Search results for: data mining technique
9481 A Discrete Filtering Algorithm for Impulse Wave Parameter Estimation
Authors: Khaled M. EL-Naggar
Abstract:
This paper presents a new method for estimating the mean curve of impulse voltage waveforms that are recorded during impulse tests. In practice, these waveforms are distorted by noise, oscillations and overshoot. The problem is formulated as an estimation problem. Estimation of the current signal parameters is achieved using a fast and accurate technique. The method is based on discrete dynamic filtering algorithm (DDF). The main advantage of the proposed technique is its ability in producing the estimates in a very short time and at a very high degree of accuracy. The algorithm uses sets of digital samples of the recorded impulse waveform. The proposed technique has been tested using simulated data of practical waveforms. Effects of number of samples and data window size are studied. Results are reported and discussed.
Keywords: Digital Filtering, Estimation, Impulse wave, Stochastic filtering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18499480 Research on the Layout of Ground Control Points in Plain area 1:10000 DLG Production Using POS Technique
Authors: Dong Ming, Chen Haipeng
Abstract:
POS (also been called DGPS/IMU) technique can obtain the Exterior Orientation Elements of aerial photo, so the triangulation and DLG production using POS can save large numbers of ground control points (GCP), and this will improve the produce efficiency of DLG and reduce the cost of collecting GCP. This paper mainly research on POS technique in production of 1:10 000 scale DLG on GCP distribution. We designed 23 kinds of ground control points distribution schemes, using integrated sensor direction method to do the triangulation experiments, based on the results of triangulation, we produce a map with the scale of 1:10 000 and test its accuracy. This paper put forward appropriate GCP distributing schemes by experiments and research above, and made preparations for the application of POS technique on photogrammetry 4D data production.
Keywords: POS, IMU, DGPS, DLG, ground control point, triangulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17059479 Improvements in Navy Data Networks and Tactical Communication Systems
Authors: Laurent Enel, Franck Guillem
Abstract:
This paper considers the benefits gained by using an efficient quality of service management such as DiffServ technique to improve the performance of military communications. Low delay and no blockage must be achieved especially for real time tactical data. All traffic flows generated by different applications do not need same bandwidth, same latency, same error ratio and this scalable technique of packet management based on priority levels is analysed. End to end architectures supporting various traffic flows and including lowbandwidth and high-delay HF or SHF military links as well as unprotected Internet sub domains are studied. A tuning of Diffserv parameters is proposed in accordance with different loads of various traffic and different operational situations.Keywords: Military data networks, Quality of service, Tacticalsystems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20699478 Data Mining to Capture User-Experience: A Case Study in Notebook Product Appearance Design
Authors: Rhoann Kerh, Chen-Fu Chien, Kuo-Yi Lin
Abstract:
In the era of rapidly increasing notebook market, consumer electronics manufacturers are facing a highly dynamic and competitive environment. In particular, the product appearance is the first part for user to distinguish the product from the product of other brands. Notebook product should differ in its appearance to engage users and contribute to the user experience (UX). The UX evaluates various product concepts to find the design for user needs; in addition, help the designer to further understand the product appearance preference of different market segment. However, few studies have been done for exploring the relationship between consumer background and the reaction of product appearance. This study aims to propose a data mining framework to capture the user’s information and the important relation between product appearance factors. The proposed framework consists of problem definition and structuring, data preparation, rules generation, and results evaluation and interpretation. An empirical study has been done in Taiwan that recruited 168 subjects from different background to experience the appearance performance of 11 different portable computers. The results assist the designers to develop product strategies based on the characteristics of consumers and the product concept that related to the UX, which help to launch the products to the right customers and increase the market shares. The results have shown the practical feasibility of the proposed framework.
Keywords: Consumers Decision Making, Product Design, Rough Set Theory, User Experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35129477 PAPR Reduction of FBMC Using Sliding Window Tone Reservation Active Constellation Extension Technique
Authors: V. Sandeep Kumar, S. Anuradha
Abstract:
The high Peak to Average Power Ratio (PAR) in Filter Bank Multicarrier with Offset Quadrature Amplitude Modulation (FBMC-OQAM) can significantly reduce power efficiency and performance. In this paper, we address the problem of PAPR reduction for FBMC-OQAM systems using Tone Reservation (TR) technique. Due to the overlapping structure of FBMCOQAM signals, directly applying TR schemes of OFDM systems to FBMC-OQAM systems is not effective. We improve the tone reservation (TR) technique by employing sliding window with Active Constellation Extension for the PAPR reduction of FBMC-OQAM signals, called sliding window tone reservation Active Constellation Extension (SW-TRACE) technique. The proposed SW-TRACE technique uses the peak reduction tones (PRTs) of several consecutive data blocks to cancel the peaks of the FBMC-OQAM signal inside a window, with dynamically extending outer constellation points in active(data-carrying) channels, within margin-preserving constraints, in order to minimize the peak magnitude. Analysis and simulation results compared to the existing Tone Reservation (TR) technique for FBMC/OQAM system. The proposed method SW-TRACE has better PAPR performance and lower computational complexity.
Keywords: FBMC-OQAM, peak-to-average power ratio, sliding window, tone reservation Active Constellation Extension.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28399476 Arsenic Mobility from Mining Tailings of Monte San Nicolas to Presa de Mata in Guanajuato, Mexico
Authors: I. Cano-Aguilera, B. E. Rubio-Campos, G. De la Rosa, A. F. Aguilera-Alvarado
Abstract:
Mining tailings represent a generating source of rich heavy metal material with a potential danger the public health and the environment, since these metals, under certain conditions, can leach and contaminate aqueous systems that serve like supplying potable water sources. The strategy for this work is based on the observation, experimentation and the simulation that can be obtained by binding real answers of the hydrodynamic behavior of metals leached from mining tailings, and the applied mathematics that provides the logical structure to decipher the individual effects of the general physicochemical phenomenon. The case of study presented herein focuses on mining tailings deposits located in Monte San Nicolas, Guanajuato, Mexico, an abandoned mine. This was considered the contamination source that under certain physicochemical conditions can favor the metal leaching, and its transport towards aqueous systems. In addition, the cartography, meteorology, geology and the hydrodynamics and hydrological characteristics of the place, will be helpful in determining the way and the time in which these systems can interact. Preliminary results demonstrated that arsenic presents a great mobility, since this one was identified in several superficial aqueous systems of the micro watershed, as well as in sediments in concentrations that exceed the established maximum limits in the official norms. Also variations in pH and potential oxide-reduction were registered, conditions that favor the presence of different species from this element its solubility and therefore its mobility.
Keywords: Arsenic, mining tailings, transport.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16889475 Conceptual Multidimensional Model
Authors: Manpreet Singh, Parvinder Singh, Suman
Abstract:
The data is available in abundance in any business organization. It includes the records for finance, maintenance, inventory, progress reports etc. As the time progresses, the data keep on accumulating and the challenge is to extract the information from this data bank. Knowledge discovery from these large and complex databases is the key problem of this era. Data mining and machine learning techniques are needed which can scale to the size of the problems and can be customized to the application of business. For the development of accurate and required information for particular problem, business analyst needs to develop multidimensional models which give the reliable information so that they can take right decision for particular problem. If the multidimensional model does not possess the advance features, the accuracy cannot be expected. The present work involves the development of a Multidimensional data model incorporating advance features. The criterion of computation is based on the data precision and to include slowly change time dimension. The final results are displayed in graphical form.Keywords: Multidimensional, data precision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14589474 Methods for Distinction of Cattle Using Supervised Learning
Authors: Radoslav Židek, Veronika Šidlová, Radovan Kasarda, Birgit Fuerst-Waltl
Abstract:
Machine learning represents a set of topics dealing with the creation and evaluation of algorithms that facilitate pattern recognition, classification, and prediction, based on models derived from existing data. The data can present identification patterns which are used to classify into groups. The result of the analysis is the pattern which can be used for identification of data set without the need to obtain input data used for creation of this pattern. An important requirement in this process is careful data preparation validation of model used and its suitable interpretation. For breeders, it is important to know the origin of animals from the point of the genetic diversity. In case of missing pedigree information, other methods can be used for traceability of animal´s origin. Genetic diversity written in genetic data is holding relatively useful information to identify animals originated from individual countries. We can conclude that the application of data mining for molecular genetic data using supervised learning is an appropriate tool for hypothesis testing and identifying an individual.
Keywords: Genetic data, Pinzgau cattle, supervised learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23189473 A Real-Time Signal Processing Technique for MIDI Generation
Authors: Farshad Arvin, Shyamala Doraisamy
Abstract:
This paper presents a new hardware interface using a microcontroller which processes audio music signals to standard MIDI data. A technique for processing music signals by extracting note parameters from music signals is described. An algorithm to convert the voice samples for real-time processing without complex calculations is proposed. A high frequency microcontroller as the main processor is deployed to execute the outlined algorithm. The MIDI data generated is transmitted using the EIA-232 protocol. The analyses of data generated show the feasibility of using microcontrollers for real-time MIDI generation hardware interface.Keywords: Signal processing, MIDI, Microcontroller, EIA-232.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21279472 A Modified Fuzzy C-Means Algorithm for Natural Data Exploration
Authors: Binu Thomas, Raju G., Sonam Wangmo
Abstract:
In Data mining, Fuzzy clustering algorithms have demonstrated advantage over crisp clustering algorithms in dealing with the challenges posed by large collections of vague and uncertain natural data. This paper reviews concept of fuzzy logic and fuzzy clustering. The classical fuzzy c-means algorithm is presented and its limitations are highlighted. Based on the study of the fuzzy c-means algorithm and its extensions, we propose a modification to the cmeans algorithm to overcome the limitations of it in calculating the new cluster centers and in finding the membership values with natural data. The efficiency of the new modified method is demonstrated on real data collected for Bhutan-s Gross National Happiness (GNH) program.Keywords: Adaptive fuzzy clustering, clustering, fuzzy logic, fuzzy clustering, c-means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19909471 Liveability of Kuala Lumpur City Centre: An Evaluation of the Happiness Level of the Streets- Activities
Authors: Shuhana Shamsuddin, Nur Rasyiqah Abu Hassan, Ahmad Bashri Sulaiman
Abstract:
Liveable city is referred to as the quality of life in an area that contributes towards a safe, healthy and enjoyable place. This paper discusses the role of the streets- activities in making Kuala Lumpur a liveable city and the happiness level of the residents towards the city-s street activities. The study was conducted using the residents of Kuala Lumpur. A mixed method technique is used with the quantitative data as a main data and supported by the qualitative data. Data were collected using questionnaires, observation and also an interview session with a sample of residents of Kuala Lumpur. The sampling technique is based on multistage cluster data sampling. The findings revealed that, there is still no significant relationship between the length of stay of the resident in Kuala Lumpur with the happiness level towards the street activities that occurred in the city.Keywords: Liveable city, activities, urban design quality, quality of life, happiness level.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28909470 Models of State Organization and Influence over Collective Identity and Nationalism in Spain
Authors: Muñoz-Sanchez, Victor Manuel, Perez-Flores, Antonio Manuel
Abstract:
The main objective of this paper is to establish the relationship between models of state organization and the various types of collective identity expressed by the Spanish. The question of nationalism and identity ascription in Spain has always been a topic of special importance due to the presence in that country of territories where the population emits very different opinions of nationalist sentiment than the rest of Spain. The current situation of sovereignty challenge of Catalonia to the central government exemplifies the importance of the subject matter. In order to analyze this process of interrelation, we use a secondary data mining by applying the multiple correspondence analysis technique (MCA). As a main result a typology of four types of expression of collective identity based on models of State organization are shown, which are connected with the party position on this issue.Keywords: Models of organization of the state, nationalism, collective identity, Spain, political parties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16889469 Grocery Customer Behavior Analysis using RFID-based Shopping Paths Data
Authors: In-Chul Jung, Young S. Kwon
Abstract:
Knowing about the customer behavior in a grocery has been a long-standing issue in the retailing industry. The advent of RFID has made it easier to collect moving data for an individual shopper's behavior. Most of the previous studies used the traditional statistical clustering technique to find the major characteristics of customer behavior, especially shopping path. However, in using the clustering technique, due to various spatial constraints in the store, standard clustering methods are not feasible because moving data such as the shopping path should be adjusted in advance of the analysis, which is time-consuming and causes data distortion. To alleviate this problem, we propose a new approach to spatial pattern clustering based on the longest common subsequence. Experimental results using real data obtained from a grocery confirm the good performance of the proposed method in finding the hot spot, dead spot and major path patterns of customer movements.Keywords: customer path, shopping behavior, exploratoryanalysis, LCS, RFID
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31489468 A Growing Natural Gas Approach for Evaluating Quality of Software Modules
Authors: Parvinder S. Sandhu, Sandeep Khimta, Kiranpreet Kaur
Abstract:
The prediction of Software quality during development life cycle of software project helps the development organization to make efficient use of available resource to produce the product of highest quality. “Whether a module is faulty or not" approach can be used to predict quality of a software module. There are numbers of software quality prediction models described in the literature based upon genetic algorithms, artificial neural network and other data mining algorithms. One of the promising aspects for quality prediction is based on clustering techniques. Most quality prediction models that are based on clustering techniques make use of K-means, Mixture-of-Guassians, Self-Organizing Map, Neural Gas and fuzzy K-means algorithm for prediction. In all these techniques a predefined structure is required that is number of neurons or clusters should be known before we start clustering process. But in case of Growing Neural Gas there is no need of predetermining the quantity of neurons and the topology of the structure to be used and it starts with a minimal neurons structure that is incremented during training until it reaches a maximum number user defined limits for clusters. Hence, in this work we have used Growing Neural Gas as underlying cluster algorithm that produces the initial set of labeled cluster from training data set and thereafter this set of clusters is used to predict the quality of test data set of software modules. The best testing results shows 80% accuracy in evaluating the quality of software modules. Hence, the proposed technique can be used by programmers in evaluating the quality of modules during software development.
Keywords: Growing Neural Gas, data clustering, fault prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18659467 An Implementation of Fuzzy Logic Technique for Prediction of the Power Transformer Faults
Authors: Omar M. Elmabrouk., Roaa Y. Taha., Najat M. Ebrahim, Sabbreen A. Mohammed
Abstract:
Power transformers are the most crucial part of power electrical system, distribution and transmission grid. This part is maintained using predictive or condition-based maintenance approach. The diagnosis of power transformer condition is performed based on Dissolved Gas Analysis (DGA). There are five main methods utilized for analyzing these gases. These methods are International Electrotechnical Commission (IEC) gas ratio, Key Gas, Roger gas ratio, Doernenburg, and Duval Triangle. Moreover, due to the importance of the transformers, there is a need for an accurate technique to diagnose and hence predict the transformer condition. The main objective of this technique is to avoid the transformer faults and hence to maintain the power electrical system, distribution and transmission grid. In this paper, the DGA was utilized based on the data collected from the transformer records available in the General Electricity Company of Libya (GECOL) which is located in Benghazi-Libya. The Fuzzy Logic (FL) technique was implemented as a diagnostic approach based on IEC gas ratio method. The FL technique gave better results and approved to be used as an accurate prediction technique for power transformer faults. Also, this technique is approved to be a quite interesting for the readers and the concern researchers in the area of FL mathematics and power transformer.
Keywords: Fuzzy logic, dissolved gas-in-oil analysis, DGA, prediction, power transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13579466 Influence of Dynamic Loads in the Structural Integrity of Underground Rooms
Authors: M. Inmaculada Alvarez-Fernández, Celestino González-Nicieza, M. Belén Prendes-Gero, Fernando López-Gayarre
Abstract:
Among many factors affecting the stability of mining excavations, rock-bursts and tremors play a special role. These dynamic loads occur practically always and have different sources of generation. The most important of them is the commonly used mining technique, which disintegrates a certain area of the rock mass not only in the area of the planned mining, but also creates waves that significantly exceed this area affecting the structural elements. In this work it is analysed the consequences of dynamic loads over the structural elements in an underground room and pillar mine to avoid roof instabilities. With this end, dynamic loads were evaluated through in situ and laboratory tests and simulated with numerical modelling. Initially, the geotechnical characterization of all materials was carried out by mean of large-scale tests. Then, drill holes were done on the roof of the mine and were monitored to determine possible discontinuities in it. Three seismic stations and a triaxial accelerometer were employed to measure the vibrations from blasting tests, establish the dynamic behaviour of roof and pillars and develop the transmission laws. At last, computer simulations by FLAC3D software were done to check the effect of vibrations on the stability of the roofs. The study shows that in-situ tests have a greater reliability than laboratory samples because of eliminating the effect of heterogeneities, that the pillars work decreasing the amplitude of the vibration around them, and that the tensile strength of a beam and depending on its span is overcome with waves in phase and delayed. The obtained transmission law allows designing a blasting which guarantees safety and prevents the risk of future failures.
Keywords: Dynamic modelling, long term instability risks, room and pillar, seismic collapse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4829465 Metadata Update Mechanism Improvements in Data Grid
Authors: S. Farokhzad, M. Reza Salehnamadi
Abstract:
Grid environments include aggregation of geographical distributed resources. Grid is put forward in three types of computational, data and storage. This paper presents a research on data grid. Data grid is used for covering and securing accessibility to data from among many heterogeneous sources. Users are not worry on the place where data is located in it, provided that, they should get access to the data. Metadata is used for getting access to data in data grid. Presently, application metadata catalogue and SRB middle-ware package are used in data grids for management of metadata. At this paper, possibility of updating, streamlining and searching is provided simultaneously and rapidly through classified table of preserving metadata and conversion of each table to numerous tables. Meanwhile, with regard to the specific application, the most appropriate and best division is set and determined. Concurrency of implementation of some of requests and execution of pipeline is adaptability as a result of this technique.Keywords: Grids, data grid, metadata, update.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16999464 Experimental Study of Eccentrically Loaded Columns Strengthened Using a Steel Jacketing Technique
Authors: Mohamed K. Elsamny, Adel A. Hussein, Amr M. Nafie, Mohamed K. Abd-Elhamed
Abstract:
An experimental study of Reinforced Concrete, RC, columns strengthened using a steel jacketing technique was conducted. The jacketing technique consisted of four steel vertical angles installed at the corners of the column joined by horizontal steel straps confining the column externally. The effectiveness of the technique was evaluated by testing the RC column specimens under eccentric monotonic loading until failure occurred. Strain gauges were installed to monitor the strains in the internal reinforcement as well as the external jacketing system. The effectiveness of the jacketing technique was demonstrated, and the parameters affecting the technique were studied.
Keywords: Reinforced Concrete Columns, Steel Jacketing, Strengthening, Eccentric Load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38859463 Analysis of Textual Data Based On Multiple 2-Class Classification Models
Authors: Shigeaki Sakurai, Ryohei Orihara
Abstract:
This paper proposes a new method for analyzing textual data. The method deals with items of textual data, where each item is described based on various viewpoints. The method acquires 2- class classification models of the viewpoints by applying an inductive learning method to items with multiple viewpoints. The method infers whether the viewpoints are assigned to the new items or not by using the models. The method extracts expressions from the new items classified into the viewpoints and extracts characteristic expressions corresponding to the viewpoints by comparing the frequency of expressions among the viewpoints. This paper also applies the method to questionnaire data given by guests at a hotel and verifies its effect through numerical experiments.
Keywords: Text mining, Multiple viewpoints, Differential analysis, Questionnaire data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12909462 Load Forecasting Using Neural Network Integrated with Economic Dispatch Problem
Authors: Mariyam Arif, Ye Liu, Israr Ul Haq, Ahsan Ashfaq
Abstract:
High cost of fossil fuels and intensifying installations of alternate energy generation sources are intimidating main challenges in power systems. Making accurate load forecasting an important and challenging task for optimal energy planning and management at both distribution and generation side. There are many techniques to forecast load but each technique comes with its own limitation and requires data to accurately predict the forecast load. Artificial Neural Network (ANN) is one such technique to efficiently forecast the load. Comparison between two different ranges of input datasets has been applied to dynamic ANN technique using MATLAB Neural Network Toolbox. It has been observed that selection of input data on training of a network has significant effects on forecasted results. Day-wise input data forecasted the load accurately as compared to year-wise input data. The forecasted load is then distributed among the six generators by using the linear programming to get the optimal point of generation. The algorithm is then verified by comparing the results of each generator with their respective generation limits.
Keywords: Artificial neural networks, demand-side management, economic dispatch, linear programming, power generation dispatch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9149461 A Decision Boundary based Discretization Technique using Resampling
Authors: Taimur Qureshi, Djamel A Zighed
Abstract:
Many supervised induction algorithms require discrete data, even while real data often comes in a discrete and continuous formats. Quality discretization of continuous attributes is an important problem that has effects on speed, accuracy and understandability of the induction models. Usually, discretization and other types of statistical processes are applied to subsets of the population as the entire population is practically inaccessible. For this reason we argue that the discretization performed on a sample of the population is only an estimate of the entire population. Most of the existing discretization methods, partition the attribute range into two or several intervals using a single or a set of cut points. In this paper, we introduce a technique by using resampling (such as bootstrap) to generate a set of candidate discretization points and thus, improving the discretization quality by providing a better estimation towards the entire population. Thus, the goal of this paper is to observe whether the resampling technique can lead to better discretization points, which opens up a new paradigm to construction of soft decision trees.Keywords: Bootstrap, discretization, resampling, soft decision trees.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14349460 Simulated Annealing Algorithm for Data Aggregation Trees in Wireless Sensor Networks and Comparison with Genetic Algorithm
Authors: Ladan Darougaran, Hossein Shahinzadeh, Hajar Ghotb, Leila Ramezanpour
Abstract:
In ad hoc networks, the main issue about designing of protocols is quality of service, so that in wireless sensor networks the main constraint in designing protocols is limited energy of sensors. In fact, protocols which minimize the power consumption in sensors are more considered in wireless sensor networks. One approach of reducing energy consumption in wireless sensor networks is to reduce the number of packages that are transmitted in network. The technique of collecting data that combines related data and prevent transmission of additional packages in network can be effective in the reducing of transmitted packages- number. According to this fact that information processing consumes less power than information transmitting, Data Aggregation has great importance and because of this fact this technique is used in many protocols [5]. One of the Data Aggregation techniques is to use Data Aggregation tree. But finding one optimum Data Aggregation tree to collect data in networks with one sink is a NP-hard problem. In the Data Aggregation technique, related information packages are combined in intermediate nodes and form one package. So the number of packages which are transmitted in network reduces and therefore, less energy will be consumed that at last results in improvement of longevity of network. Heuristic methods are used in order to solve the NP-hard problem that one of these optimization methods is to solve Simulated Annealing problems. In this article, we will propose new method in order to build data collection tree in wireless sensor networks by using Simulated Annealing algorithm and we will evaluate its efficiency whit Genetic Algorithm.
Keywords: Data aggregation, wireless sensor networks, energy efficiency, simulated annealing algorithm, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16839459 Multidimensional Data Mining by Means of Randomly Travelling Hyper-Ellipsoids
Authors: Pavel Y. Tabakov, Kevin Duffy
Abstract:
The present study presents a new approach to automatic data clustering and classification problems in large and complex databases and, at the same time, derives specific types of explicit rules describing each cluster. The method works well in both sparse and dense multidimensional data spaces. The members of the data space can be of the same nature or represent different classes. A number of N-dimensional ellipsoids are used for enclosing the data clouds. Due to the geometry of an ellipsoid and its free rotation in space the detection of clusters becomes very efficient. The method is based on genetic algorithms that are used for the optimization of location, orientation and geometric characteristics of the hyper-ellipsoids. The proposed approach can serve as a basis for the development of general knowledge systems for discovering hidden knowledge and unexpected patterns and rules in various large databases.Keywords: Classification, clustering, data minig, genetic algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17729458 Dynamic Features Selection for Heart Disease Classification
Authors: Walid MOUDANI
Abstract:
The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the Coronary Heart Disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts- knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.Keywords: Multi-Classifier Decisions Tree, Features Reduction, Dynamic Programming, Rough Sets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25329457 Using Multi-Arm Bandits to Optimize Game Play Metrics and Effective Game Design
Authors: Kenny Raharjo, Ramon Lawrence
Abstract:
Game designers have the challenging task of building games that engage players to spend their time and money on the game. There are an infinite number of game variations and design choices, and it is hard to systematically determine game design choices that will have positive experiences for players. In this work, we demonstrate how multi-arm bandits can be used to automatically explore game design variations to achieve improved player metrics. The advantage of multi-arm bandits is that they allow for continuous experimentation and variation, intrinsically converge to the best solution, and require no special infrastructure to use beyond allowing minor game variations to be deployed to users for evaluation. A user study confirms that applying multi-arm bandits was successful in determining the preferred game variation with highest play time metrics and can be a useful technique in a game designer's toolkit.Keywords: Game design, multi-arm bandit, design exploration and data mining, player metric optimization and analytics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15359456 Application of a Similarity Measure for Graphs to Web-based Document Structures
Authors: Matthias Dehmer, Frank Emmert Streib, Alexander Mehler, Jürgen Kilian, Max Mühlhauser
Abstract:
Due to the tremendous amount of information provided by the World Wide Web (WWW) developing methods for mining the structure of web-based documents is of considerable interest. In this paper we present a similarity measure for graphs representing web-based hypertext structures. Our similarity measure is mainly based on a novel representation of a graph as linear integer strings, whose components represent structural properties of the graph. The similarity of two graphs is then defined as the optimal alignment of the underlying property strings. In this paper we apply the well known technique of sequence alignments for solving a novel and challenging problem: Measuring the structural similarity of generalized trees. In other words: We first transform our graphs considered as high dimensional objects in linear structures. Then we derive similarity values from the alignments of the property strings in order to measure the structural similarity of generalized trees. Hence, we transform a graph similarity problem to a string similarity problem for developing a efficient graph similarity measure. We demonstrate that our similarity measure captures important structural information by applying it to two different test sets consisting of graphs representing web-based document structures.Keywords: Graph similarity, hierarchical and directed graphs, hypertext, generalized trees, web structure mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18929455 A Preference-Based Multi-Agent Data Mining Framework for Social Network Service Users' Decision Making
Authors: Ileladewa Adeoye Abiodun, Cheng Wai Khuen
Abstract:
Multi-Agent Systems (MAS) emerged in the pursuit to improve our standard of living, and hence can manifest complex human behaviors such as communication, decision making, negotiation and self-organization. The Social Network Services (SNSs) have attracted millions of users, many of whom have integrated these sites into their daily practices. The domains of MAS and SNS have lots of similarities such as architecture, features and functions. Exploring social network users- behavior through multiagent model is therefore our research focus, in order to generate more accurate and meaningful information to SNS users. An application of MAS is the e-Auction and e-Rental services of the Universiti Cyber AgenT(UniCAT), a Social Network for students in Universiti Tunku Abdul Rahman (UTAR), Kampar, Malaysia, built around the Belief- Desire-Intention (BDI) model. However, in spite of the various advantages of the BDI model, it has also been discovered to have some shortcomings. This paper therefore proposes a multi-agent framework utilizing a modified BDI model- Belief-Desire-Intention in Dynamic and Uncertain Situations (BDIDUS), using UniCAT system as a case study.
Keywords: Distributed Data Mining, Multi-Agent Systems, Preference-Based, SNS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15029454 A Hybrid Approach for Thread Recommendation in MOOC Forums
Authors: Ahmad. A. Kardan, Amir Narimani, Foozhan Ataiefard
Abstract:
Recommender Systems have been developed to provide contents and services compatible to users based on their behaviors and interests. Due to information overload in online discussion forums and users diverse interests, recommending relative topics and threads is considered to be helpful for improving the ease of forum usage. In order to lead learners to find relevant information in educational forums, recommendations are even more needed. We present a hybrid thread recommender system for MOOC forums by applying social network analysis and association rule mining techniques. Initial results indicate that the proposed recommender system performs comparatively well with regard to limited available data from users' previous posts in the forum.Keywords: Association rule mining, hybrid recommender system, massive open online courses, MOOCs, social network analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12639453 A Novel Reversible Watermarking Method based on Adaptive Thresholding and Companding Technique
Authors: Nisar Ahmed Memon
Abstract:
Embedding and extraction of a secret information as well as the restoration of the original un-watermarked image is highly desirable in sensitive applications like military, medical, and law enforcement imaging. This paper presents a novel reversible data-hiding method for digital images using integer to integer wavelet transform and companding technique which can embed and recover the secret information as well as can restore the image to its pristine state. The novel method takes advantage of block based watermarking and iterative optimization of threshold for companding which avoids histogram pre and post-processing. Consequently, it reduces the associated overhead usually required in most of the reversible watermarking techniques. As a result, it keeps the distortion small between the marked and the original images. Experimental results show that the proposed method outperforms the existing reversible data hiding schemes reported in the literature.Keywords: Adaptive Thresholding, Companding Technique, Integer Wavelet Transform, Reversible Watermarking
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18699452 Learning and Evaluating Possibilistic Decision Trees using Information Affinity
Authors: Ilyes Jenhani, Salem Benferhat, Zied Elouedi
Abstract:
This paper investigates the issue of building decision trees from data with imprecise class values where imprecision is encoded in the form of possibility distributions. The Information Affinity similarity measure is introduced into the well-known gain ratio criterion in order to assess the homogeneity of a set of possibility distributions representing instances-s classes belonging to a given training partition. For the experimental study, we proposed an information affinity based performance criterion which we have used in order to show the performance of the approach on well-known benchmarks.Keywords: Data mining from uncertain data, Decision Trees, Possibility Theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515