Search results for: Great Deluge Algorithm.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4264

Search results for: Great Deluge Algorithm.

514 The Effects of Distribution Channels on the Selling Prices of Hotels in Time of Crisis

Authors: Y. Yılmaz, C. Ünal, A. Dursun

Abstract:

Distribution channels play significant role for hotels. Direct and indirect selling options of hotel rooms have been increased especially with the help of new technologies, i.e. hotel’s own web sites and online booking sites. Although these options emerged as tools for diversifying the distribution channels, vast number of hotels -mostly resort hotels- is still heavily dependent upon international tour operators when selling their products. On the other hand, hotel sector is so vulnerable against crises. Economic, political or any other crisis can affect hotels very badly and so it is critical to have the right balance of distribution channel to avoid the adverse impacts of a crisis. In this study, it is aimed to search the impacts of a general crisis on the selling prices of hotels which have different weights of distribution channels. The study was done in Turkey where various crises occurred in 2015 and 2016 which had great negative impacts on Turkish tourism and led enormous occupancy rate and selling price reductions. 112 upscale resort hotel in Antalya, which is the most popular tourism destination of Turkey, joined to the research. According to the results, hotels with high dependency to international tour operators are more forced to reduce their room prices in crisis time compared to the ones which use their own web sites more. It was also found that the decline in room prices is limited for hotels which are working with national tour operators and travel agencies in crisis time.

Keywords: Marketing channels, crisis, hotel, international tour operators, online travel agencies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 877
513 A Fast Neural Algorithm for Serial Code Detection in a Stream of Sequential Data

Authors: Hazem M. El-Bakry, Qiangfu Zhao

Abstract:

In recent years, fast neural networks for object/face detection have been introduced based on cross correlation in the frequency domain between the input matrix and the hidden weights of neural networks. In our previous papers [3,4], fast neural networks for certain code detection was introduced. It was proved in [10] that for fast neural networks to give the same correct results as conventional neural networks, both the weights of neural networks and the input matrix must be symmetric. This condition made those fast neural networks slower than conventional neural networks. Another symmetric form for the input matrix was introduced in [1-9] to speed up the operation of these fast neural networks. Here, corrections for the cross correlation equations (given in [13,15,16]) to compensate for the symmetry condition are presented. After these corrections, it is proved mathematically that the number of computation steps required for fast neural networks is less than that needed by classical neural networks. Furthermore, there is no need for converting the input data into symmetric form. Moreover, such new idea is applied to increase the speed of neural networks in case of processing complex values. Simulation results after these corrections using MATLAB confirm the theoretical computations.

Keywords: Fast Code/Data Detection, Neural Networks, Cross Correlation, real/complex values.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
512 Inverse Heat Conduction Analysis of Cooling on Run Out Tables

Authors: M. S. Gadala, Khaled Ahmed, Elasadig Mahdi

Abstract:

In this paper, we introduced a gradient-based inverse solver to obtain the missing boundary conditions based on the readings of internal thermocouples. The results show that the method is very sensitive to measurement errors, and becomes unstable when small time steps are used. The artificial neural networks are shown to be capable of capturing the whole thermal history on the run-out table, but are not very effective in restoring the detailed behavior of the boundary conditions. Also, they behave poorly in nonlinear cases and where the boundary condition profile is different. GA and PSO are more effective in finding a detailed representation of the time-varying boundary conditions, as well as in nonlinear cases. However, their convergence takes longer. A variation of the basic PSO, called CRPSO, showed the best performance among the three versions. Also, PSO proved to be effective in handling noisy data, especially when its performance parameters were tuned. An increase in the self-confidence parameter was also found to be effective, as it increased the global search capabilities of the algorithm. RPSO was the most effective variation in dealing with noise, closely followed by CRPSO. The latter variation is recommended for inverse heat conduction problems, as it combines the efficiency and effectiveness required by these problems.

Keywords: Inverse Analysis, Function Specification, Neural Net Works, Particle Swarm, Run Out Table.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
511 A Markov Chain Model for Load-Balancing Based and Service Based RAT Selection Algorithms in Heterogeneous Networks

Authors: Abdallah Al Sabbagh

Abstract:

Next Generation Wireless Network (NGWN) is expected to be a heterogeneous network which integrates all different Radio Access Technologies (RATs) through a common platform. A major challenge is how to allocate users to the most suitable RAT for them. An optimized solution can lead to maximize the efficient use of radio resources, achieve better performance for service providers and provide Quality of Service (QoS) with low costs to users. Currently, Radio Resource Management (RRM) is implemented efficiently for the RAT that it was developed. However, it is not suitable for a heterogeneous network. Common RRM (CRRM) was proposed to manage radio resource utilization in the heterogeneous network. This paper presents a user level Markov model for a three co-located RAT networks. The load-balancing based and service based CRRM algorithms have been studied using the presented Markov model. A comparison for the performance of load-balancing based and service based CRRM algorithms is studied in terms of traffic distribution, new call blocking probability, vertical handover (VHO) call dropping probability and throughput.

Keywords: Heterogeneous Wireless Network, Markov chain model, load-balancing based and service based algorithm, CRRM algorithms, Beyond 3G network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2487
510 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine

Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen

Abstract:

Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.

Keywords: Cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853
509 Solving Part Type Selection and Loading Problem in Flexible Manufacturing System Using Real Coded Genetic Algorithms – Part I: Modeling

Authors: Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong

Abstract:

This paper and its companion (Part 2) deal with modeling and optimization of two NP-hard problems in production planning of flexible manufacturing system (FMS), part type selection problem and loading problem. The part type selection problem and the loading problem are strongly related and heavily influence the system-s efficiency and productivity. The complexity of the problems is harder when flexibilities of operations such as the possibility of operation processed on alternative machines with alternative tools are considered. These problems have been modeled and solved simultaneously by using real coded genetic algorithms (RCGA) which uses an array of real numbers as chromosome representation. These real numbers can be converted into part type sequence and machines that are used to process the part types. This first part of the papers focuses on the modeling of the problems and discussing how the novel chromosome representation can be applied to solve the problems. The second part will discuss the effectiveness of the RCGA to solve various test bed problems.

Keywords: Flexible manufacturing system, production planning, part type selection problem, loading problem, real-coded genetic algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
508 Data Mining for Cancer Management in Egypt Case Study: Childhood Acute Lymphoblastic Leukemia

Authors: Nevine M. Labib, Michael N. Malek

Abstract:

Data Mining aims at discovering knowledge out of data and presenting it in a form that is easily comprehensible to humans. One of the useful applications in Egypt is the Cancer management, especially the management of Acute Lymphoblastic Leukemia or ALL, which is the most common type of cancer in children. This paper discusses the process of designing a prototype that can help in the management of childhood ALL, which has a great significance in the health care field. Besides, it has a social impact on decreasing the rate of infection in children in Egypt. It also provides valubale information about the distribution and segmentation of ALL in Egypt, which may be linked to the possible risk factors. Undirected Knowledge Discovery is used since, in the case of this research project, there is no target field as the data provided is mainly subjective. This is done in order to quantify the subjective variables. Therefore, the computer will be asked to identify significant patterns in the provided medical data about ALL. This may be achieved through collecting the data necessary for the system, determimng the data mining technique to be used for the system, and choosing the most suitable implementation tool for the domain. The research makes use of a data mining tool, Clementine, so as to apply Decision Trees technique. We feed it with data extracted from real-life cases taken from specialized Cancer Institutes. Relevant medical cases details such as patient medical history and diagnosis are analyzed, classified, and clustered in order to improve the disease management.

Keywords: Data Mining, Decision Trees, Knowledge Discovery, Leukemia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
507 Cloud Enterprise Application Provider Selection Model for the Small and Medium Enterprise: A Pilot Study

Authors: Rowland R. Ogunrinde, Yusmadi Y. Jusoh, Noraini Che Pa, Wan Nurhayati W. Rahman, Azizol B. Abdullah

Abstract:

Enterprise Applications (EAs) aid the organizations achieve operational excellence and competitive advantage. Over time, most Small and Medium Enterprises (SMEs), which are known to be the major drivers of most thriving global economies, use the costly on-premise versions of these applications thereby making business difficult to competitively thrive in the same market environment with their large enterprise counterparts. The advent of cloud computing presents the SMEs an affordable offer and great opportunities as such EAs can be cloud-hosted and rented on a pay-per-use basis which does not require huge initial capital. However, as there are numerous Cloud Service Providers (CSPs) offering EAs as Software-as-a-Service (SaaS), there is a challenge of choosing a suitable provider with Quality of Service (QoS) that meet the organizations’ customized requirements. The proposed model takes care of that and goes a step further to select the most affordable among a selected few of the CSPs. In the earlier stage, before developing the instrument and conducting the pilot test, the researchers conducted a structured interview with three experts to validate the proposed model. In conclusion, the validity and reliability of the instrument were tested through experts, typical respondents, and analyzed with SPSS 22. Results confirmed the validity of the proposed model and the validity and reliability of the instrument.

Keywords: Cloud service provider, enterprise applications, quality of service, selection criteria, small and medium enterprise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 792
506 Actionable Rules: Issues and New Directions

Authors: Harleen Kaur

Abstract:

Knowledge Discovery in Databases (KDD) is the process of extracting previously unknown, hidden and interesting patterns from a huge amount of data stored in databases. Data mining is a stage of the KDD process that aims at selecting and applying a particular data mining algorithm to extract an interesting and useful knowledge. It is highly expected that data mining methods will find interesting patterns according to some measures, from databases. It is of vital importance to define good measures of interestingness that would allow the system to discover only the useful patterns. Measures of interestingness are divided into objective and subjective measures. Objective measures are those that depend only on the structure of a pattern and which can be quantified by using statistical methods. While, subjective measures depend only on the subjectivity and understandability of the user who examine the patterns. These subjective measures are further divided into actionable, unexpected and novel. The key issues that faces data mining community is how to make actions on the basis of discovered knowledge. For a pattern to be actionable, the user subjectivity is captured by providing his/her background knowledge about domain. Here, we consider the actionability of the discovered knowledge as a measure of interestingness and raise important issues which need to be addressed to discover actionable knowledge.

Keywords: Data Mining Community, Knowledge Discovery inDatabases (KDD), Interestingness, Subjective Measures, Actionability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
505 Spatial Optimization of Riverfront Street Based on Inclusive Design: Case Study of Wansheng District, China

Authors: Lianxue Shi

Abstract:

Riverfront streets have the dual characteristics of street space and waterfront space, which is not only a vital place for residents to travel and communicate, but also a high-frequency space for people's leisure and entertainment. However, under the development of cities and towns pursuing efficiency, riverfront streets appear to have a variety of problems, such as a lack of multifunctionality, insufficient facilities, and loss of characteristics, which fail to meet the needs of various groups of people, and their inclusiveness is facing a great challenge. It is, therefore, evident that the optimization of riverfront street space from an inclusivity perspective is important to the establishment of a human-centered, high-quality urban space. Therefore, this article starts by exploring the interactive relationship between inclusive design and street space. Based on the analysis of the characteristics of the riverfront street space and people's needs, it proposes the four inclusive design orientations of natural inclusion, group inclusion, spatial inclusion, and social inclusion. It then constructs a design framework for the inclusive optimization of riverfront street space, aiming to create streets that are “safe and accessible, diverse and shared, distinctive and friendly, green and sustainable”. Riverfront streets in Wansheng District, Chongqing, are selected as a practice case, and specific strategies are put forward in four aspects: the creation of an accessible slow-traffic system, the provision of diversified functional services, the reshaping of emotional bonds, and the integration of ecological spaces.

Keywords: Inclusive design, riverfront street, spatial optimization, street spaces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32
504 Retrospective Reconstruction of Time Series Data for Integrated Waste Management

Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy

Abstract:

The development, operation and maintenance of Integrated Waste Management Systems (IWMS) affects essentially the sustainable concern of every region. The features of such systems have great influence on all of the components of sustainability. In order to reach the optimal way of processes, a comprehensive mapping of the variables affecting the future efficiency of the system is needed such as analysis of the interconnections among the components and modeling of their interactions. The planning of a IWMS is based fundamentally on technical and economical opportunities and the legal framework. Modeling the sustainability and operation effectiveness of a certain IWMS is not in the scope of the present research. The complexity of the systems and the large number of the variables require the utilization of a complex approach to model the outcomes and future risks. This complex method should be able to evaluate the logical framework of the factors composing the system and the interconnections between them. The authors of this paper studied the usability of the Fuzzy Cognitive Map (FCM) approach modeling the future operation of IWMS’s. The approach requires two input data set. One is the connection matrix containing all the factors affecting the system in focus with all the interconnections. The other input data set is the time series, a retrospective reconstruction of the weights and roles of the factors. This paper introduces a novel method to develop time series by content analysis.

Keywords: Content analysis, factors, integrated waste management system, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
503 Enhanced Multi-Intensity Analysis in Multi-Scenery Classification-Based Macro and Micro Elements

Authors: R. Bremananth

Abstract:

Several computationally challenging issues are encountered while classifying complex natural scenes. In this paper, we address the problems that are encountered in rotation invariance with multi-intensity analysis for multi-scene overlapping. In the present literature, various algorithms proposed techniques for multi-intensity analysis, but there are several restrictions in these algorithms while deploying them in multi-scene overlapping classifications. In order to resolve the problem of multi-scenery overlapping classifications, we present a framework that is based on macro and micro basis functions. This algorithm conquers the minimum classification false alarm while pigeonholing multi-scene overlapping. Furthermore, a quadrangle multi-intensity decay is invoked. Several parameters are utilized to analyze invariance for multi-scenery classifications such as rotation, classification, correlation, contrast, homogeneity, and energy. Benchmark datasets were collected for complex natural scenes and experimented for the framework. The results depict that the framework achieves a significant improvement on gray-level matrix of co-occurrence features for overlapping in diverse degree of orientations while pigeonholing multi-scene overlapping.

Keywords: Automatic classification, contrast, homogeneity, invariant analysis, multi-scene analysis, overlapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1122
502 New Nonlinear Filtering Strategies for Eliminating Short and Long Tailed Noise in Images with Edge Preservation Properties

Authors: E. Srinivasan, D. Ebenezer

Abstract:

Midpoint filter is quite effective in recovering the images confounded by the short-tailed (uniform) noise. It, however, performs poorly in the presence of additive long-tailed (impulse) noise and it does not preserve the edge structures of the image signals. Median smoother discards outliers (impulses) effectively, but it fails to provide adequate smoothing for images corrupted with nonimpulse noise. In this paper, two nonlinear techniques for image filtering, namely, New Filter I and New Filter II are proposed based on a nonlinear high-pass filter algorithm. New Filter I is constructed using a midpoint filter, a highpass filter and a combiner. It suppresses uniform noise quite well. New Filter II is configured using an alpha trimmed midpoint filter, a median smoother of window size 3x3, the high pass filter and the combiner. It is robust against impulse noise and attenuates uniform noise satisfactorily. Both the filters are shown to exhibit good response at the image boundaries (edges). The proposed filters are evaluated for their performance on a test image and the results obtained are included.

Keywords: Image filters, Midpoint filter, Nonlinear filters, Nonlinear highpass filter, Order-statistic filters, Rank-order filters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
501 Numerical Analysis of Thermal Conductivity of Non-Charring Material Ablation Carbon-Carbon and Graphite with Considering Chemical Reaction Effects, Mass Transfer and Surface Heat Transfer

Authors: H. Mohammadiun, A. Kianifar, A. Kargar

Abstract:

Nowadays, there is little information, concerning the heat shield systems, and this information is not completely reliable to use in so many cases. for example, the precise calculation cannot be done for various materials. In addition, the real scale test has two disadvantages: high cost and low flexibility, and for each case we must perform a new test. Hence, using numerical modeling program that calculates the surface recession rate and interior temperature distribution is necessary. Also, numerical solution of governing equation for non-charring material ablation is presented in order to anticipate the recession rate and the heat response of non-charring heat shields. the governing equation is nonlinear and the Newton- Rafson method along with TDMA algorithm is used to solve this nonlinear equation system. Using Newton- Rafson method for solving the governing equation is one of the advantages of the solving method because this method is simple and it can be easily generalized to more difficult problems. The obtained results compared with reliable sources in order to examine the accuracy of compiling code.

Keywords: Ablation rate, surface recession, interior temperaturedistribution, non charring material ablation, Newton Rafson method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
500 Power Transformers Insulation Material Investigations: Partial Discharge

Authors: Jalal M. Abdallah

Abstract:

There is a great problem in testing and investigations the reliability of different type of transformers insulation materials. It summarized in how to create and simulate the real conditions of working transformer and testing its insulation materials for Partial Discharge PD, typically as in the working mode. A lot of tests may give untrue results as the physical behavior of the insulation material differs under tests from its working condition. In this work, the real working conditions were simulated, and a large number of specimens have been tested. The investigations first stage, begin with choosing samples of different types of insulation materials (papers, pressboards, etc.). The second stage, the samples were dried in ovens at 105 C0and 0.01bar for 48 hours, and then impregnated with dried and gasless oil (the water content less than 6 ppm.) at 105 C0and 0.01bar for 48 hours, after so specimen cooling at room pressure and temperature for 24 hours. The third stage is investigating PD for the samples using ICM PD measuring device. After that, a continuous test on oil-impregnated insulation materials (paper, pressboards) was developed, and the phase resolved partial discharge pattern of PD signals was measured. The important of this work in providing the industrial sector with trusted high accurate measuring results based on real simulated working conditions. All the PD patterns (results) associated with a discharge produced in well-controlled laboratory condition. They compared with other previous and other laboratory results. In addition, the influence of different temperatures condition on the partial discharge activities was studied.

Keywords: Transformers, insulation materials, voids, partial discharge (PD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
499 Power Flow Tracing Based Reactive Power Ancillary Service (AS) in Restructured Power Market

Authors: M. Susithra, R. Gnanadass

Abstract:

Ancillary services are support services which are essential for humanizing and enhancing the reliability and security of the electric power system. Reactive power ancillary service is one of the important ancillary services in a restructured electricity market which determines the cost of supplying ancillary services and finding of how this cost would change with respect to operating decisions. This paper presents a new formation that can be used to minimize the Independent System Operator (ISO)’s total payment for reactive power ancillary service. The modified power flow tracing algorithm estimates the availability of reserve reactive power for ancillary service. In order to find optimum reactive power dispatch, Biogeography based optimization method (BPO) is proposed. Market Reactive Clearing Price (MRCP) is then estimated and it encourages generator companies (GENCOs) to participate in an ancillary service. Finally, optimal weighting factor and real time utilization factor of reactive power give the minimum ISO’s total payment. The effectiveness of proposed design is verified using IEEE 30 bus system.

Keywords: Biogeography based optimization method, Power flow tracing method, Reactive generation capability curve and Reactive power ancillary service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3236
498 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts

Authors: S. Karabulut, A. Güllü, A. Güldas, R. Gürbüz

Abstract:

This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.

Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
497 Technological Advancement in Fashion Online Retailing: A Comparative Study of Pakistan and UK Fashion E-Commerce

Authors: Sadia Idrees, Gianpaolo Vignali, Simeon Gill

Abstract:

The study aims to establish the virtual size and fit technology features to enhance fashion online retailing platforms, utilising digital human measurements to provide customised style and function to consumers. A few firms in the UK have launched advanced interactive fashion shopping domains for personalised shopping globally, aided by the latest internet technology. Virtual size and fit interfaces have a great potential to provide a personalised better-fitted garment to promote mass customisation globally. Made-to-measure clothing, consuming unstitched fabric is a common practice offered by fashion brands in Pakistan. This product is regarded as economical and sustainable to be utilised by consumers in Pakistan. Although the manual sizing system is practiced to sell garments online, virtual size and fit visualisation and recommendation technologies are uncommon in Pakistani fashion interfaces. A comparative assessment of Pakistani fashion brand websites and UK technology-driven fashion interfaces was conducted to highlight the vast potential of the virtual size and fit technology. The results indicated that web 2.0 technology adopted by Pakistani apparel brands has limited features, whereas companies practicing web 3.0 technology provide interactive online real-store shopping experience leading to enhanced customer satisfaction and globalisation of brands.

Keywords: E-commerce, mass customization, virtual size and fit, web 3.0 technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
496 Active Islanding Detection Method Using Intelligent Controller

Authors: Kuang-Hsiung Tan, Chih-Chan Hu, Chien-Wu Lan, Shih-Sung Lin, Te-Jen Chang

Abstract:

An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results.

Keywords: Distributed generators, probabilistic fuzzy neural network, islanding detection, non-detection zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425
495 Kinetic and Removable of Amoxicillin Using Aliquat336 as a Carrier via a HFSLM

Authors: Teerapon Pirom, Ura Pancharoen

Abstract:

Amoxicillin is an antibiotic which is widely used to treat various infections in both human beings and animals. However, when amoxicillin is released into the environment, it is a major problem. Amoxicillin causes bacterial resistance to these drugs and failure of treatment with antibiotics. Liquid membrane is of great interest as a promising method for the separation and recovery of the target ions from aqueous solutions due to the use of carriers for the transport mechanism, resulting in highly selectivity and rapid transportation of the desired metal ions. The simultaneous processes of extraction and stripping in a single unit operation of liquid membrane system are very interesting. Therefore, it is practical to apply liquid membrane, particularly the HFSLM for industrial applications as HFSLM is proved to be a separation process with lower capital and operating costs, low energy and extractant with long life time, high selectivity and high fluxes compared with solid membranes. It is a simple design amenable to scaling up for industrial applications. The extraction and recovery for (Amoxicillin) through the hollow fiber supported liquid membrane (HFSLM) using aliquat336 as a carrier were explored with the experimental data. The important variables affecting on transport of amoxicillin viz. extractant concentration and operating time were investigated. The highest AMOX- extraction percentages of 85.35 and Amoxicillin stripping of 80.04 were achieved with the best condition at 6 mmol/L [aliquat336] and operating time 100 min. The extraction reaction order (n) and the extraction reaction rate constant (kf) were found to be 1.00 and 0.0344 min-1, respectively.

Keywords: Aliquat336, amoxicillin, HFSLM, kinetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
494 Selection the Optimum Cooling Scheme for Generators based on the Electro-Thermal Analysis

Authors: Diako Azizi, Ahmad Gholami, Vahid Abbasi

Abstract:

Optimal selection of electrical insulations in electrical machinery insures reliability during operation. From the insulation studies of view for electrical machines, stator is the most important part. This fact reveals the requirement for inspection of the electrical machine insulation along with the electro-thermal stresses. In the first step of the study, a part of the whole structure of machine in which covers the general characteristics of the machine is chosen, then based on the electromagnetic analysis (finite element method), the machine operation is simulated. In the simulation results, the temperature distribution of the total structure is presented simultaneously by using electro-thermal analysis. The results of electro-thermal analysis can be used for designing an optimal cooling system. In order to design, review and comparing the cooling systems, four wiring structures in the slots of Stator are presented. The structures are compared to each other in terms of electrical, thermal distribution and remaining life of insulation by using Finite Element analysis. According to the steps of the study, an optimization algorithm has been presented for selection of appropriate structure.

Keywords: Electrical field, field distribution, insulation, winding, finite element method, electro thermal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
493 Design and Implementation a Fully Autonomous Soccer Player Robot

Authors: S. H. Mohades Kasaei, S. M. Mohades Kasaei, S. A. Mohades Kasaei, M. Taheri, M. Rahimi, H. Vahiddastgerdi, M. Saeidinezhad

Abstract:

Omni directional mobile robots have been popularly employed in several applications especially in soccer player robots considered in Robocup competitions. However, Omni directional navigation system, Omni-vision system and solenoid kicking mechanism in such mobile robots have not ever been combined. This situation brings the idea of a robot with no head direction into existence, a comprehensive Omni directional mobile robot. Such a robot can respond more quickly and it would be capable for more sophisticated behaviors with multi-sensor data fusion algorithm for global localization base on the data fusion. This paper has tried to focus on the research improvements in the mechanical, electrical and software design of the robots of team ADRO Iran. The main improvements are the world model, the new strategy framework, mechanical structure, Omni-vision sensor for object detection, robot path planning, active ball handling mechanism and the new kicker design, , and other subjects related to mobile robot

Keywords: Mobile robot, Machine vision, Omni directional movement, Autonomous Systems, Robot path planning, Object Localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
492 Rule Based Architecture for Collaborative Multidisciplinary Aircraft Design Optimisation

Authors: Nickolay Jelev, Andy Keane, Carren Holden, András Sóbester

Abstract:

In aircraft design, the jump from the conceptual to preliminary design stage introduces a level of complexity which cannot be realistically handled by a single optimiser, be that a human (chief engineer) or an algorithm. The design process is often partitioned along disciplinary lines, with each discipline given a level of autonomy. This introduces a number of challenges including, but not limited to: coupling of design variables; coordinating disciplinary teams; handling of large amounts of analysis data; reaching an acceptable design within time constraints. A number of classical Multidisciplinary Design Optimisation (MDO) architectures exist in academia specifically designed to address these challenges. Their limited use in the industrial aircraft design process has inspired the authors of this paper to develop an alternative strategy based on well established ideas from Decision Support Systems. The proposed rule based architecture sacrifices possibly elusive guarantees of convergence for an attractive return in simplicity. The method is demonstrated on analytical and aircraft design test cases and its performance is compared to a number of classical distributed MDO architectures.

Keywords: Multidisciplinary design optimisation, rule based architecture, aircraft design, decision support system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1077
491 Frequency-Variation Based Method for Parameter Estimation of Transistor Amplifier

Authors: Akash Rathee, Harish Parthasarathy

Abstract:

In this paper, a frequency-variation based method has been proposed for transistor parameter estimation in a commonemitter transistor amplifier circuit. We design an algorithm to estimate the transistor parameters, based on noisy measurements of the output voltage when the input voltage is a sine wave of variable frequency and constant amplitude. The common emitter amplifier circuit has been modelled using the transistor Ebers-Moll equations and the perturbation technique has been used for separating the linear and nonlinear parts of the Ebers-Moll equations. This model of the amplifier has been used to determine the amplitude of the output sinusoid as a function of the frequency and the parameter vector. Then, applying the proposed method to the frequency components, the transistor parameters have been estimated. As compared to the conventional time-domain least squares method, the proposed method requires much less data storage and it results in more accurate parameter estimation, as it exploits the information in the time and frequency domain, simultaneously. The proposed method can be utilized for parameter estimation of an analog device in its operating range of frequencies, as it uses data collected from different frequencies output signals for parameter estimation.

Keywords: Perturbation Technique, Parameter estimation, frequency-variation based method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
490 Conjugate Mixed Convection Heat Transfer and Entropy Generation of Cu-Water Nanofluid in an Enclosure with Thick Wavy Bottom Wall

Authors: Sanjib Kr Pal, S. Bhattacharyya

Abstract:

Mixed convection of Cu-water nanofluid in an enclosure with thick wavy bottom wall has been investigated numerically. A co-ordinate transformation method is used to transform the computational domain into an orthogonal co-ordinate system. The governing equations in the computational domain are solved through a pressure correction based iterative algorithm. The fluid flow and heat transfer characteristics are analyzed for a wide range of Richardson number (0.1 ≤ Ri ≤ 5), nanoparticle volume concentration (0.0 ≤ ϕ ≤ 0.2), amplitude (0.0 ≤ α ≤ 0.1) of the wavy thick- bottom wall and the wave number (ω) at a fixed Reynolds number. Obtained results showed that heat transfer rate increases remarkably by adding the nanoparticles. Heat transfer rate is dependent on the wavy wall amplitude and wave number and decreases with increasing Richardson number for fixed amplitude and wave number. The Bejan number and the entropy generation are determined to analyze the thermodynamic optimization of the mixed convection.

Keywords: Entropy generation, mixed convection, conjugate heat transfer, numerical, nanofluid, wall waviness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1046
489 Inversion of Electrical Resistivity Data: A Review

Authors: Shrey Sharma, Gunjan Kumar Verma

Abstract:

High density electrical prospecting has been widely used in groundwater investigation, civil engineering and environmental survey. For efficient inversion, the forward modeling routine, sensitivity calculation, and inversion algorithm must be efficient. This paper attempts to provide a brief summary of the past and ongoing developments of the method. It includes reviews of the procedures used for data acquisition, processing and inversion of electrical resistivity data based on compilation of academic literature. In recent times there had been a significant evolution in field survey designs and data inversion techniques for the resistivity method. In general 2-D inversion for resistivity data is carried out using the linearized least-square method with the local optimization technique .Multi-electrode and multi-channel systems have made it possible to conduct large 2-D, 3-D and even 4-D surveys efficiently to resolve complex geological structures that were not possible with traditional 1-D surveys. 3-D surveys play an increasingly important role in very complex areas where 2-D models suffer from artifacts due to off-line structures. Continued developments in computation technology, as well as fast data inversion techniques and software, have made it possible to use optimization techniques to obtain model parameters to a higher accuracy. A brief discussion on the limitations of the electrical resistivity method has also been presented.

Keywords: Resistivity, inversion, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6077
488 Quad Tree Decomposition Based Analysis of Compressed Image Data Communication for Lossy and Lossless Using WSN

Authors: N. Muthukumaran, R. Ravi

Abstract:

The Quad Tree Decomposition based performance analysis of compressed image data communication for lossy and lossless through wireless sensor network is presented. Images have considerably higher storage requirement than text. While transmitting a multimedia content there is chance of the packets being dropped due to noise and interference. At the receiver end the packets that carry valuable information might be damaged or lost due to noise, interference and congestion. In order to avoid the valuable information from being dropped various retransmission schemes have been proposed. In this proposed scheme QTD is used. QTD is an image segmentation method that divides the image into homogeneous areas. In this proposed scheme involves analysis of parameters such as compression ratio, peak signal to noise ratio, mean square error, bits per pixel in compressed image and analysis of difficulties during data packet communication in Wireless Sensor Networks. By considering the above, this paper is to use the QTD to improve the compression ratio as well as visual quality and the algorithm in MATLAB 7.1 and NS2 Simulator software tool.

Keywords: Image compression, Compression Ratio, Quad tree decomposition, Wireless sensor networks, NS2 simulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391
487 Designing a Framework for Network Security Protection

Authors: Eric P. Jiang

Abstract:

As the Internet continues to grow at a rapid pace as the primary medium for communications and commerce and as telecommunication networks and systems continue to expand their global reach, digital information has become the most popular and important information resource and our dependence upon the underlying cyber infrastructure has been increasing significantly. Unfortunately, as our dependency has grown, so has the threat to the cyber infrastructure from spammers, attackers and criminal enterprises. In this paper, we propose a new machine learning based network intrusion detection framework for cyber security. The detection process of the framework consists of two stages: model construction and intrusion detection. In the model construction stage, a semi-supervised machine learning algorithm is applied to a collected set of network audit data to generate a profile of normal network behavior and in the intrusion detection stage, input network events are analyzed and compared with the patterns gathered in the profile, and some of them are then flagged as anomalies should these events are sufficiently far from the expected normal behavior. The proposed framework is particularly applicable to the situations where there is only a small amount of labeled network training data available, which is very typical in real world network environments.

Keywords: classification, data analysis and mining, network intrusion detection, semi-supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
486 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design

Authors: Vahid Nademi

Abstract:

In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.

Keywords: Blood glucose monitoring, insulin pump, optimization, predictive control, diabetes disease.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 750
485 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem

Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq

Abstract:

High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.

Keywords: Artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 914