Search results for: Constrained optimization
1633 Hexagonal Honeycomb Sandwich Plate Optimization Using Gravitational Search Algorithm
Authors: A. Boudjemai, A. Zafrane, R. Hocine
Abstract:
Honeycomb sandwich panels are increasingly used in the construction of space vehicles because of their outstanding strength, stiffness and light weight properties. However, the use of honeycomb sandwich plates comes with difficulties in the design process as a result of the large number of design variables involved, including composite material design, shape and geometry. Hence, this work deals with the presentation of an optimal design of hexagonal honeycomb sandwich structures subjected to space environment. The optimization process is performed using a set of algorithms including the gravitational search algorithm (GSA). Numerical results are obtained and presented for a set of algorithms. The results obtained by the GSA algorithm are much better compared to other algorithms used in this study.
Keywords: Optimization, Gravitational search algorithm, Genetic algorithm, Honeycomb plate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32911632 An Improved Particle Swarm Optimization Technique for Combined Economic and Environmental Power Dispatch Including Valve Point Loading Effects
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In recent years, the combined economic and emission power dispatch is one of the main problems of electrical power system. It aims to schedule the power generation of generators in order to minimize cost production and emission of harmful gases caused by fossil-fueled thermal units such as CO, CO2, NOx, and SO2. To solve this complicated multi-objective problem, an improved version of the particle swarm optimization technique that includes non-dominated sorting concept has been proposed. Valve point loading effects and system losses have been considered. The three-unit and ten-unit benchmark systems have been used to show the effectiveness of the suggested optimization technique for solving this kind of nonconvex problem. The simulation results have been compared with those obtained using genetic algorithm based method. Comparison results show that the proposed approach can provide a higher quality solution with better performance.
Keywords: Power dispatch, valve point loading effects, multiobjective optimization, Pareto solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7701631 Multi-Criteria Optimization of High-Temperature Reversed Starter-Generator
Authors: Flur R. Ismagilov, Irek Kh. Khayrullin, Vyacheslav E. Vavilov, Ruslan D. Karimov, Anton S. Gorbunov, Danis R. Farrakhov
Abstract:
The paper presents another structural scheme of high-temperature starter-generator with external rotor to be installed on High Pressure Shaft (HPS) of aircraft engines (AE) to implement More Electrical Engine concept. The basic materials to make this starter-generator (SG) were selected and justified. Multi-criteria optimization of the developed structural scheme was performed using a genetic algorithm and Pareto method. The optimum (in Pareto terms) active length and thickness of permanent magnets of SG were selected as a result of the optimization. Using the dimensions obtained, allowed to reduce the weight of the designed SG by 10 kg relative to a base option at constant thermal loads. Multidisciplinary computer simulation was performed on the basis of the optimum geometric dimensions, which proved performance efficiency of the design. We further plan to make a full-scale sample of SG of HPS and publish the results of its experimental research.Keywords: High-temperature starter-generator, More electrical engine, multi-criteria optimization, permanent magnet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12141630 Optimization of Agricultural Water Demand Using a Hybrid Model of Dynamic Programming and Neural Networks: A Case Study of Algeria
Authors: M. Boudjerda, B. Touaibia, M. K. Mihoubi
Abstract:
In Algeria agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. Economic development in the last decade has weighed heavily on water resources which are relatively limited and gradually decreasing to the detriment of agriculture. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Foum El-Gherza dam’s reservoir system in south of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 12.32% to 55%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.Keywords: ater management, agricultural demand, dam and reservoir operation, Foum el-Gherza dam, dynamic programming, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7301629 Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization
Authors: Himanshu Shekhar Maharana, S. K .Dash
Abstract:
Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution.
Keywords: Economic load dispatch, constriction factor based particle swarm optimization, dispersed particle swarm optimization, weight improved particle swarm optimization, ramp rate and constriction factor based particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12601628 Optimization of Petroleum Refinery Configuration Design with Logic Propositions
Authors: Cheng Seong Khor, Xiao Qi Yeoh
Abstract:
This work concerns the topological optimization problem for determining the optimal petroleum refinery configuration. We are interested in further investigating and hopefully advancing the existing optimization approaches and strategies employing logic propositions to conceptual process synthesis problems. In particular, we seek to contribute to this increasingly exciting area of chemical process modeling by addressing the following potentially important issues: (a) how the formulation of design specifications in a mixed-logical-and-integer optimization model can be employed in a synthesis problem to enrich the problem representation by incorporating past design experience, engineering knowledge, and heuristics; and (b) how structural specifications on the interconnectivity relationships by space (states) and by function (tasks) in a superstructure should be properly formulated within a mixed-integer linear programming (MILP) model. The proposed modeling technique is illustrated on a case study involving the alternative processing routes of naphtha, in which significant improvement in the solution quality is obtained.Keywords: Mixed-integer linear programming (MILP), petroleum refinery, process synthesis, superstructure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17281627 3-D Visualization and Optimization for SISO Linear Systems Using Parametrization of Two-Stage Compensator Design
Authors: Kazuyoshi Mori, Keisuke Hashimoto
Abstract:
In this paper, we consider the two-stage compensator designs of SISO plants. As an investigation of the characteristics of the two-stage compensator designs, which is not well investigated yet, of SISO plants, we implement three dimensional visualization systems of output signals and optimization system for SISO plants by the parametrization of stabilizing controllers based on the two-stage compensator design. The system runs on Mathematica by using “Three Dimensional Surface Plots,” so that the visualization can be interactively manipulated by users. In this paper, we use the discrete-time LTI system model. Even so, our approach is the factorization approach, so that the result can be applied to many linear models.Keywords: Linear systems, visualization, optimization, two-Stage compensator design, Mathematica.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11921626 Optimization by Ant Colony Hybryde for the Bin-Packing Problem
Authors: Ben Mohamed Ahemed Mohamed, Yassine Adnan
Abstract:
The problem of bin-packing in two dimensions (2BP) consists in placing a given set of rectangular items in a minimum number of rectangular and identical containers, called bins. This article treats the case of objects with a free orientation of 90Ôùª. We propose an approach of resolution combining optimization by colony of ants (ACO) and the heuristic method IMA to resolve this NP-Hard problem.
Keywords: Ant colony algorithm, bin-packing problem, heuristics methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18431625 Design of a Robust Controller for AGC with Combined Intelligence Techniques
Authors: R. N. Patel, S. K. Sinha, R. Prasad
Abstract:
In this work Artificial Intelligence (AI) techniques like Fuzzy logic, Genetic Algorithms and Particle Swarm Optimization have been used to improve the performance of the Automatic Generation Control (AGC) system. Instead of applying Genetic Algorithms and Particle swarm optimization independently for optimizing the parameters of the conventional AGC with PI controller, an intelligent tuned Fuzzy logic controller (acting as the secondary controller in the AGC system) has been designed. The controller gives an improved dynamic performance for both hydrothermal and thermal-thermal power systems under a variety of operating conditions.
Keywords: Artificial intelligence, Automatic generation control, Fuzzy control, Genetic Algorithm, Particle swarm optimization, Power systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17871624 Empirical Evaluation of Performance Optimization Techniques Used in Mobile Applications
Authors: Nathar Shah, Bu Kiat Seng
Abstract:
Mobile application development is different from regular application development due to the hardware resource limitations existed in the mobile platforms. In the mobile environment, the application needs to be optimized by the developer to produce optimal software with least overhead. This study discussed about performance optimization techniques that are employed in general application development, and how such techniques are performing on mobile platforms through some empirical evaluations on a mobile emulator, Nokia X3-02 and Nokia C5-03devices. The scope of the work is only confined to mobile platform based on Java Mobile edition architecture. The empirical results showed that techniques such as loop unrolling, dependency chain, and linearized getter and setter performed better by a factor of 3 to 7. Whereas declaration and initialization on the same line or separate line did not improve the performance.
Keywords: Optimization Techniques, Mobile Applications, Performance Evaluation, J2ME, Empirical Experiments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16031623 A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design
Authors: Do-Jin Jang, Sung-Ah Kim
Abstract:
A kinetic façade responds to user requirements and environmental conditions. In designing a kinetic façade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic façade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group.
Keywords: Biomimicry, flocking algorithm, autonomous decentralized control, multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13751622 A Method for Improving Dental Crown Fit-Increasing the Robustness
Authors: Kero T., Söderberg R., Andersson M., Lindkvist L.
Abstract:
The introduction of mass-customization has enabled new ways to treat patients within medicine. However, the introduction of industrialized treatments has also meant new obstacles. The purpose of this study was to introduce and theoretically test a method for improving dental crown fit. The optimization method allocates support points in order to check the final variation for dental crowns. Three different types of geometries were tested and compared. The three geometries were also divided into three sub-geometries: Current method, Optimized method and Feasible method. The Optimized method, using the whole surface for support points, provided the best results. The results support the objective of the study. It also seems that the support optimization method can dramatically improve the robustness of dental crown treatments.Keywords: Bio-medicine, Dentistry, Mass-customization, Optimization and Robust design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16211621 A Hybrid Nature Inspired Algorithm for Generating Optimal Query Plan
Authors: R. Gomathi, D. Sharmila
Abstract:
The emergence of the Semantic Web technology increases day by day due to the rapid growth of multiple web pages. Many standard formats are available to store the semantic web data. The most popular format is the Resource Description Framework (RDF). Querying large RDF graphs becomes a tedious procedure with a vast increase in the amount of data. The problem of query optimization becomes an issue in querying large RDF graphs. Choosing the best query plan reduces the amount of query execution time. To address this problem, nature inspired algorithms can be used as an alternative to the traditional query optimization techniques. In this research, the optimal query plan is generated by the proposed SAPSO algorithm which is a hybrid of Simulated Annealing (SA) and Particle Swarm Optimization (PSO) algorithms. The proposed SAPSO algorithm has the ability to find the local optimistic result and it avoids the problem of local minimum. Experiments were performed on different datasets by changing the number of predicates and the amount of data. The proposed algorithm gives improved results compared to existing algorithms in terms of query execution time.
Keywords: Semantic web, RDF, Query optimization, Nature inspired algorithms, PSO, SA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22391620 Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning
Authors: Ahcene Habbi, Yassine Boudouaoui
Abstract:
This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.
Keywords: Automatic design, learning, fuzzy rules, hybrid, swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21571619 Generation Scheduling Optimization of Multi-Hydroplants: A Case Study
Authors: Shuangquan Liu, Jinwen Wang, Dada Wang
Abstract:
A case study of the generation scheduling optimization of the multi-hydroplants on the Yuan River Basin in China is reported in this paper. Concerning the uncertainty of the inflows, the long/mid-term generation scheduling (LMTGS) problem is solved by a stochastic model in which the inflows are considered as stochastic variables. For the short-term generation scheduling (STGS) problem, a constraint violation priority is defined in case not all constraints are satisfied. Provided the stage-wise separable condition and low dimensions, the hydroplant-based operational region schedules (HBORS) problem is solved by dynamic programming (DP). The coordination of LMTGS and STGS is presented as well. The feasibility and the effectiveness of the models and solution methods are verified by the numerical results.Keywords: generation scheduling, multi-hydroplants, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15511618 Comparative Study on Swarm Intelligence Techniques for Biclustering of Microarray Gene Expression Data
Authors: R. Balamurugan, A. M. Natarajan, K. Premalatha
Abstract:
Microarray gene expression data play a vital in biological processes, gene regulation and disease mechanism. Biclustering in gene expression data is a subset of the genes indicating consistent patterns under the subset of the conditions. Finding a biclustering is an optimization problem. In recent years, swarm intelligence techniques are popular due to the fact that many real-world problems are increasingly large, complex and dynamic. By reasons of the size and complexity of the problems, it is necessary to find an optimization technique whose efficiency is measured by finding the near optimal solution within a reasonable amount of time. In this paper, the algorithmic concepts of the Particle Swarm Optimization (PSO), Shuffled Frog Leaping (SFL) and Cuckoo Search (CS) algorithms have been analyzed for the four benchmark gene expression dataset. The experiment results show that CS outperforms PSO and SFL for 3 datasets and SFL give better performance in one dataset. Also this work determines the biological relevance of the biclusters with Gene Ontology in terms of function, process and component.
Keywords: Particle swarm optimization, Shuffled frog leaping, Cuckoo search, biclustering, gene expression data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26631617 Manipulation of Image Segmentation Using Cleverness Artificial Bee Colony Approach
Authors: Y. Harold Robinson, E. Golden Julie, P. Joyce Beryl Princess
Abstract:
Image segmentation is the concept of splitting the images into several images. Image Segmentation algorithm is used to manipulate the process of image segmentation. The advantage of ABC is that it conducts every worldwide exploration and inhabitant exploration for iteration. Particle Swarm Optimization (PSO) and Evolutionary Particle Swarm Optimization (EPSO) encompass a number of search problems. Cleverness Artificial Bee Colony algorithm has been imposed to increase the performance of a neighborhood search. The simulation results clearly show that the presented ABC methods outperform the existing methods. The result shows that the algorithms can be used to implement the manipulator for grasping of colored objects. The efficiency of the presented method is improved a lot by comparing to other methods.Keywords: Color information, EPSO, ABC, image segmentation, particle swarm optimization, active contour, GMM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12911616 Swarm Intelligence based Optimal Linear Phase FIR High Pass Filter Design using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach
Authors: Sangeeta Mandal, Rajib Kar, Durbadal Mandal, Sakti Prasad Ghoshal
Abstract:
In this paper, an optimal design of linear phase digital high pass finite impulse response (FIR) filter using Particle Swarm Optimization with Constriction Factor and Inertia Weight Approach (PSO-CFIWA) has been presented. In the design process, the filter length, pass band and stop band frequencies, feasible pass band and stop band ripple sizes are specified. FIR filter design is a multi-modal optimization problem. The conventional gradient based optimization techniques are not efficient for digital filter design. Given the filter specifications to be realized, the PSO-CFIWA algorithm generates a set of optimal filter coefficients and tries to meet the ideal frequency response characteristic. In this paper, for the given problem, the designs of the optimal FIR high pass filters of different orders have been performed. The simulation results have been compared to those obtained by the well accepted algorithms such as Parks and McClellan algorithm (PM), genetic algorithm (GA). The results justify that the proposed optimal filter design approach using PSOCFIWA outperforms PM and GA, not only in the accuracy of the designed filter but also in the convergence speed and solution quality.Keywords: FIR Filter; PSO-CFIWA; PSO; Parks and McClellanAlgorithm, Evolutionary Optimization Technique; MagnitudeResponse; Convergence; High Pass Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15541615 Iterative Methods for An Inverse Problem
Authors: Minghui Wang, Shanrui Hu
Abstract:
An inverse problem of doubly center matrices is discussed. By translating the constrained problem into unconstrained problem, two iterative methods are proposed. A numerical example illustrate our algorithms.
Keywords: doubly center matrix, electric network theory, iterative methods, least-square problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14791614 An Optimization of the New Die Design of Sheet Hydroforming by Taguchi Method
Authors: M. Hosseinzadeh, S. A. Zamani, A. Taheri
Abstract:
During the last few years, several sheet hydroforming processes have been introduced. Despite the advantages of these methods, they have some limitations. Of the processes, the two main ones are the standard hydroforming and hydromechanical deep drawing. A new sheet hydroforming die set was proposed that has the advantages of both processes and eliminates their limitations. In this method, a polyurethane plate was used as a part of the die-set to control the blank holder force. This paper outlines the Taguchi optimization methodology, which is applied to optimize the effective parameters in forming cylindrical cups by the new die set of sheet hydroforming process. The process parameters evaluated in this research are polyurethane hardness, polyurethane thickness, forming pressure path and polyurethane hole diameter. The design of experiments based upon L9 orthogonal arrays by Taguchi was used and analysis of variance (ANOVA) was employed to analyze the effect of these parameters on the forming pressure. The analysis of the results showed that the optimal combination for low forming pressure is harder polyurethane, bigger diameter of polyurethane hole and thinner polyurethane. Finally, the confirmation test was derived based on the optimal combination of parameters and it was shown that the Taguchi method is suitable to examine the optimization process.Keywords: Sheet Hydroforming, Optimization, Taguchi Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25961613 Multi-Layer Perceptron Neural Network Classifier with Binary Particle Swarm Optimization Based Feature Selection for Brain-Computer Interfaces
Authors: K. Akilandeswari, G. M. Nasira
Abstract:
Brain-Computer Interfaces (BCIs) measure brain signals activity, intentionally and unintentionally induced by users, and provides a communication channel without depending on the brain’s normal peripheral nerves and muscles output pathway. Feature Selection (FS) is a global optimization machine learning problem that reduces features, removes irrelevant and noisy data resulting in acceptable recognition accuracy. It is a vital step affecting pattern recognition system performance. This study presents a new Binary Particle Swarm Optimization (BPSO) based feature selection algorithm. Multi-layer Perceptron Neural Network (MLPNN) classifier with backpropagation training algorithm and Levenberg-Marquardt training algorithm classify selected features.Keywords: Brain-Computer Interfaces (BCI), Feature Selection (FS), Walsh–Hadamard Transform (WHT), Binary Particle Swarm Optimization (BPSO), Multi-Layer Perceptron (MLP), Levenberg–Marquardt algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21851612 Two-Phase Optimization for Selecting Materialized Views in a Data Warehouse
Authors: Jiratta Phuboon-ob, Raweewan Auepanwiriyakul
Abstract:
A data warehouse (DW) is a system which has value and role for decision-making by querying. Queries to DW are critical regarding to their complexity and length. They often access millions of tuples, and involve joins between relations and aggregations. Materialized views are able to provide the better performance for DW queries. However, these views have maintenance cost, so materialization of all views is not possible. An important challenge of DW environment is materialized view selection because we have to realize the trade-off between performance and view maintenance. Therefore, in this paper, we introduce a new approach aimed to solve this challenge based on Two-Phase Optimization (2PO), which is a combination of Simulated Annealing (SA) and Iterative Improvement (II), with the use of Multiple View Processing Plan (MVPP). Our experiments show that 2PO outperform the original algorithms in terms of query processing cost and view maintenance cost.Keywords: Data warehouse, materialized views, view selectionproblem, two-phase optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17051611 Applications of Conic Optimization and Quadratic Programming in the Investigation of Index Arbitrage in the Thai Derivatives and Equity Markets
Authors: Satjaporn Tungsong, Gun Srijuntongsiri
Abstract:
This research seeks to investigate the frequency and profitability of index arbitrage opportunities involving the SET50 futures, SET50 component stocks, and the ThaiDEX SET50 ETF (ticker symbol: TDEX). In particular, the frequency and profit of arbitrage are measured in the following three arbitrage tests: (1) SET50 futures vs. ThaiDEX SET50 ETF, (2) SET50 futures vs. SET50 component stocks, and (3) ThaiDEX SET50 ETF vs. SET50 component stocks are investigated. For tests (2) and (3), the problems involve conic optimization and quadratic programming as subproblems. This research is first to apply conic optimization and quadratic programming techniques in the context of index arbitrage and is first to investigate such index arbitrage in the Thai equity and derivatives markets. Thus, the contribution of this study is twofold. First, its results would help understand the contribution of the derivatives securities to the efficiency of the Thai markets. Second, the methodology employed in this study can be applied to other geographical markets, with minor adjustments.Keywords: Conic optimization, Equity index arbitrage, Executionlags, Quadratic programming, SET50 index futures, ThaiDEX SET50ETF, Transaction costs
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15741610 Multi-criteria Optimization of Square Beam using Linear Weighted Average Model
Authors: Ali Farhaninejad, Rizal Zahari, Ehsan Rasooliyazdi
Abstract:
Increasing energy absorption is a significant parameter in vehicle design. Absorbing more energy results in decreasing occupant damage. Limitation of the deflection in a side impact results in decreased energy absorption (SEA) and increased peak load (PL). Hence a high crash force jeopardizes passenger safety and vehicle integrity. The aims of this paper are to determine suitable dimensions and material of a square beam subjected to side impact, in order to maximize SEA and minimize PL. To achieve this novel goal, the geometric parameters of a square beam are optimized using the response surface method (RSM).multi-objective optimization is performed, and the optimum design for different response features is obtained.Keywords: Crashworthiness, side impact, energy absorption, multi-objective optimization, Square beam, SEA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18341609 Optimal Sizing of SSSC Controllers to Minimize Transmission Loss and a Novel Model of SSSC to Study Transient Response
Authors: A. M. El-Zonkoly
Abstract:
In this paper, based on steady-state models of Flexible AC Transmission System (FACTS) devices, the sizing of static synchronous series compensator (SSSC) controllers in transmission network is formed as an optimization problem. The objective of this problem is to reduce the transmission losses in the network. The optimization problem is solved using particle swarm optimization (PSO) technique. The Newton-Raphson load flow algorithm is modified to consider the insertion of the SSSC devices in the network. A numerical example, illustrating the effectiveness of the proposed algorithm, is introduced. In addition, a novel model of a 3- phase voltage source converter (VSC) that is suitable for series connected FACTS a controller is introduced. The model is verified by simulation using Power System Blockset (PSB) and Simulink software.Keywords: FACTS, Modeling, PSO, SSSC, Transmission lossreduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22771608 A Robust STATCOM Controller for a Multi-Machine Power System Using Particle Swarm Optimization and Loop-Shaping
Authors: S.F. Faisal, A.H.M.A. Rahim, J.M. Bakhashwain
Abstract:
Design of a fixed parameter robust STATCOM controller for a multi-machine power system through an H-? based loop-shaping procedure is presented. The trial and error part of the graphical loop-shaping procedure has been eliminated by embedding a particle swarm optimization (PSO) technique in the design loop. Robust controllers were designed considering the detailed dynamics of the multi-machine system and results were compared with reduced order models. The robust strategy employing loop-shaping and PSO algorithms was observed to provide very good damping profile for a wide range of operation and for various disturbance conditions.
Keywords: STATCOM, Robust control, Power system damping, Particle Swarm Optimization, Loop-shaping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18811607 Feature Selection for Web Page Classification Using Swarm Optimization
Authors: B. Leela Devi, A. Sankar
Abstract:
The web’s increased popularity has included a huge amount of information, due to which automated web page classification systems are essential to improve search engines’ performance. Web pages have many features like HTML or XML tags, hyperlinks, URLs and text contents which can be considered during an automated classification process. It is known that Webpage classification is enhanced by hyperlinks as it reflects Web page linkages. The aim of this study is to reduce the number of features to be used to improve the accuracy of the classification of web pages. In this paper, a novel feature selection method using an improved Particle Swarm Optimization (PSO) using principle of evolution is proposed. The extracted features were tested on the WebKB dataset using a parallel Neural Network to reduce the computational cost.
Keywords: Web page classification, WebKB Dataset, Term Frequency-Inverse Document Frequency (TF-IDF), Particle Swarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32591606 Generator Capability Curve Constraint for PSO Based Optimal Power Flow
Authors: Mat Syai'in, Adi Soeprijanto, Takashi Hiyama
Abstract:
An optimal power flow (OPF) based on particle swarm optimization (PSO) was developed with more realistic generator security constraint using the capability curve instead of only Pmin/Pmax and Qmin/Qmax. Neural network (NN) was used in designing digital capability curve and the security check algorithm. The algorithm is very simple and flexible especially for representing non linear generation operation limit near steady state stability limit and under excitation operation area. In effort to avoid local optimal power flow solution, the particle swarm optimization was implemented with enough widespread initial population. The objective function used in the optimization process is electric production cost which is dominated by fuel cost. The proposed method was implemented at Java Bali 500 kV power systems contain of 7 generators and 20 buses. The simulation result shows that the combination of generator power output resulted from the proposed method was more economic compared with the result using conventional constraint but operated at more marginal operating point.Keywords: Optimal Power Flow, Generator Capability Curve, Particle Swarm Optimization, Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25751605 Application of Central Composite Design Based Response Surface Methodology in Parameter Optimization and on Cellulase Production Using Agricultural Waste
Authors: R.Muthuvelayudham, T.Viruthagiri
Abstract:
Response Surface Methodology (RSM) is a powerful and efficient mathematical approach widely applied in the optimization of cultivation process. Cellulase enzyme production by Trichoderma reesei RutC30 using agricultural waste rice straw and banana fiber as carbon source were investigated. In this work, sequential optimization strategy based statistical design was employed to enhance the production of cellulase enzyme through submerged cultivation. A fractional factorial design (26-2) was applied to elucidate the process parameters that significantly affect cellulase production. Temperature, Substrate concentration, Inducer concentration, pH, inoculum age and agitation speed were identified as important process parameters effecting cellulase enzyme synthesis. The concentration of lignocelluloses and lactose (inducer) in the cultivation medium were found to be most significant factors. The steepest ascent method was used to locate the optimal domain and a Central Composite Design (CCD) was used to estimate the quadratic response surface from which the factor levels for maximum production of cellulase were determined.Keywords: Banana fiber, Cellulase, Optimization, Rice straw
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24001604 Split-Pipe Design of Water Distribution Networks Using a Combination of Tabu Search and Genetic Algorithm
Authors: J. Tospornsampan, I. Kita, M. Ishii, Y. Kitamura
Abstract:
In this paper a combination approach of two heuristic-based algorithms: genetic algorithm and tabu search is proposed. It has been developed to obtain the least cost based on the split-pipe design of looped water distribution network. The proposed combination algorithm has been applied to solve the three well-known water distribution networks taken from the literature. The development of the combination of these two heuristic-based algorithms for optimization is aimed at enhancing their strengths and compensating their weaknesses. Tabu search is rather systematic and deterministic that uses adaptive memory in search process, while genetic algorithm is probabilistic and stochastic optimization technique in which the solution space is explored by generating candidate solutions. Split-pipe design may not be realistic in practice but in optimization purpose, optimal solutions are always achieved with split-pipe design. The solutions obtained in this study have proved that the least cost solutions obtained from the split-pipe design are always better than those obtained from the single pipe design. The results obtained from the combination approach show its ability and effectiveness to solve combinatorial optimization problems. The solutions obtained are very satisfactory and high quality in which the solutions of two networks are found to be the lowest-cost solutions yet presented in the literature. The concept of combination approach proposed in this study is expected to contribute some useful benefits in diverse problems.
Keywords: GAs, Heuristics, Looped network, Least-cost design, Pipe network, Optimization, TS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1788