Search results for: feature vector
1199 Automatically Driven Vector for Guidewire Segmentation in 2D and Biplane Fluoroscopy
Authors: Simon Lessard, Pascal Bigras, Caroline Lau, Daniel Roy, Gilles Soulez, Jacques A. de Guise
Abstract:
The segmentation of endovascular tools in fluoroscopy images can be accurately performed automatically or by minimum user intervention, using known modern techniques. It has been proven in literature, but no clinical implementation exists so far because the computational time requirements of such technology have not yet been met. A classical segmentation scheme is composed of edge enhancement filtering, line detection, and segmentation. A new method is presented that consists of a vector that propagates in the image to track an edge as it advances. The filtering is performed progressively in the projected path of the vector, whose orientation allows for oriented edge detection, and a minimal image area is globally filtered. Such an algorithm is rapidly computed and can be implemented in real-time applications. It was tested on medical fluoroscopy images from an endovascular cerebral intervention. Ex- periments showed that the 2D tracking was limited to guidewires without intersection crosspoints, while the 3D implementation was able to cope with such planar difficulties.
Keywords: Edge detection, Line Enhancement, Segmentation, Fluoroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17271198 DTC-SVM Scheme for Induction Motors Fedwith a Three-level Inverter
Authors: Ehsan Hassankhan, Davood A. Khaburi
Abstract:
Direct Torque Control is a control technique in AC drive systems to obtain high performance torque control. The conventional DTC drive contains a pair of hysteresis comparators. DTC drives utilizing hysteresis comparators suffer from high torque ripple and variable switching frequency. The most common solution to those problems is to use the space vector depends on the reference torque and flux. In this Paper The space vector modulation technique (SVPWM) is applied to 2 level inverter control in the proposed DTC-based induction motor drive system, thereby dramatically reducing the torque ripple. Then the controller based on space vector modulation is designed to be applied in the control of Induction Motor (IM) with a three-level Inverter. This type of Inverter has several advantages over the standard two-level VSI, such as a greater number of levels in the output voltage waveforms, Lower dV/dt, less harmonic distortion in voltage and current waveforms and lower switching frequencies. This paper proposes a general SVPWM algorithm for three-level based on standard two-level SVPWM. The proposed scheme is described clearly and simulation results are reported to demonstrate its effectiveness. The entire control scheme is implemented with Matlab/Simulink.Keywords: Direct torque control, space vector Pulsewidthmodulation(SVPWM), neutral point clamped(NPC), two-levelinverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43951197 One-Class Support Vector Machines for Aerial Images Segmentation
Authors: Chih-Hung Wu, Chih-Chin Lai, Chun-Yen Chen, Yan-He Chen
Abstract:
Interpretation of aerial images is an important task in various applications. Image segmentation can be viewed as the essential step for extracting information from aerial images. Among many developed segmentation methods, the technique of clustering has been extensively investigated and used. However, determining the number of clusters in an image is inherently a difficult problem, especially when a priori information on the aerial image is unavailable. This study proposes a support vector machine approach for clustering aerial images. Three cluster validity indices, distance-based index, Davies-Bouldin index, and Xie-Beni index, are utilized as quantitative measures of the quality of clustering results. Comparisons on the effectiveness of these indices and various parameters settings on the proposed methods are conducted. Experimental results are provided to illustrate the feasibility of the proposed approach.Keywords: Aerial imaging, image segmentation, machine learning, support vector machine, cluster validity index
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19381196 Hybrid Approach for Country’s Performance Evaluation
Authors: C. Slim
Abstract:
This paper presents an integrated model, which hybridized data envelopment analysis (DEA) and support vector machine (SVM) together, to class countries according to their efficiency and performance. This model takes into account aspects of multi-dimensional indicators, decision-making hierarchy and relativity of measurement. Starting from a set of indicators of performance as exhaustive as possible, a process of successive aggregations has been developed to attain an overall evaluation of a country’s competitiveness.
Keywords: Artificial neural networks, support vector machine, data envelopment analysis, aggregations, indicators of performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10601195 Temporally Coherent 3D Animation Reconstruction from RGB-D Video Data
Authors: Salam Khalifa, Naveed Ahmed
Abstract:
We present a new method to reconstruct a temporally coherent 3D animation from single or multi-view RGB-D video data using unbiased feature point sampling. Given RGB-D video data, in form of a 3D point cloud sequence, our method first extracts feature points using both color and depth information. In the subsequent steps, these feature points are used to match two 3D point clouds in consecutive frames independent of their resolution. Our new motion vectors based dynamic alignement method then fully reconstruct a spatio-temporally coherent 3D animation. We perform extensive quantitative validation using novel error functions to analyze the results. We show that despite the limiting factors of temporal and spatial noise associated to RGB-D data, it is possible to extract temporal coherence to faithfully reconstruct a temporally coherent 3D animation from RGB-D video data.
Keywords: 3D video, 3D animation, RGB-D video, Temporally Coherent 3D Animation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20711194 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network
Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza
Abstract:
The aim of this work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. With our research and based on a feature selection in different phases, we are trying to design a neural network system with an optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each region of interest (ROI), 6 distinct sets of texture features are extracted such as: first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. When analyzing more phases, we show that the injection of liquid cause changes to the high relevant features in each region. Our results demonstrate that for detecting HCC tumor phase 3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between pathology and healthy classes, according to our method, relates to first order histogram parameters with accuracy of 85% in phase 1, 95% in phase 2, and 95% in phase 3.
Keywords: Feature selection, Multi-phasic liver images, Neural network, Texture analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25341193 A Robust LS-SVM Regression
Authors: József Valyon, Gábor Horváth
Abstract:
In comparison to the original SVM, which involves a quadratic programming task; LS–SVM simplifies the required computation, but unfortunately the sparseness of standard SVM is lost. Another problem is that LS-SVM is only optimal if the training samples are corrupted by Gaussian noise. In Least Squares SVM (LS–SVM), the nonlinear solution is obtained, by first mapping the input vector to a high dimensional kernel space in a nonlinear fashion, where the solution is calculated from a linear equation set. In this paper a geometric view of the kernel space is introduced, which enables us to develop a new formulation to achieve a sparse and robust estimate.Keywords: Support Vector Machines, Least Squares SupportVector Machines, Regression, Sparse approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20621192 A Feature-based Invariant Watermarking Scheme Using Zernike Moments
Authors: Say Wei Foo, Qi Dong
Abstract:
In this paper, a novel feature-based image watermarking scheme is proposed. Zernike moments which have invariance properties are adopted in the scheme. In the proposed scheme, feature points are first extracted from host image and several circular patches centered on these points are generated. The patches are used as carriers of watermark information because they can be regenerated to locate watermark embedding positions even when watermarked images are severely distorted. Zernike transform is then applied to the patches to calculate local Zernike moments. Dither modulation is adopted to quantize the magnitudes of the Zernike moments followed by false alarm analysis. Experimental results show that quality degradation of watermarked image is visually transparent. The proposed scheme is very robust against image processing operations and geometric attacks.Keywords: Image watermarking, Zernike moments, Featurepoint, Invariance, Robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18471191 Physical Conserved Quantities for the Axisymmetric Liquid, Free and Wall Jets
Authors: Rehana Naz, D. P. Mason, Fazal Mahomed
Abstract:
A systematic way to derive the conserved quantities for the axisymmetric liquid jet, free jet and wall jet using conservation laws is presented. The flow in axisymmetric jets is governed by Prandtl-s momentum boundary layer equation and the continuity equation. The multiplier approach is used to construct a basis of conserved vectors for the system of two partial differential equations for the two velocity components. The basis consists of two conserved vectors. By integrating the corresponding conservation laws across the jet and imposing the boundary conditions, conserved quantities are derived for the axisymmetric liquid and free jet. The multiplier approach applied to the third-order partial differential equation for the stream function yields two local conserved vectors one of which is a non-local conserved vector for the system. One of the conserved vectors gives the conserved quantity for the axisymmetric free jet but the conserved quantity for the wall jet is not obtained from the second conserved vector. The conserved quantity for the axisymmetric wall jet is derived from a non-local conserved vector of the third-order partial differential equation for the stream function. This non-local conserved vector for the third-order partial differential equation for the stream function is obtained by using the stream function as multiplier.
Keywords: Axisymmetric jet, liquid jet, free jet, wall jet, conservation laws, conserved quantity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14611190 Comparative Analysis of SVPWM and the Standard PWM Technique for Three Level Diode Clamped Inverter fed Induction Motor
Authors: L. Lakhdari, B. Bouchiba, M. Bechar
Abstract:
The multi-level inverters present an important novelty in the field of energy control with high voltage and power. The major advantage of all multi-level inverters is the improvement and spectral quality of its generated output signals. In recent years, various pulse width modulation techniques have been developed. From these technics we have: Sinusoidal Pulse Width Modulation (SPWM) and Space Vector Pulse Width Modulation (SVPWM). This work presents a detailed analysis of the comparative advantage of space vector pulse width modulation (SVPWM) and the standard SPWM technique for Three Level Diode Clamped Inverter fed Induction Motor. The comparison is based on the evaluation of harmonic distortion THD.
Keywords: Induction motor, multi-level inverters, NPC inverter, sinusoidal pulse width modulation, space vector pulse width modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9771189 Multi-Layer Perceptron Neural Network Classifier with Binary Particle Swarm Optimization Based Feature Selection for Brain-Computer Interfaces
Authors: K. Akilandeswari, G. M. Nasira
Abstract:
Brain-Computer Interfaces (BCIs) measure brain signals activity, intentionally and unintentionally induced by users, and provides a communication channel without depending on the brain’s normal peripheral nerves and muscles output pathway. Feature Selection (FS) is a global optimization machine learning problem that reduces features, removes irrelevant and noisy data resulting in acceptable recognition accuracy. It is a vital step affecting pattern recognition system performance. This study presents a new Binary Particle Swarm Optimization (BPSO) based feature selection algorithm. Multi-layer Perceptron Neural Network (MLPNN) classifier with backpropagation training algorithm and Levenberg-Marquardt training algorithm classify selected features.Keywords: Brain-Computer Interfaces (BCI), Feature Selection (FS), Walsh–Hadamard Transform (WHT), Binary Particle Swarm Optimization (BPSO), Multi-Layer Perceptron (MLP), Levenberg–Marquardt algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21831188 Identification of Cardiac Arrhythmias using Natural Resonance Complex Frequencies
Authors: Moustafa A. Bani-Hasan, Yasser M. Kadah, Fatma M. El-Hefnawi
Abstract:
An electrocardiogram (ECG) feature extraction system based on the calculation of the complex resonance frequency employing Prony-s method is developed. Prony-s method is applied on five different classes of ECG signals- arrhythmia as a finite sum of exponentials depending on the signal-s poles and the resonant complex frequencies. Those poles and resonance frequencies of the ECG signals- arrhythmia are evaluated for a large number of each arrhythmia. The ECG signals of lead II (ML II) were taken from MIT-BIH database for five different types. These are the ventricular couplet (VC), ventricular tachycardia (VT), ventricular bigeminy (VB), and ventricular fibrillation (VF) and the normal (NR). This novel method can be extended to any number of arrhythmias. Different classification techniques were tried using neural networks (NN), K nearest neighbor (KNN), linear discriminant analysis (LDA) and multi-class support vector machine (MC-SVM).Keywords: Arrhythmias analysis, electrocardiogram, featureextraction, statistical classifiers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20741187 Enhanced Performance for Support Vector Machines as Multiclass Classifiers in Steel Surface Defect Detection
Authors: Ehsan Amid, Sina Rezaei Aghdam, Hamidreza Amindavar
Abstract:
Steel surface defect detection is essentially one of pattern recognition problems. Support Vector Machines (SVMs) are known as one of the most proper classifiers in this application. In this paper, we introduce a more accurate classification method by using SVMs as our final classifier of the inspection system. In this scheme, multiclass classification task is performed based on the "one-againstone" method and different kernels are utilized for each pair of the classes in multiclass classification of the different defects. In the proposed system, a decision tree is employed in the first stage for two-class classification of the steel surfaces to "defect" and "non-defect", in order to decrease the time complexity. Based on the experimental results, generated from over one thousand images, the proposed multiclass classification scheme is more accurate than the conventional methods and the overall system yields a sufficient performance which can meet the requirements in steel manufacturing.Keywords: Steel Surface Defect Detection, Support Vector Machines, Kernel Methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19141186 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children
Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco
Abstract:
Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.Keywords: Feature selection, multi-objective evolutionary computation, unsupervised classification, behavior assessment system for children.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14451185 Fuzzy Rules Generation and Extraction from Support Vector Machine Based on Kernel Function Firing Signals
Authors: Prasan Pitiranggon, Nunthika Benjathepanun, Somsri Banditvilai, Veera Boonjing
Abstract:
Our study proposes an alternative method in building Fuzzy Rule-Based System (FRB) from Support Vector Machine (SVM). The first set of fuzzy IF-THEN rules is obtained through an equivalence of the SVM decision network and the zero-ordered Sugeno FRB type of the Adaptive Network Fuzzy Inference System (ANFIS). The second set of rules is generated by combining the first set based on strength of firing signals of support vectors using Gaussian kernel. The final set of rules is then obtained from the second set through input scatter partitioning. A distinctive advantage of our method is the guarantee that the number of final fuzzy IFTHEN rules is not more than the number of support vectors in the trained SVM. The final FRB system obtained is capable of performing classification with results comparable to its SVM counterpart, but it has an advantage over the black-boxed SVM in that it may reveal human comprehensible patterns.Keywords: Fuzzy Rule Base, Rule Extraction, Rule Generation, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19011184 Statistics over Lyapunov Exponents for Feature Extraction: Electroencephalographic Changes Detection Case
Authors: Elif Derya UBEYLI, Inan GULER
Abstract:
A new approach based on the consideration that electroencephalogram (EEG) signals are chaotic signals was presented for automated diagnosis of electroencephalographic changes. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. This paper presented the usage of statistics over the set of the Lyapunov exponents in order to reduce the dimensionality of the extracted feature vectors. Since classification is more accurate when the pattern is simplified through representation by important features, feature extraction and selection play an important role in classifying systems such as neural networks. Multilayer perceptron neural network (MLPNN) architectures were formulated and used as basis for detection of electroencephalographic changes. Three types of EEG signals (EEG signals recorded from healthy volunteers with eyes open, epilepsy patients in the epileptogenic zone during a seizure-free interval, and epilepsy patients during epileptic seizures) were classified. The selected Lyapunov exponents of the EEG signals were used as inputs of the MLPNN trained with Levenberg- Marquardt algorithm. The classification results confirmed that the proposed MLPNN has potential in detecting the electroencephalographic changes.
Keywords: Chaotic signal, Electroencephalogram (EEG) signals, Feature extraction/selection, Lyapunov exponents
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25071183 A New Composition Method of Admissible Support Vector Kernel Based on Reproducing Kernel
Authors: Wei Zhang, Xin Zhao, Yi-Fan Zhu, Xin-Jian Zhang
Abstract:
Kernel function, which allows the formulation of nonlinear variants of any algorithm that can be cast in terms of dot products, makes the Support Vector Machines (SVM) have been successfully applied in many fields, e.g. classification and regression. The importance of kernel has motivated many studies on its composition. It-s well-known that reproducing kernel (R.K) is a useful kernel function which possesses many properties, e.g. positive definiteness, reproducing property and composing complex R.K by simple operation. There are two popular ways to compute the R.K with explicit form. One is to construct and solve a specific differential equation with boundary value whose handicap is incapable of obtaining a unified form of R.K. The other is using a piecewise integral of the Green function associated with a differential operator L. The latter benefits the computation of a R.K with a unified explicit form and theoretical analysis, whereas there are relatively later studies and fewer practical computations. In this paper, a new algorithm for computing a R.K is presented. It can obtain the unified explicit form of R.K in general reproducing kernel Hilbert space. It avoids constructing and solving the complex differential equations manually and benefits an automatic, flexible and rigorous computation for more general RKHS. In order to validate that the R.K computed by the algorithm can be used in SVM well, some illustrative examples and a comparison between R.K and Gaussian kernel (RBF) in support vector regression are presented. The result shows that the performance of R.K is close or slightly superior to that of RBF.
Keywords: admissible support vector kernel, reproducing kernel, reproducing kernel Hilbert space, Green function, support vectorregression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15421182 Estimating an Optimal Neighborhood Size in the Spherical Self-Organizing Feature Map
Authors: Alexandros Leontitsis, Archana P. Sangole
Abstract:
This article presents a short discussion on optimum neighborhood size selection in a spherical selforganizing feature map (SOFM). A majority of the literature on the SOFMs have addressed the issue of selecting optimal learning parameters in the case of Cartesian topology SOFMs. However, the use of a Spherical SOFM suggested that the learning aspects of Cartesian topology SOFM are not directly translated. This article presents an approach on how to estimate the neighborhood size of a spherical SOFM based on the data. It adopts the L-curve criterion, previously suggested for choosing the regularization parameter on problems of linear equations where their right-hand-side is contaminated with noise. Simulation results are presented on two artificial 4D data sets of the coupled Hénon-Ikeda map.Keywords: Parameter estimation, self-organizing feature maps, spherical topology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15181181 Design and Analysis of Fault Tolerate feature of n-Phase Induction Motor Drive
Authors: G. Renuka Devi
Abstract:
This paper presents design and analysis of fault tolerate feature of n-phase induction motor drive. The n-phase induction motor (more than 3-phases) has a number of advantages over conventional 3-phase induction motor, it has low torque pulsation with increased torque density, more fault tolerant feature, low current ripple with increased efficiency. When increasing the number of phases, it has reduced current per phase without increasing per phase voltage, resulting in an increase in the total power rating of n-phase motors in the same volume machine. In this paper, the theory of operation of a multi-phase induction motor is discussed. The detailed study of d-q modeling of n-phase induction motors is elaborated. The d-q model of n-phase (5, 6, 7, 9 and 12) induction motors is developed in a MATLAB/Simulink environment. The steady state and dynamic performance of the multi-phase induction motor is studied under varying load conditions. Comparison of 5-phase induction is presented under normal and fault conditions.
Keywords: d-q model, dynamic Response, fault tolerant feature, matlab/simulink, multi-phase induction motor, transient response.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5771180 Road Vehicle Recognition Using Magnetic Sensing Feature Extraction and Classification
Authors: Xiao Chen, Xiaoying Kong, Min Xu
Abstract:
This paper presents a road vehicle detection approach for the intelligent transportation system. This approach mainly uses low-cost magnetic sensor and associated data collection system to collect magnetic signals. This system can measure the magnetic field changing, and it also can detect and count vehicles. We extend Mel Frequency Cepstral Coefficients to analyze vehicle magnetic signals. Vehicle type features are extracted using representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 2-dimensional map algorithm using Vector Quantization to classify vehicle magnetic features to four typical types of vehicles in Australian suburbs: sedan, VAN, truck, and bus. Experiments results show that our approach achieves a high level of accuracy for vehicle detection and classification.
Keywords: Vehicle classification, signal processing, road traffic model, magnetic sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14001179 Genetic Folding: Analyzing the Mercer-s Kernels Effect in Support Vector Machine using Genetic Folding
Authors: Mohd A. Mezher, Maysam F. Abbod
Abstract:
Genetic Folding (GF) a new class of EA named as is introduced for the first time. It is based on chromosomes composed of floating genes structurally organized in a parent form and separated by dots. Although, the genotype/phenotype system of GF generates a kernel expression, which is the objective function of superior classifier. In this work the question of the satisfying mapping-s rules in evolving populations is addressed by analyzing populations undergoing either Mercer-s or none Mercer-s rule. The results presented here show that populations undergoing Mercer-s rules improve practically models selection of Support Vector Machine (SVM). The experiment is trained multi-classification problem and tested on nonlinear Ionosphere dataset. The target of this paper is to answer the question of evolving Mercer-s rule in SVM addressed using either genetic folding satisfied kernel-s rules or not applied to complicated domains and problems.Keywords: Genetic Folding, GF, Evolutionary Algorithms, Support Vector Machine, Genetic Algorithm, Genetic Programming, Multi-Classification, Mercer's Rules
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16261178 Automatic Classification of Initial Categories of Alzheimer's Disease from Structural MRI Phase Images: A Comparison of PSVM, KNN and ANN Methods
Authors: Ahsan Bin Tufail, Ali Abidi, Adil Masood Siddiqui, Muhammad Shahzad Younis
Abstract:
An early and accurate detection of Alzheimer's disease (AD) is an important stage in the treatment of individuals suffering from AD. We present an approach based on the use of structural magnetic resonance imaging (sMRI) phase images to distinguish between normal controls (NC), mild cognitive impairment (MCI) and AD patients with clinical dementia rating (CDR) of 1. Independent component analysis (ICA) technique is used for extracting useful features which form the inputs to the support vector machines (SVM), K nearest neighbour (kNN) and multilayer artificial neural network (ANN) classifiers to discriminate between the three classes. The obtained results are encouraging in terms of classification accuracy and effectively ascertain the usefulness of phase images for the classification of different stages of Alzheimer-s disease.
Keywords: Biomedical image processing, classification algorithms, feature extraction, statistical learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27651177 Using Self Organizing Feature Maps for Classification in RGB Images
Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami
Abstract:
Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feedforward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on selforganizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.Keywords: Classification, SOFM, neural network, RGB images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23161176 A Comparison of Different Soft Computing Models for Credit Scoring
Authors: Nnamdi I. Nwulu, Shola G. Oroja
Abstract:
It has become crucial over the years for nations to improve their credit scoring methods and techniques in light of the increasing volatility of the global economy. Statistical methods or tools have been the favoured means for this; however artificial intelligence or soft computing based techniques are becoming increasingly preferred due to their proficient and precise nature and relative simplicity. This work presents a comparison between Support Vector Machines and Artificial Neural Networks two popular soft computing models when applied to credit scoring. Amidst the different criteria-s that can be used for comparisons; accuracy, computational complexity and processing times are the selected criteria used to evaluate both models. Furthermore the German credit scoring dataset which is a real world dataset is used to train and test both developed models. Experimental results obtained from our study suggest that although both soft computing models could be used with a high degree of accuracy, Artificial Neural Networks deliver better results than Support Vector Machines.Keywords: Artificial Neural Networks, Credit Scoring, SoftComputing Models, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21281175 Face Recognition Using Morphological Shared-weight Neural Networks
Authors: Hossein Sahoolizadeh, Mahdi Rahimi, Hamid Dehghani
Abstract:
We introduce an algorithm based on the morphological shared-weight neural network. Being nonlinear and translation-invariant, the MSNN can be used to create better generalization during face recognition. Feature extraction is performed on grayscale images using hit-miss transforms that are independent of gray-level shifts. The output is then learned by interacting with the classification process. The feature extraction and classification networks are trained together, allowing the MSNN to simultaneously learn feature extraction and classification for a face. For evaluation, we test for robustness under variations in gray levels and noise while varying the network-s configuration to optimize recognition efficiency and processing time. Results show that the MSNN performs better for grayscale image pattern classification than ordinary neural networks.Keywords: Face recognition, Neural Networks, Multi-layer Perceptron, masking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15141174 A New DIDS Design Based on a Combination Feature Selection Approach
Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman
Abstract:
Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original dataset. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 dataset is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.Keywords: Distributed intrusion detection system, mobile agent, feature selection, Bees Algorithm, decision tree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19381173 Liver Tumor Detection by Classification through FD Enhancement of CT Image
Authors: N. Ghatwary, A. Ahmed, H. Jalab
Abstract:
In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.Keywords: Fractional differential (FD), Computed Tomography (CT), fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16811172 Improved Text-Independent Speaker Identification using Fused MFCC and IMFCC Feature Sets based on Gaussian Filter
Authors: Sandipan Chakroborty, Goutam Saha
Abstract:
A state of the art Speaker Identification (SI) system requires a robust feature extraction unit followed by a speaker modeling scheme for generalized representation of these features. Over the years, Mel-Frequency Cepstral Coefficients (MFCC) modeled on the human auditory system has been used as a standard acoustic feature set for speech related applications. On a recent contribution by authors, it has been shown that the Inverted Mel- Frequency Cepstral Coefficients (IMFCC) is useful feature set for SI, which contains complementary information present in high frequency region. This paper introduces the Gaussian shaped filter (GF) while calculating MFCC and IMFCC in place of typical triangular shaped bins. The objective is to introduce a higher amount of correlation between subband outputs. The performances of both MFCC & IMFCC improve with GF over conventional triangular filter (TF) based implementation, individually as well as in combination. With GMM as speaker modeling paradigm, the performances of proposed GF based MFCC and IMFCC in individual and fused mode have been verified in two standard databases YOHO, (Microphone Speech) and POLYCOST (Telephone Speech) each of which has more than 130 speakers.Keywords: Gaussian Filter, Triangular Filter, Subbands, Correlation, MFCC, IMFCC, GMM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24481171 Improved Closed Set Text-Independent Speaker Identification by Combining MFCC with Evidence from Flipped Filter Banks
Authors: Sandipan Chakroborty, Anindya Roy, Goutam Saha
Abstract:
A state of the art Speaker Identification (SI) system requires a robust feature extraction unit followed by a speaker modeling scheme for generalized representation of these features. Over the years, Mel-Frequency Cepstral Coefficients (MFCC) modeled on the human auditory system has been used as a standard acoustic feature set for SI applications. However, due to the structure of its filter bank, it captures vocal tract characteristics more effectively in the lower frequency regions. This paper proposes a new set of features using a complementary filter bank structure which improves distinguishability of speaker specific cues present in the higher frequency zone. Unlike high level features that are difficult to extract, the proposed feature set involves little computational burden during the extraction process. When combined with MFCC via a parallel implementation of speaker models, the proposed feature set outperforms baseline MFCC significantly. This proposition is validated by experiments conducted on two different kinds of public databases namely YOHO (microphone speech) and POLYCOST (telephone speech) with Gaussian Mixture Models (GMM) as a Classifier for various model orders.
Keywords: Complementary Information, Filter Bank, GMM, IMFCC, MFCC, Speaker Identification, Speaker Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22931170 Outlier Pulse Detection and Feature Extraction for Wrist Pulse Analysis
Authors: Bhaskar Thakker, Anoop Lal Vyas
Abstract:
Wrist pulse analysis for identification of health status is found in Ancient Indian as well as Chinese literature. The preprocessing of wrist pulse is necessary to remove outlier pulses and fluctuations prior to the analysis of pulse pressure signal. This paper discusses the identification of irregular pulses present in the pulse series and intricacies associated with the extraction of time domain pulse features. An approach of Dynamic Time Warping (DTW) has been utilized for the identification of outlier pulses in the wrist pulse series. The ambiguity present in the identification of pulse features is resolved with the help of first derivative of Ensemble Average of wrist pulse series. An algorithm for detecting tidal and dicrotic notch in individual wrist pulse segment is proposed.Keywords: Wrist Pulse Segment, Ensemble Average, Dynamic Time Warping (DTW), Pulse Similarity Vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092