Search results for: Data Clustering.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7637

Search results for: Data Clustering.

7277 Accent Identification by Clustering and Scoring Formants

Authors: Dejan Stantic, Jun Jo

Abstract:

There have been significant improvements in automatic voice recognition technology. However, existing systems still face difficulties, particularly when used by non-native speakers with accents. In this paper we address a problem of identifying the English accented speech of speakers from different backgrounds. Once an accent is identified the speech recognition software can utilise training set from appropriate accent and therefore improve the efficiency and accuracy of the speech recognition system. We introduced the Q factor, which is defined by the sum of relationships between frequencies of the formants. Four different accents were considered and experimented for this research. A scoring method was introduced in order to effectively analyse accents. The proposed concept indicates that the accent could be identified by analysing their formants.

Keywords: Accent Identification, Formants, Q Factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091
7276 Biological Data Integration using SOA

Authors: Noura Meshaan Al-Otaibi, Amin Yousef Noaman

Abstract:

Nowadays scientific data is inevitably digital and stored in a wide variety of formats in heterogeneous systems. Scientists need to access an integrated view of remote or local heterogeneous data sources with advanced data accessing, analyzing, and visualization tools. This research suggests the use of Service Oriented Architecture (SOA) to integrate biological data from different data sources. This work shows SOA will solve the problems that facing integration process and if the biologist scientists can access the biological data in easier way. There are several methods to implement SOA but web service is the most popular method. The Microsoft .Net Framework used to implement proposed architecture.

Keywords: Bioinformatics, Biological data, Data Integration, SOA and Web Services.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2474
7275 Corporate Social Responsibility and Corporate Reputation: A Bibliometric Analysis

Authors: Songdi Li, Louise Spry, Tony Woodall

Abstract:

Nowadays, Corporate Social responsibility (CSR) is becoming a buzz word, and more and more academics are putting efforts on CSR studies. It is believed that CSR could influence Corporate Reputation (CR), and they hold a favourable view that CSR leads to a positive CR. To be specific, the CSR related activities in the reputational context have been regarded as ways that associate to excellent financial performance, value creation, etc. Also, it is argued that CSR and CR are two sides of one coin; hence, to some extent, doing CSR is equal to establishing a good reputation. Still, there is no consensus of the CSR-CR relationship in the literature; thus, a systematic literature review is highly in need. This research conducts a systematic literature review with both bibliometric and content analysis. Data are selected from English language sources, and academic journal articles only, then, keyword combinations are applied to identify relevant sources. Data from Scopus and WoS are gathered for bibliometric analysis. Scopus search results were saved in RIS and CSV formats, and Web of Science (WoS) data were saved in TXT format and CSV formats in order to process data in the Bibexcel software for further analysis which later will be visualised by the software VOSviewer. Also, content analysis was applied to analyse the data clusters and the key articles. In terms of the topic of CSR-CR, this literature review with bibliometric analysis has made four achievements. First, this paper has developed a systematic study which quantitatively depicts the knowledge structure of CSR and CR by identifying terms closely related to CSR-CR (such as ‘corporate governance’) and clustering subtopics emerged in co-citation analysis. Second, content analysis is performed to acquire insight on the findings of bibliometric analysis in the discussion section. And it highlights some insightful implications for the future research agenda, for example, a psychological link between CSR-CR is identified from the result; also, emerging economies and qualitative research methods are new elements emerged in the CSR-CR big picture. Third, a multidisciplinary perspective presents through the whole bibliometric analysis mapping and co-word and co-citation analysis; hence, this work builds a structure of interdisciplinary perspective which potentially leads to an integrated conceptual framework in the future. Finally, Scopus and WoS are compared and contrasted in this paper; as a result, Scopus which has more depth and comprehensive data is suggested as a tool for future bibliometric analysis studies. Overall, this paper has fulfilled its initial purposes and contributed to the literature. To the author’s best knowledge, this paper conducted the first literature review of CSR-CR researches that applied both bibliometric analysis and content analysis; therefore, this paper achieves its methodological originality. And this dual approach brings advantages of carrying out a comprehensive and semantic exploration in the area of CSR-CR in a scientific and realistic method. Admittedly, its work might exist subjective bias in terms of search terms selection and paper selection; hence triangulation could reduce the subjective bias to some degree.

Keywords: Corporate social responsibility, corporate reputation, bibliometric analysis, software data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937
7274 An Integrated Predictor for Cis-Regulatory Modules

Authors: Darby Tien-Hao Chang, Guan-Yu Shiu, You-Jie Sun

Abstract:

Various cis-regulatory module (CRM) predictors have been proposed in the last decade. Several well-established CRM predictors adopted different categories of prediction strategies, including window clustering, probabilistic modeling and phylogenetic footprinting. Appropriate integration of them has a potential to achieve high quality CRM prediction. This study analyzed four existing CRM predictors (ClusterBuster, MSCAN, CisModule and MultiModule) to seek a predictor combination that delivers a higher accuracy than individual CRM predictors. 465 CRMs across 140 Drosophila melanogaster genes from the RED fly database were used to evaluate the integrated CRM predictor proposed in this study. The results show that four predictor combinations achieved superior performance than the best individual CRM predictor.

Keywords: Cis-regulatory module, transcription factor binding site.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
7273 Proposal of Data Collection from Probes

Authors: M. Kebisek, L. Spendla, M. Kopcek, T. Skulavik

Abstract:

In our paper we describe the security capabilities of data collection. Data are collected with probes located in the near and distant surroundings of the company. Considering the numerous obstacles e.g. forests, hills, urban areas, the data collection is realized in several ways. The collection of data uses connection via wireless communication, LAN network, GSM network and in certain areas data are collected by using vehicles. In order to ensure the connection to the server most of the probes have ability to communicate in several ways. Collected data are archived and subsequently used in supervisory applications. To ensure the collection of the required data, it is necessary to propose algorithms that will allow the probes to select suitable communication channel.

Keywords: Communication, computer network, data collection, probe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
7272 Searching for Similar Informational Articles in the Internet Channel

Authors: Sung Ho Ha, Seong Hyeon Joo, Hyun U. Pae

Abstract:

In terms of total online audience, newspapers are the most successful form of online content to date. The online audience for newspapers continues to demand higher-quality services, including personalized news services. News providers should be able to offer suitable users appropriate content. In this paper, a news article recommender system is suggested based on a user-s preference when he or she visits an Internet news site and reads the published articles. This system helps raise the user-s satisfaction, increase customer loyalty toward the content provider.

Keywords: Content classification, content recommendation, customer profiling, documents clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
7271 Linguistic Summarization of Structured Patent Data

Authors: E. Y. Igde, S. Aydogan, F. E. Boran, D. Akay

Abstract:

Patent data have an increasingly important role in economic growth, innovation, technical advantages and business strategies and even in countries competitions. Analyzing of patent data is crucial since patents cover large part of all technological information of the world. In this paper, we have used the linguistic summarization technique to prove the validity of the hypotheses related to patent data stated in the literature.

Keywords: Data mining, fuzzy sets, linguistic summarization, patent data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219
7270 Metadata Update Mechanism Improvements in Data Grid

Authors: S. Farokhzad, M. Reza Salehnamadi

Abstract:

Grid environments include aggregation of geographical distributed resources. Grid is put forward in three types of computational, data and storage. This paper presents a research on data grid. Data grid is used for covering and securing accessibility to data from among many heterogeneous sources. Users are not worry on the place where data is located in it, provided that, they should get access to the data. Metadata is used for getting access to data in data grid. Presently, application metadata catalogue and SRB middle-ware package are used in data grids for management of metadata. At this paper, possibility of updating, streamlining and searching is provided simultaneously and rapidly through classified table of preserving metadata and conversion of each table to numerous tables. Meanwhile, with regard to the specific application, the most appropriate and best division is set and determined. Concurrency of implementation of some of requests and execution of pipeline is adaptability as a result of this technique.

Keywords: Grids, data grid, metadata, update.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
7269 Optimized Approach for Secure Data Sharing in Distributed Database

Authors: Ahmed Mateen, Zhu Qingsheng, Ahmad Bilal

Abstract:

In the current age of technology, information is the most precious asset of a company. Today, companies have a large amount of data. As the data become larger, access to data for some particular information is becoming slower day by day. Faster data processing to shape it in the form of information is the biggest issue. The major problems in distributed databases are the efficiency of data distribution and response time of data distribution. The security of data distribution is also a big issue. For these problems, we proposed a strategy that can maximize the efficiency of data distribution and also increase its response time. This technique gives better results for secure data distribution from multiple heterogeneous sources. The newly proposed technique facilitates the companies for secure data sharing efficiently and quickly.

Keywords: ER-schema, electronic record, P2P framework, API, query formulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1067
7268 Clustering-Based Detection of Alzheimer's Disease Using Brain MR Images

Authors: Sofia Matoug, Amr Abdel-Dayem

Abstract:

This paper presents a comprehensive survey of recent research studies to segment and classify brain MR (magnetic resonance) images in order to detect significant changes to brain ventricles. The paper also presents a general framework for detecting regions that atrophy, which can help neurologists in detecting and staging Alzheimer. Furthermore, a prototype was implemented to segment brain MR images in order to extract the region of interest (ROI) and then, a classifier was employed to differentiate between normal and abnormal brain tissues. Experimental results show that the proposed scheme can provide a reliable second opinion that neurologists can benefit from.

Keywords: Alzheimer, brain images, classification techniques, Magnetic Resonance Images, MRI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
7267 Fast Short-Term Electrical Load Forecasting under High Meteorological Variability with a Multiple Equation Time Series Approach

Authors: Charline David, Alexandre Blondin Massé, Arnaud Zinflou

Abstract:

We present a multiple equation time series approach for the short-term load forecasting applied to the electrical power load consumption for the whole Quebec province, in Canada. More precisely, we take into account three meteorological variables — temperature, cloudiness and wind speed —, and we use meteorological measurements taken at different locations on the territory. Our final model shows an average MAPE score of 1.79% over an 8-years dataset.

Keywords: Short-term load forecasting, special days, time series, multiple equations, parallelization, clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 291
7266 University Ranking Systems – From League Table to Homogeneous Groups of Universities

Authors: M. Jarocka

Abstract:

The paper contains a review of the literature in terms of the critical analysis of methodologies of university ranking systems. Furthermore, the initiatives supported by the European Commission (U-Map, U-Multirank) and CHE Ranking are described. Special attention is paid to the tendencies in the development of ranking systems. According to the author, the ranking organizations should abandon the classic form of ranking, namely a hierarchical ordering of universities from “the best" to “the worse". In the empirical part of this paper, using one of the method of cluster analysis called k-means clustering, the author presents university classifications of the top universities from the Shanghai Jiao Tong University-s (SJTU) Academic Ranking of World Universities (ARWU).

Keywords: Classification, cluster analysis, ranking, university.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2745
7265 Recursive Algorithms for Image Segmentation Based on a Discriminant Criterion

Authors: Bing-Fei Wu, Yen-Lin Chen, Chung-Cheng Chiu

Abstract:

In this study, a new criterion for determining the number of classes an image should be segmented is proposed. This criterion is based on discriminant analysis for measuring the separability among the segmented classes of pixels. Based on the new discriminant criterion, two algorithms for recursively segmenting the image into determined number of classes are proposed. The proposed methods can automatically and correctly segment objects with various illuminations into separated images for further processing. Experiments on the extraction of text strings from complex document images demonstrate the effectiveness of the proposed methods.1

Keywords: image segmentation, multilevel thresholding, clustering, discriminant analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
7264 Surrogate based Evolutionary Algorithm for Design Optimization

Authors: Maumita Bhattacharya

Abstract:

Optimization is often a critical issue for most system design problems. Evolutionary Algorithms are population-based, stochastic search techniques, widely used as efficient global optimizers. However, finding optimal solution to complex high dimensional, multimodal problems often require highly computationally expensive function evaluations and hence are practically prohibitive. The Dynamic Approximate Fitness based Hybrid EA (DAFHEA) model presented in our earlier work [14] reduced computation time by controlled use of meta-models to partially replace the actual function evaluation by approximate function evaluation. However, the underlying assumption in DAFHEA is that the training samples for the meta-model are generated from a single uniform model. Situations like model formation involving variable input dimensions and noisy data certainly can not be covered by this assumption. In this paper we present an enhanced version of DAFHEA that incorporates a multiple-model based learning approach for the SVM approximator. DAFHEA-II (the enhanced version of the DAFHEA framework) also overcomes the high computational expense involved with additional clustering requirements of the original DAFHEA framework. The proposed framework has been tested on several benchmark functions and the empirical results illustrate the advantages of the proposed technique.

Keywords: Evolutionary algorithm, Fitness function, Optimization, Meta-model, Stochastic method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
7263 Reasoning With Non-Binary Logics

Authors: Sylvia Encheva

Abstract:

Students in high education are presented with new terms and concepts in nearly every lecture they attend. Many of them prefer Web-based self-tests for evaluation of their concepts understanding since they can use those tests independently of tutors- working hours and thus avoid the necessity of being in a particular place at a particular time. There is a large number of multiple-choice tests in almost every subject designed to contribute to higher level learning or discover misconceptions. Every single test provides immediate feedback to a student about the outcome of that test. In some cases a supporting system displays an overall score in case a test is taken several times by a student. What we still find missing is how to secure delivering of personalized feedback to a user while taking into consideration the user-s progress. The present work is motivated to throw some light on that question.

Keywords: Clustering, rough sets, many valued logic, predictions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
7262 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing

Authors: Aleksandra Zysk, Pawel Badura

Abstract:

Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.

Keywords: Classification, singing, spectral analysis, vocal emission, vocal register.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313
7261 Satellite Rainfall Prediction Techniques - A State of the Art Review

Authors: S. Sarumathi, N. Shanthi, S. Vidhya

Abstract:

In the present world, predicting rainfall is considered to be an essential and also a challenging task. Normally, the climate and rainfall are presumed to have non-linear as well as intricate phenomena. For predicting accurate rainfall, we necessitate advanced computer modeling and simulation. When there is an enhanced understanding of the spatial and temporal distribution of precipitation then it becomes enrichment to applications such as hydrologic, climatic and ecological. Conversely, there may be some kind of challenges occur in the community due to some application which results in the absence of consistent precipitation observation in remote and also emerging region. This survey paper provides a multifarious collection of methodologies which are epitomized by various researchers for predicting the rainfall. It also gives information about some technique to forecast rainfall, which is appropriate to all methods like numerical, traditional and statistical.

Keywords: Satellite Image, Segmentation, Feature Extraction, Classification, Clustering, Precipitation Estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3227
7260 The Application of Data Mining Technology in Building Energy Consumption Data Analysis

Authors: Liang Zhao, Jili Zhang, Chongquan Zhong

Abstract:

Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.

Keywords: Data mining, data analysis, prediction, optimization, building operational performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3710
7259 Query Algebra for Semistuctured Data

Authors: Ei Ei Myat, Ni Lar Thein

Abstract:

With the tremendous growth of World Wide Web (WWW) data, there is an emerging need for effective information retrieval at the document level. Several query languages such as XML-QL, XPath, XQL, Quilt and XQuery are proposed in recent years to provide faster way of querying XML data, but they still lack of generality and efficiency. Our approach towards evolving a framework for querying semistructured documents is based on formal query algebra. Two elements are introduced in the proposed framework: first, a generic and flexible data model for logical representation of semistructured data and second, a set of operators for the manipulation of objects defined in the data model. In additional to accommodating several peculiarities of semistructured data, our model offers novel features such as bidirectional paths for navigational querying and partitions for data transformation that are not available in other proposals.

Keywords: Algebra, Semistructured data, Query Algebra.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
7258 Simulation Data Summarization Based on Spatial Histograms

Authors: Jing Zhao, Yoshiharu Ishikawa, Chuan Xiao, Kento Sugiura

Abstract:

In order to analyze large-scale scientific data, research on data exploration and visualization has gained popularity. In this paper, we focus on the exploration and visualization of scientific simulation data, and define a spatial V-Optimal histogram for data summarization. We propose histogram construction algorithms based on a general binary hierarchical partitioning as well as a more specific one, the l-grid partitioning. For effective data summarization and efficient data visualization in scientific data analysis, we propose an optimal algorithm as well as a heuristic algorithm for histogram construction. To verify the effectiveness and efficiency of the proposed methods, we conduct experiments on the massive evacuation simulation data.

Keywords: Simulation data, data summarization, spatial histograms, exploration and visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 754
7257 Joint Use of Factor Analysis (FA) and Data Envelopment Analysis (DEA) for Ranking of Data Envelopment Analysis

Authors: Reza Nadimi, Fariborz Jolai

Abstract:

This article combines two techniques: data envelopment analysis (DEA) and Factor analysis (FA) to data reduction in decision making units (DMU). Data envelopment analysis (DEA), a popular linear programming technique is useful to rate comparatively operational efficiency of decision making units (DMU) based on their deterministic (not necessarily stochastic) input–output data and factor analysis techniques, have been proposed as data reduction and classification technique, which can be applied in data envelopment analysis (DEA) technique for reduction input – output data. Numerical results reveal that the new approach shows a good consistency in ranking with DEA.

Keywords: Effectiveness, Decision Making, Data EnvelopmentAnalysis, Factor Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2425
7256 Quality of Service Evaluation using a Combination of Fuzzy C-Means and Regression Model

Authors: Aboagela Dogman, Reza Saatchi, Samir Al-Khayatt

Abstract:

In this study, a network quality of service (QoS) evaluation system was proposed. The system used a combination of fuzzy C-means (FCM) and regression model to analyse and assess the QoS in a simulated network. Network QoS parameters of multimedia applications were intelligently analysed by FCM clustering algorithm. The QoS parameters for each FCM cluster centre were then inputted to a regression model in order to quantify the overall QoS. The proposed QoS evaluation system provided valuable information about the network-s QoS patterns and based on this information, the overall network-s QoS was effectively quantified.

Keywords: Fuzzy C-means; regression model, network quality of service

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
7255 A Self Configuring System for Object Recognition in Color Images

Authors: Michela Lecca

Abstract:

System MEMORI automatically detects and recognizes rotated and/or rescaled versions of the objects of a database within digital color images with cluttered background. This task is accomplished by means of a region grouping algorithm guided by heuristic rules, whose parameters concern some geometrical properties and the recognition score of the database objects. This paper focuses on the strategies implemented in MEMORI for the estimation of the heuristic rule parameters. This estimation, being automatic, makes the system a highly user-friendly tool.

Keywords: Automatic object recognition, clustering, content based image retrieval system, image segmentation, region adjacency graph, region grouping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
7254 Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method

Authors: Mohammed T. Hayajneh

Abstract:

Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al2O3 particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life.

Keywords: Composite, fuzzy, tool life, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091
7253 Artificial Intelligence for Software Quality Improvement

Authors: Martín Agüero, Franco Madou, Gabriela Esperón, Daniela López De Luise

Abstract:

This paper presents a software quality support tool, a Java source code evaluator and a code profiler based on computational intelligence techniques. It is Java prototype software developed by AI Group [1] from the Research Laboratories at Universidad de Palermo: an Intelligent Java Analyzer (in Spanish: Analizador Java Inteligente, AJI). It represents a new approach to evaluate and identify inaccurate source code usage and transitively, the software product itself. The aim of this project is to provide the software development industry with a new tool to increase software quality by extending the value of source code metrics through computational intelligence.

Keywords: Software metrics, artificial intelligence, neuralnetworks, clustering algorithms, expert systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2896
7252 ECG Analysis using Nature Inspired Algorithm

Authors: A.Sankara Subramanian, G.Gurusamy, G.Selvakumar, P.Gnanasekar, A.Nagappan

Abstract:

This paper presents an algorithm based on the wavelet decomposition, for feature extraction from the ECG signal and recognition of three types of Ventricular Arrhythmias using neural networks. A set of Discrete Wavelet Transform (DWT) coefficients, which contain the maximum information about the arrhythmias, is selected from the wavelet decomposition. After that a novel clustering algorithm based on nature inspired algorithm (Ant Colony Optimization) is developed for classifying arrhythmia types. The algorithm is applied on the ECG registrations from the MIT-BIH arrhythmia and malignant ventricular arrhythmia databases. We applied Daubechies 4 wavelet in our algorithm. The wavelet decomposition enabled us to perform the task efficiently and produced reliable results.

Keywords: Daubechies 4 Wavelet, ECG, Nature inspired algorithm, Ventricular Arrhythmias, Wavelet Decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2311
7251 Towards Assessment of Indicators Influence on Innovativeness of Countries' Economies: Selected Soft Computing Approaches

Authors: Marta Czyżewska, Krzysztof Pancerz, Jarosław Szkoła

Abstract:

The aim of this paper is to assess the influence of several indicators determining innovativeness of countries' economies by applying selected soft computing methods. Such methods enable us to identify correlations between indicators for period 2006-2010. The main attention in the paper is focused on selecting proper computer tools for solving this problem. As a tool supporting identification, the X-means clustering algorithm, the Apriori rules generation algorithm as well as Self-Organizing Feature Maps (SOMs) have been selected. The paper has rather a rudimentary character. We briefly describe usefulness of the selected approaches and indicate some challenges for further research.

Keywords: Assessment of indicators, innovativeness, soft computing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
7250 K-Means Based Matching Algorithm for Multi-Resolution Feature Descriptors

Authors: Shao-Tzu Huang, Chen-Chien Hsu, Wei-Yen Wang

Abstract:

Matching high dimensional features between images is computationally expensive for exhaustive search approaches in computer vision. Although the dimension of the feature can be degraded by simplifying the prior knowledge of homography, matching accuracy may degrade as a tradeoff. In this paper, we present a feature matching method based on k-means algorithm that reduces the matching cost and matches the features between images instead of using a simplified geometric assumption. Experimental results show that the proposed method outperforms the previous linear exhaustive search approaches in terms of the inlier ratio of matched pairs.

Keywords: Feature matching, k-means clustering, scale invariant feature transform, linear exhaustive search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1086
7249 Object Recognition in Color Images by the Self Configuring System MEMORI

Authors: Michela Lecca

Abstract:

System MEMORI automatically detects and recognizes rotated and/or rescaled versions of the objects of a database within digital color images with cluttered background. This task is accomplished by means of a region grouping algorithm guided by heuristic rules, whose parameters concern some geometrical properties and the recognition score of the database objects. This paper focuses on the strategies implemented in MEMORI for the estimation of the heuristic rule parameters. This estimation, being automatic, makes the system a self configuring and highly user-friendly tool.

Keywords: Automatic Object Recognition, Clustering, Contentbased Image Retrieval System, Image Segmentation, Region Adjacency Graph, Region Grouping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
7248 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area

Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim

Abstract:

In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.

Keywords: Data Estimation, link data, machine learning, road network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504