper presents an optimization manufacture scheduling approach for dependent details processing with given processing sequences and times on multiple machines. By defining decision variables as start and end moments of details processing it is possible to use straightforward variables restrictions to satisfy different technological requirements and to formulate easy to understand and solve optimization tasks for multiple numbers of details and machines. A case study example is solved for seven base moldings for CNC metalworking machines processed on five different machines with given processing order among details and machines and known processing time-s duration. As a result of linear optimization task solution the optimal manufacturing schedule minimizing the overall processing time is obtained. The manufacturing schedule defines the moments of moldings delivery thus minimizing storage costs and provides mounting due-time satisfaction. The proposed optimization approach is based on real manufacturing plant problem. Different processing schedules variants for different technological restrictions were defined and implemented in the practice of Bulgarian company RAIS Ltd. The proposed approach could be generalized for other job shop scheduling problems for different applications.Keywords: Optimal manufacturing scheduling, linear programming, metalworking machines production, dependant details processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148843 Knowledge Management in Academic: A Perspective of Academic Research Contribution to Economic Development of a Nation
Authors: Hilary J. Watsilla, Narasimha R. Vajjhala
Abstract:
Information and Communication Technology (ICT) has made information access easier and affordable. Academic research has also benefited from this, with online journals and academic resource readily available by the click of a button. However, there are limited ways of assessing and controlling the quality of the academic research mostly in public institution. Nigeria is the most populous country in Africa with a significant number of universities and young population. The quality of knowledge created by academic researchers, however, needs to be evaluated due to the high number of predatory journals published by academia. The purpose of this qualitative study is to look at the knowledge creation, acquisition, and assimilation process by academic researchers in public universities in Nigeria. Qualitative research will be carried out using in-depth interviews and observations. Academic researchers will be interviewed and absorptive capacity theory will be used as the theoretical framework to guide the research. The findings from this study should help understand the impact of ICT on the knowledge creation process in academic research and to understand how ICT can affect the quality of knowledge produced by researchers. The findings from this study should help add value to the existing body of knowledge on the quality of academic research, especially in Africa where there is limited availability of quality academic research. As this study is limited to Nigerian universities, the outcome may not be generalized to other developing countries.
Keywords: Knowledge creation, academic research, knowledge management, information and communication technology, research, university.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 130642 Comparison of Current Chinese and Japanese Design Specification for Bridge Pile in Liquefied Ground
Authors: Baydaa H. Maula, Ling Zhang, Tang Liang, Gao Xia, Xu Peng-Ju, Zhang Yong-Qiang, Kang Jie, Su Lei
Abstract:
Firstly, this study briefly presents the current situation that there exists a vast gap between current Chinese and Japanese seismic design specification for bridge pile foundation in liquefiable and liquefaction-induced lateral spreading ground; The Chinese and Japanese seismic design method and technical detail for bridge pile foundation in liquefying and lateral spreading ground are described and compared systematically and comprehensively, the methods of determining coefficient of subgrade reaction and its reduction factor as well as the computing mode of the applied force on pile foundation due to liquefaction-induced lateral spreading soil in Japanese design specification are especially introduced. Subsequently, the comparison indicates that the content of Chinese seismic design specification for bridge pile foundation in liquefiable and liquefaction-induced lateral spreading ground, just presenting some qualitative items, is too general and lacks systematicness and maneuverability. Finally, some defects of seismic design specification in China are summarized, so the improvement and revision of specification in the field turns out to be imperative for China, some key problems of current Chinese specifications are generalized and the corresponding improvement suggestions are proposed.
Keywords: liquefying soil, laterally spreading ground, seismic design specification for bridge pile foundation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3659