Search results for: Time varying regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7594

Search results for: Time varying regression

7234 Indoor Air Pollution of the Flexographic Printing Environment

Authors: Jelena S. Kiurski, Vesna S. Kecić, Snežana M. Aksentijević

Abstract:

The identification and evaluation of organic and inorganic pollutants were performed in a flexographic facility in Novi Sad, Serbia. Air samples were collected and analyzed in situ, during 4-hours working time at five sampling points by the mobile gas chromatograph and ozonometer at the printing of collagen casing. Experimental results showed that the concentrations of isopropyl alcohol, acetone, total volatile organic compounds and ozone varied during the sampling times. The highest average concentrations of 94.80 ppm and 102.57 ppm were achieved at 200 minutes from starting the production for isopropyl alcohol and total volatile organic compounds, respectively. The mutual dependences between target hazardous and microclimate parameters were confirmed using a multiple linear regression model with software package STATISTICA 10. Obtained multiple coefficients of determination in the case of ozone and acetone (0.507 and 0.589) with microclimate parameters indicated a moderate correlation between the observed variables. However, a strong positive correlation was obtained for isopropyl alcohol and total volatile organic compounds (0.760 and 0.852) with microclimate parameters. Higher values of parameter F than Fcritical for all examined dependences indicated the existence of statistically significant difference between the concentration levels of target pollutants and microclimates parameters. Given that, the microclimate parameters significantly affect the emission of investigated gases and the application of eco-friendly materials in production process present a necessity.

Keywords: Flexographic printing, indoor air, multiple regression analysis, pollution emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1307
7233 6D Posture Estimation of Road Vehicles from Color Images

Authors: Yoshimoto Kurihara, Tad Gonsalves

Abstract:

Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.

Keywords: AlexNet, Deep learning, image recognition, 6D posture estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588
7232 Regression Approach for Optimal Purchase of Hosts Cluster in Fixed Fund for Hadoop Big Data Platform

Authors: Haitao Yang, Jianming Lv, Fei Xu, Xintong Wang, Yilin Huang, Lanting Xia, Xuewu Zhu

Abstract:

Given a fixed fund, purchasing fewer hosts of higher capability or inversely more of lower capability is a must-be-made trade-off in practices for building a Hadoop big data platform. An exploratory study is presented for a Housing Big Data Platform project (HBDP), where typical big data computing is with SQL queries of aggregate, join, and space-time condition selections executed upon massive data from more than 10 million housing units. In HBDP, an empirical formula was introduced to predict the performance of host clusters potential for the intended typical big data computing, and it was shaped via a regression approach. With this empirical formula, it is easy to suggest an optimal cluster configuration. The investigation was based on a typical Hadoop computing ecosystem HDFS+Hive+Spark. A proper metric was raised to measure the performance of Hadoop clusters in HBDP, which was tested and compared with its predicted counterpart, on executing three kinds of typical SQL query tasks. Tests were conducted with respect to factors of CPU benchmark, memory size, virtual host division, and the number of element physical host in cluster. The research has been applied to practical cluster procurement for housing big data computing.

Keywords: Hadoop platform planning, optimal cluster scheme at fixed-fund, performance empirical formula, typical SQL query tasks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836
7231 Second-order Time Evolution Scheme for Time-dependent Neutron Transport Equation

Authors: Zhenying Hong, Guangwei Yuan, Xuedong Fu, Shulin Yang

Abstract:

In this paper, the typical exponential method, diamond difference and modified time discrete scheme is researched for self adaptive time step. The second-order time evolution scheme is applied to time-dependent spherical neutron transport equation by discrete ordinates method. The numerical results show that second-order time evolution scheme associated exponential method has some good properties. The time differential curve about neutron current is more smooth than that of exponential method and diamond difference and modified time discrete scheme.

Keywords: Exponential method, diamond difference, modified time discrete scheme, second-order time evolution scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
7230 How Do Crisis Affect Economic Policy?

Authors: Eva Kotlánová

Abstract:

After recession that began in 2007 in the United States and subsequently spilled over the Europe we could expect recovery of economic growth. According to the last estimation of economic progress of European countries, this recovery is not strong enough. Among others, it will depend on economic policy, where and in which way, the economic indicators will proceed. Economic theories postulate that the economic subjects prefer stably, continual economic policy without repeated and strong fluctuations. This policy is perceived as support of economic growth. Mostly in crises period, when the government must cope with consequences of recession, the economic policy becomes unpredictable for many subjects and economic policy uncertainty grows, which have negative influence on economic growth. The aim of this paper is to use panel regression to prove or disprove this hypothesis on the example of five largest European economies in the period 2008–2012.

Keywords: Economic Crises in Europe, Economic Policy, Uncertainty, Panel Analysis Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
7229 On the Differential Geometry of the Curves in Minkowski Space-Time II

Authors: Süha Yılmaz, Emin Özyılmaz, Melih Turgut

Abstract:

In the first part of this paper [6], a method to determine Frenet apparatus of the space-like curves in Minkowski space-time is presented. In this work, the mentioned method is developed for the time-like curves in Minkowski space-time. Additionally, an example of presented method is illustrated.

Keywords: Frenet Apparatus, Time-like Curves, MinkowskiSpace-time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
7228 Rotor Flow Analysis using Animplicit Harmonic Balance Method

Authors: D. Im, S. Choi, H. Kwon, S. H. Park, J. H. Kwon

Abstract:

This paper is an extension of a previous work where a diagonally implicit harmonic balance method was developed and applied to simulate oscillatory motions of pitching airfoil and wing. A more detailed study on the accuracy, convergence, and the efficiency of the method is carried out in the current paperby varying the number of harmonics in the solution approximation. As the main advantage of the method is itsusage for the design optimization of the unsteady problems, its application to more practical case of rotor flow analysis during forward flight is carried out and compared with flight test data and time-accurate computation results.

Keywords: Design optimization, Implicit harmonic balancemethod, number of harmonics, rotor flows

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
7227 Time and Wavelength Division Multiplexing Passive Optical Network Comparative Analysis: Modulation Formats and Channel Spacings

Authors: A. Fayad, Q. Alqhazaly, T. Cinkler

Abstract:

In light of the substantial increase in end-user requirements and the incessant need of network operators to upgrade the capabilities of access networks, in this paper, the performance of the different modulation formats on eight-channels Time and Wavelength Division Multiplexing Passive Optical Network (TWDM-PON) transmission system has been examined and compared. Limitations and features of modulation formats have been determined to outline the most suitable design to enhance the data rate and transmission reach to obtain the best performance of the network. The considered modulation formats are On-Off Keying Non-Return-to-Zero (NRZ-OOK), Carrier Suppressed Return to Zero (CSRZ), Duo Binary (DB), Modified Duo Binary (MODB), Quadrature Phase Shift Keying (QPSK), and Differential Quadrature Phase Shift Keying (DQPSK). The performance has been analyzed by varying transmission distances and bit rates under different channel spacing. Furthermore, the system is evaluated in terms of minimum Bit Error Rate (BER) and Quality factor (Qf) without applying any dispersion compensation technique, or any optical amplifier. Optisystem software was used for simulation purposes.

Keywords: Bit Error Rate, BER, Carrier Suppressed Return to Zero, CSRZ, Duo Binary, DB, Differential Quadrature Phase Shift Keying, DQPSK, Modified Duo Binary, MODB, On-Off Keying Non-Return-to-Zero, NRZ-OOK, Quality factor, Qf, Time and Wavelength Division Multiplexing Passive Optical Network, TWDM-PON.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1036
7226 Modelling Dengue Fever (DF) and Dengue Haemorrhagic Fever (DHF) Outbreak Using Poisson and Negative Binomial Model

Authors: W. Y. Wan Fairos, W. H. Wan Azaki, L. Mohamad Alias, Y. Bee Wah

Abstract:

Dengue fever has become a major concern for health authorities all over the world particularly in the tropical countries. These countries, in particular are experiencing the most worrying outbreak of dengue fever (DF) and dengue haemorrhagic fever (DHF). The DF and DHF epidemics, thus, have become the main causes of hospital admissions and deaths in Malaysia. This paper, therefore, attempts to examine the environmental factors that may influence the recent dengue outbreak. The aim of this study is twofold, firstly is to establish a statistical model to describe the relationship between the number of dengue cases and a range of explanatory variables and secondly, to identify the lag operator for explanatory variables which affect the dengue incidence the most. The explanatory variables involved include the level of cloud cover, percentage of relative humidity, amount of rainfall, maximum temperature, minimum temperature and wind speed. The Poisson and Negative Binomial regression analyses were used in this study. The results of the analyses on the 915 observations (daily data taken from July 2006 to Dec 2008), reveal that the climatic factors comprising of daily temperature and wind speed were found to significantly influence the incidence of dengue fever after 2 and 3 weeks of their occurrences. The effect of humidity, on the other hand, appears to be significant only after 2 weeks.

Keywords: Dengue Fever, Dengue Hemorrhagic Fever, Negative Binomial Regression model, Poisson Regression model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2814
7225 Effective Defect Prevention Approach in Software Process for Achieving Better Quality Levels

Authors: Suma. V., T. R. Gopalakrishnan Nair

Abstract:

Defect prevention is the most vital but habitually neglected facet of software quality assurance in any project. If functional at all stages of software development, it can condense the time, overheads and wherewithal entailed to engineer a high quality product. The key challenge of an IT industry is to engineer a software product with minimum post deployment defects. This effort is an analysis based on data obtained for five selected projects from leading software companies of varying software production competence. The main aim of this paper is to provide information on various methods and practices supporting defect detection and prevention leading to thriving software generation. The defect prevention technique unearths 99% of defects. Inspection is found to be an essential technique in generating ideal software generation in factories through enhanced methodologies of abetted and unaided inspection schedules. On an average 13 % to 15% of inspection and 25% - 30% of testing out of whole project effort time is required for 99% - 99.75% of defect elimination. A comparison of the end results for the five selected projects between the companies is also brought about throwing light on the possibility of a particular company to position itself with an appropriate complementary ratio of inspection testing.

Keywords: Defect Detection and Prevention, Inspections, Software Engineering, Software Process, Testing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
7224 Press Hardening of Tubes with Additional Interior Spray Cooling

Authors: B.-A. Behrens, H. J. Maier, A. Neumann, J. Moritz, S. Hübner, T. Gretzki, F. Nürnberger, A. Spiekermeier

Abstract:

Press-hardened profiles are used e.g. for automotive applications in order to improve light weight construction due to the high reachable strength. The application of interior water-air spray cooling contributes to significantly reducing the cycle time in the production of heat-treated tubes. This paper describes a new manufacturing method for producing press-hardened hollow profiles by means of an additional interior cooling based on a water-air spray. Furthermore, this paper provides the results of thorough investigations on the properties of press-hardened tubes in dependence of varying spray parameters.

Keywords: 22MnB5, hollow profiles, press hardening, tubes, water-air spray cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2107
7223 Inverse Heat Conduction Analysis of Cooling on Run Out Tables

Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi

Abstract:

In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.

Keywords: Inverse Analysis, Function Specification, Neural Net Works, Particle Swarm, Run Out Table.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
7222 Adaptive Notch Filter for Harmonic Current Mitigation

Authors: T. Messikh, S. Mekhilef, N. A. Rahim

Abstract:

This paper presents an effective technique for harmonic current mitigation using an adaptive notch filter (ANF) to estimate current harmonics. The proposed filter consists of multiple units of ANF connected in parallel structure; each unit is governed by two ordinary differential equations. The frequency estimation is carried out based on the output of these units. The simulation and experimental results show the ability of the proposed tracking scheme to accurately estimate harmonics. The proposed filter was implemented digitally in TMS320F2808 and used in the control of hybrid active power filter (HAPF). The theoretical expectations are verified and demonstrated experimentally.

Keywords: Adaptive notch filter, Active power filter, harmonic filtering, Time varying frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3052
7221 Choosing between the Regression Correlation, the Rank Correlation, and the Correlation Curve

Authors: Roger L Goodwin

Abstract:

This paper presents a rank correlation curve. The traditional correlation coefficient is valid for both continuous variables and for integer variables using rank statistics. Since the correlation coefficient has already been established in rank statistics by Spearman, such a calculation can be extended to the correlation curve. This paper presents two survey questions. The survey collected non-continuous variables. We will show weak to moderate correlation. Obviously, one question has a negative effect on the other. A review of the qualitative literature can answer which question and why. The rank correlation curve shows which collection of responses has a positive slope and which collection of responses has a negative slope. Such information is unavailable from the flat, ”first-glance” correlation statistics.

Keywords: Bayesian estimation, regression model, rank statistics, correlation, correlation curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
7220 Automatic Sleep Stage Scoring with Wavelet Packets Based on Single EEG Recording

Authors: Luay A. Fraiwan, Natheer Y. Khaswaneh, Khaldon Y. Lweesy

Abstract:

Sleep stage scoring is the process of classifying the stage of the sleep in which the subject is in. Sleep is classified into two states based on the constellation of physiological parameters. The two states are the non-rapid eye movement (NREM) and the rapid eye movement (REM). The NREM sleep is also classified into four stages (1-4). These states and the state wakefulness are distinguished from each other based on the brain activity. In this work, a classification method for automated sleep stage scoring based on a single EEG recording using wavelet packet decomposition was implemented. Thirty two ploysomnographic recording from the MIT-BIH database were used for training and validation of the proposed method. A single EEG recording was extracted and smoothed using Savitzky-Golay filter. Wavelet packets decomposition up to the fourth level based on 20th order Daubechies filter was used to extract features from the EEG signal. A features vector of 54 features was formed. It was reduced to a size of 25 using the gain ratio method and fed into a classifier of regression trees. The regression trees were trained using 67% of the records available. The records for training were selected based on cross validation of the records. The remaining of the records was used for testing the classifier. The overall correct rate of the proposed method was found to be around 75%, which is acceptable compared to the techniques in the literature.

Keywords: Features selection, regression trees, sleep stagescoring, wavelet packets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328
7219 Parametric Approach for Reserve Liability Estimate in Mortgage Insurance

Authors: Rajinder Singh, Ram Valluru

Abstract:

Chain Ladder (CL) method, Expected Loss Ratio (ELR) method and Bornhuetter-Ferguson (BF) method, in addition to more complex transition-rate modeling, are commonly used actuarial reserving methods in general insurance. There is limited published research about their relative performance in the context of Mortgage Insurance (MI). In our experience, these traditional techniques pose unique challenges and do not provide stable claim estimates for medium to longer term liabilities. The relative strengths and weaknesses among various alternative approaches revolve around: stability in the recent loss development pattern, sufficiency and reliability of loss development data, and agreement/disagreement between reported losses to date and ultimate loss estimate. CL method results in volatile reserve estimates, especially for accident periods with little development experience. The ELR method breaks down especially when ultimate loss ratios are not stable and predictable. While the BF method provides a good tradeoff between the loss development approach (CL) and ELR, the approach generates claim development and ultimate reserves that are disconnected from the ever-to-date (ETD) development experience for some accident years that have more development experience. Further, BF is based on subjective a priori assumption. The fundamental shortcoming of these methods is their inability to model exogenous factors, like the economy, which impact various cohorts at the same chronological time but at staggered points along their life-time development. This paper proposes an alternative approach of parametrizing the loss development curve and using logistic regression to generate the ultimate loss estimate for each homogeneous group (accident year or delinquency period). The methodology was tested on an actual MI claim development dataset where various cohorts followed a sigmoidal trend, but levels varied substantially depending upon the economic and operational conditions during the development period spanning over many years. The proposed approach provides the ability to indirectly incorporate such exogenous factors and produce more stable loss forecasts for reserving purposes as compared to the traditional CL and BF methods.

Keywords: Actuarial loss reserving techniques, logistic regression, parametric function, volatility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 415
7218 Removal of Elemental Mercury from Dry Methane Gas with Manganese Oxides

Authors: Junya Takenami, Md. Azhar Uddin, Eiji Sasaoka, Yasushi Shioya, Tsuneyoshi Takase

Abstract:

In this study, we sought to investigate the mercury removal efficiency of manganese oxides from natural gas. The fundamental studies on mercury removal with manganese oxides sorbents were carried out in a laboratory scale fixed bed reactor at 30 °C with a mixture of methane (20%) and nitrogen gas laden with 4.8 ppb of elemental mercury. Manganese oxides with varying surface area and crystalline phase were prepared by conventional precipitation method in this study. The effects of surface area, crystallinity and other metal oxides on mercury removal efficiency were investigated. Effect of Ag impregnation on mercury removal efficiency was also investigated. Ag supported on metal oxide such titania and zirconia as reference materials were also used in this study for comparison. The characteristics of mercury removal reaction with manganese oxide was investigated using a temperature programmed desorption (TPD) technique. Manganese oxides showed very high Hg removal activity (about 73-93% Hg removal) for first time use. Surface area of the manganese oxide samples decreased after heat-treatment and resulted in complete loss of Hg removal ability for repeated use after Hg desorption in the case of amorphous MnO2, and 75% loss of the initial Hg removal activity for the crystalline MnO2. Mercury desorption efficiency of crystalline MnO2 was very low (37%) for first time use and high (98%) after second time use. Residual potassium content in MnO2 may have some effect on the thermal stability of the adsorbed Hg species. Desorption of Hg from manganese oxides occurs at much higher temperatures (with a peak at 400 °C) than Ag/TiO2 or Ag/ZrO2. Mercury may be captured on manganese oxides in the form of mercury manganese oxide.

Keywords: Mercury removal, Metal and metal oxide sorbents, Methane, Natural gas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101
7217 Predictor Factors for Treatment Failure among Patients on Second Line Antiretroviral Therapy

Authors: Mohd. A. M. Rahim, Yahaya Hassan, Mathumalar L. Fahrni

Abstract:

Second line antiretroviral therapy (ART) regimen is used when patients fail their first line regimen. There are many factors such as non-adherence, drug resistance as well as virological and immunological failure that lead to second line highly active antiretroviral therapy (HAART) regimen treatment failure. This study was aimed at determining predictor factors to treatment failure with second line HAART and analyzing median survival time. An observational, retrospective study was conducted in Sungai Buloh Hospital (HSB) to assess current status of HIV patients treated with second line HAART regimen. Convenience sampling was used and 104 patients were included based on the study’s inclusion and exclusion criteria. Data was collected for six months i.e. from July until December 2013. Data was then analysed using SPSS version 18. Kaplan-Meier and Cox regression analyses were used to measure median survival times and predictor factors for treatment failure. The study population consisted mainly of male subjects, aged 30- 45 years, who were heterosexual, and had HIV infection for less than 6 years. The most common second line HAART regimen given was lopinavir/ritonavir (LPV/r)-based combination. Kaplan-Meier analysis showed that patients on LPV/r demonstrated longer median survival times than patients on indinavir/ritonavir (IDV/r) based combination (p<0.001). The commonest reason for a treatment to fail with second line HAART was non-adherence. Based on Cox regression analysis, other predictor factors for treatment failure with second line HAART regimen were age and mode of HIV transmission.

Keywords: Adherence, antiretroviral therapy, second line, treatment failure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2716
7216 Comparative Study - Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast

Authors: Nabilah Filzah Mohd Radzuan, Andi Putra, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Precipitation forecast is important in avoid incident of natural disaster which can cause loss in involved area. This review paper involves three techniques from artificial intelligence namely logistic regression, decisions tree, and random forest which used in making precipitation forecast. These combination techniques through VAR model in finding advantages and strength for every technique in forecast process. Data contains variables from rain domain. Adaptation of artificial intelligence techniques involved on rain domain enables the process to be easier and systematic for precipitation forecast.

Keywords: Logistic regression, decisions tree, random forest, VAR model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
7215 Determinants of the U.S. Current Account

Authors: Shuh Liang

Abstract:

This article provides empirical evidence on the effect of domestic and international factors on the U.S. current account deficit. Linear dynamic regression and vector autoregression models are employed to estimate the relationships during the period from 1986 to 2011. The findings of this study suggest that the current and lagged private saving rate and foreign current account for East Asian economies have played a vital role in affecting the U.S. current account. Additionally, using Granger causality tests and variance decompositions, the change of the productivity growth and foreign domestic demand are determined to influence significantly the change of the U.S. current account. To summarize, the empirical relationship between the U.S. current account deficit and its determinants is sensitive to alternative regression models and specifications.

Keywords: Current account deficit, productivity growth, foreign demand, vector autoregression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
7214 MIMO-OFDM Channel Tracking Using a Dynamic ANN Topology

Authors: Manasjyoti Bhuyan, Kandarpa Kumar Sarma

Abstract:

All the available algorithms for blind estimation namely constant modulus algorithm (CMA), Decision-Directed Algorithm (DDA/DFE) suffer from the problem of convergence to local minima. Also, if the channel drifts considerably, any DDA looses track of the channel. So, their usage is limited in varying channel conditions. The primary limitation in such cases is the requirement of certain overhead bits in the transmit framework which leads to wasteful use of the bandwidth. Also such arrangements fail to use channel state information (CSI) which is an important aid in improving the quality of reception. In this work, the main objective is to reduce the overhead imposed by the pilot symbols, which in effect reduces the system throughput. Also we formulate an arrangement based on certain dynamic Artificial Neural Network (ANN) topologies which not only contributes towards the lowering of the overhead but also facilitates the use of the CSI. A 2×2 Multiple Input Multiple Output (MIMO) system is simulated and the performance variation with different channel estimation schemes are evaluated. A new semi blind approach based on dynamic ANN is proposed for channel tracking in varying channel conditions and the performance is compared with perfectly known CSI and least square (LS) based estimation.

Keywords: MIMO, Artificial Neural Network (ANN), CMA, LS, CSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2369
7213 Adaptive Impedance Control for Unknown Non-Flat Environment

Authors: Norsinnira Zainul Azlan, Hiroshi Yamaura

Abstract:

This paper presents a new adaptive impedance control strategy, based on Function Approximation Technique (FAT) to compensate for unknown non-flat environment shape or time-varying environment location. The target impedance in the force controllable direction is modified by incorporating adaptive compensators and the uncertainties are represented by FAT, allowing the update law to be derived easily. The force error feedback is utilized in the estimation and the accurate knowledge of the environment parameters are not required by the algorithm. It is shown mathematically that the stability of the controller is guaranteed based on Lyapunov theory. Simulation results presented to demonstrate the validity of the proposed controller.

Keywords: Adaptive impedance control, Function Approximation Technique (FAT), impedance control, unknown environment position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
7212 Stop Consonants in Chinese and Slovak: Contrastive Analysis by Using Praat

Authors: Maria Istvanova

Abstract:

The acquisition of the correct pronunciation in Chinese is closely linked to the initial phase of the study. Based on the contrastive analysis, we determine the differences in the pronunciation of stop consonants in Chinese and Slovak taking into consideration the place and manner of articulation to gain a better understanding of the students' main difficulties in the process of acquiring correct pronunciation of Chinese stop consonants. We employ the software Praat for the analysis of the recorded samples with an emphasis on the pronunciation of the students with a varying command of Chinese. The comparison of the voice onset time (VOT) length for the individual consonants in the students' pronunciation and the pronunciation of the native speaker exposes the differences between the correct pronunciation and the deviant pronunciation of the students.

Keywords: Chinese, contrastive analysis, Praat, pronunciation, Slovak.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 516
7211 How to Use E-Learning to Increase Job Satisfaction in Large Commercial Bank in Bangkok

Authors: Teerada Apibunyopas, Nithinant Thammakoranonta

Abstract:

Many organizations bring e-Learning to use as a tool in their training and human development department. It is getting more popular because it is easy to access to get knowledge all the time and also it provides a rich content, which can develop the employees’ skill efficiently. This study is focused on the factors that affect using e-Learning efficiently, so it will make job satisfaction increasing. The questionnaires were sent to employees in large commercial banks, which use e-Learning located in Bangkok, the results from multiple linear regression analysis showed that employee’s characteristics, characteristics of e-Learning, learning and growth have influence on job satisfaction.

Keywords: e-Learning, Job Satisfaction, Learning and growth.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2385
7210 Economic Forecasting Model in Practice Using the Regression Analysis: The Relationship of Price, Domestic Output, Gross National Product, and Trend Variable of Gas or Oil Production

Authors: Ashiquer Rahman, Ummey Salma, Afrin Jannat

Abstract:

Recently, oil has become more influential in almost every economic sector as a key material. As can be seen from the news, when there are some changes in an oil price or Organization of the Petroleum Exporting Countries (OPEC) announces a new strategy, its effect spreads to every part of the economy directly and indirectly. That’s a reason why people always observe the oil price and try to forecast the changes of it. The most important factor affecting the price is its supply which is determined by the number of wildcats drilled. Therefore, a study in relation between the number of wellheads and other economic variables may give us some understanding of the mechanism indicated the amount of oil supplies. In this paper, we will consider a relationship between the number of wellheads and three key factors: price of the wellhead, domestic output, and Gross National Product (GNP) constant dollars. We also add trend variables in the models because the consumption of oil varies from time to time. Moreover, this paper will use an econometrics method to estimate parameters in the model, apply some tests to verify the result we acquire, and then conclude the model.

Keywords: Price, domestic output, GNP, trend variable, wildcat activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31
7209 Estimating Regression Effects in Com Poisson Generalized Linear Model

Authors: Vandna Jowaheer, Naushad A. Mamode Khan

Abstract:

Com Poisson distribution is capable of modeling the count responses irrespective of their mean variance relation and the parameters of this distribution when fitted to a simple cross sectional data can be efficiently estimated using maximum likelihood (ML) method. In the regression setup, however, ML estimation of the parameters of the Com Poisson based generalized linear model is computationally intensive. In this paper, we propose to use quasilikelihood (QL) approach to estimate the effect of the covariates on the Com Poisson counts and investigate the performance of this method with respect to the ML method. QL estimates are consistent and almost as efficient as ML estimates. The simulation studies show that the efficiency loss in the estimation of all the parameters using QL approach as compared to ML approach is quite negligible, whereas QL approach is lesser involving than ML approach.

Keywords: Com Poisson, Cross-sectional, Maximum Likelihood, Quasi likelihood

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
7208 A Multiple Linear Regression Model to Predict the Price of Cement in Nigeria

Authors: Kenneth M. Oba

Abstract:

This study investigated factors affecting the price of cement in Nigeria, and developed a mathematical model that can predict future cement prices. Cement is key in the Nigerian construction industry. The changes in price caused by certain factors could affect economic and infrastructural development; hence there is need for proper proactive planning. Secondary data were collected from published information on cement between 2014 and 2019. In addition, questionnaires were sent to some domestic cement retailers in Port Harcourt in Nigeria, to obtain the actual prices of cement between the same periods. The study revealed that the most critical factors affecting the price of cement in Nigeria are inflation rate, population growth rate, and Gross Domestic Product (GDP) growth rate. With the use of data from United Nations, International Monetary Fund, and Central Bank of Nigeria databases, amongst others, a Multiple Linear Regression model was formulated. The model was used to predict the price of cement for 2020-2025. The model was then tested with 95% confidence level, using a two-tailed t-test and an F-test, resulting in an R2 of 0.8428 and R2 (adj.) of 0.6069. The results of the tests and the correlation factors confirm the model to be fit and adequate. This study will equip researchers and stakeholders in the construction industry with information for planning, monitoring, and management of present and future construction projects that involve the use of cement.

Keywords: Cement price, multiple linear regression model, Nigerian Construction Industry, price prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 790
7207 Optimization of Machining Parametric Study on Electrical Discharge Machining

Authors: Rakesh Prajapati, Purvik Patel, Hardik Patel

Abstract:

Productivity and quality are two important aspects that have become great concerns in today’s competitive global market. Every production/manufacturing unit mainly focuses on these areas in relation to the process, as well as the product developed. The electrical discharge machining (EDM) process, even now it is an experience process, wherein the selected parameters are still often far from the maximum, and at the same time selecting optimization parameters is costly and time consuming. Material Removal Rate (MRR) during the process has been considered as a productivity estimate with the aim to maximize it, with an intention of minimizing surface roughness taken as most important output parameter. These two opposites in nature requirements have been simultaneously satisfied by selecting an optimal process environment (optimal parameter setting). Objective function is obtained by Regression Analysis and Analysis of Variance. Then objective function is optimized using Genetic Algorithm technique. The model is shown to be effective; MRR and Surface Roughness improved using optimized machining parameters.

Keywords: Material removal rate, TWR, OC, DOE, ANOVA, MINITAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 832
7206 Using Support Vector Machine for Prediction Dynamic Voltage Collapse in an Actual Power System

Authors: Muhammad Nizam, Azah Mohamed, Majid Al-Dabbagh, Aini Hussain

Abstract:

This paper presents dynamic voltage collapse prediction on an actual power system using support vector machines. Dynamic voltage collapse prediction is first determined based on the PTSI calculated from information in dynamic simulation output. Simulations were carried out on a practical 87 bus test system by considering load increase as the contingency. The data collected from the time domain simulation is then used as input to the SVM in which support vector regression is used as a predictor to determine the dynamic voltage collapse indices of the power system. To reduce training time and improve accuracy of the SVM, the Kernel function type and Kernel parameter are considered. To verify the effectiveness of the proposed SVM method, its performance is compared with the multi layer perceptron neural network (MLPNN). Studies show that the SVM gives faster and more accurate results for dynamic voltage collapse prediction compared with the MLPNN.

Keywords: Dynamic voltage collapse, prediction, artificial neural network, support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
7205 Designing Social Care Policies in the Long Term: A Study Using Regression, Clustering and Backpropagation Neural Nets

Authors: Sotirios Raptis

Abstract:

Linking social needs to social classes using different criteria may lead to social services misuse. The paper discusses using ML and Neural Networks (NNs) in linking public services in Scotland in the long term and advocates, this can result in a reduction of the services cost connecting resources needed in groups for similar services. The paper combines typical regression models with clustering and cross-correlation as complementary constituents to predict the demand. Insurance companies and public policymakers can pack linked services such as those offered to the elderly or to low-income people in the longer term. The work is based on public data from 22 services offered by Public Health Services (PHS) Scotland and from the Scottish Government (SG) from 1981 to 2019 that are broken into 110 years series called factors and uses Linear Regression (LR), Autoregression (ARMA) and 3 types of back-propagation (BP) Neural Networks (BPNN) to link them under specific conditions. Relationships found were between smoking related healthcare provision, mental health-related health services, and epidemiological weight in Primary 1(Education) Body Mass Index (BMI) in children. Primary component analysis (PCA) found 11 significant factors while C-Means (CM) clustering gave 5 major factors clusters.

Keywords: Probability, cohorts, data frames, services, prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 459