Search results for: Modular neural control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4853

Search results for: Modular neural control

4523 Performance Evaluation of Neural Network Prediction for Data Prefetching in Embedded Applications

Authors: Sofien Chtourou, Mohamed Chtourou, Omar Hammami

Abstract:

Embedded systems need to respect stringent real time constraints. Various hardware components included in such systems such as cache memories exhibit variability and therefore affect execution time. Indeed, a cache memory access from an embedded microprocessor might result in a cache hit where the data is available or a cache miss and the data need to be fetched with an additional delay from an external memory. It is therefore highly desirable to predict future memory accesses during execution in order to appropriately prefetch data without incurring delays. In this paper, we evaluate the potential of several artificial neural networks for the prediction of instruction memory addresses. Neural network have the potential to tackle the nonlinear behavior observed in memory accesses during program execution and their demonstrated numerous hardware implementation emphasize this choice over traditional forecasting techniques for their inclusion in embedded systems. However, embedded applications execute millions of instructions and therefore millions of addresses to be predicted. This very challenging problem of neural network based prediction of large time series is approached in this paper by evaluating various neural network architectures based on the recurrent neural network paradigm with pre-processing based on the Self Organizing Map (SOM) classification technique.

Keywords: Address, data set, memory, prediction, recurrentneural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
4522 Modeling of Surface Roughness in Vibration Cutting by Artificial Neural Network

Authors: H. Soleimanimehr, M. J. Nategh , S. Amini

Abstract:

Development of artificial neural network (ANN) for prediction of aluminum workpieces' surface roughness in ultrasonicvibration assisted turning (UAT) has been the subject of the present study. Tool wear as the main cause of surface roughness was also investigated. ANN was trained through experimental data obtained on the basis of full factorial design of experiments. Various influential machining parameters were taken into consideration. It was illustrated that a multilayer perceptron neural network could efficiently model the surface roughness as the response of the network, with an error less than ten percent. The performance of the trained network was verified by further experiments. The results of UAT were compared with the results of conventional turning experiments carried out with similar machining parameters except for the vibration amplitude whence considerable reduction was observed in the built-up edge and the surface roughness.

Keywords: Aluminum, Artificial Neural Network (ANN), BuiltupEdge, Surface Roughness, Tool Wear, Ultrasonic VibrationAssisted Turning (UAT).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
4521 A Video Watermarking Algorithm Based on Chaotic and Wavelet Neural Network

Authors: Jiadong Liang

Abstract:

This paper presented a video watermarking algorithm based on wavelet chaotic neural network. First, to enhance binary image’s security, the algorithm encrypted it with double chaotic based on Arnold and Logistic map, Then, the host video was divided into some equal frames and distilled the key frame through chaotic sequence which generated by Logistic. Meanwhile, we distilled the low frequency coefficients of luminance component and self-adaptively embedded the processed image watermark into the low frequency coefficients of the wavelet transformed luminance component with the wavelet neural network. The experimental result suggested that the presented algorithm has better invisibility and robustness against noise, Gaussian filter, rotation, frame loss and other attacks.

Keywords: Video watermark, double chaotic encryption, wavelet neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052
4520 Application of the Neural Network to the Synthesis of Vertical Dipole Antenna over Imperfect Ground

Authors: Kais Hafsaoui

Abstract:

In this paper, we propose to study the synthesis of the vertical dipole antenna over imperfect ground. The synthesis implementation-s method for this type of antenna permits to approach the appropriated radiance-s diagram. The used approach is based on neural network. Our main contribution in this paper is the extension of a synthesis model of this vertical dipole antenna over imperfect ground.

Keywords: Vertical dipole antenna, imperfect ground, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
4519 Persian Printed Numeral Characters Recognition Using Geometrical Central Moments and Fuzzy Min-Max Neural Network

Authors: Hamid Reza Boveiri

Abstract:

In this paper, a new proposed system for Persian printed numeral characters recognition with emphasis on representation and recognition stages is introduced. For the first time, in Persian optical character recognition, geometrical central moments as character image descriptor and fuzzy min-max neural network for Persian numeral character recognition has been used. Set of different experiments on binary images of regular, translated, rotated and scaled Persian numeral characters has been done and variety of results has been presented. The best result was 99.16% correct recognition demonstrating geometrical central moments and fuzzy min-max neural network are adequate for Persian printed numeral character recognition.

Keywords: Fuzzy min-max neural network, geometrical centralmoments, optical character recognition, Persian digits recognition, Persian printed numeral characters recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
4518 ANN Based Model Development for Material Removal Rate in Dry Turning in Indian Context

Authors: Mangesh R. Phate, V. H. Tatwawadi

Abstract:

This paper is intended to develop an artificial neural network (ANN) based model of material removal rate (MRR) in the turning of ferrous and nonferrous material in a Indian small-scale industry. MRR of the formulated model was proved with the testing data and artificial neural network (ANN) model was developed for the analysis and prediction of the relationship between inputs and output parameters during the turning of ferrous and nonferrous materials. The input parameters of this model are operator, work-piece, cutting process, cutting tool, machine and the environment.

The ANN model consists of a three layered feedforward back propagation neural network. The network is trained with pairs of independent/dependent datasets generated when machining ferrous and nonferrous material. A very good performance of the neural network, in terms of contract with experimental data, was achieved. The model may be used for the testing and forecast of the complex relationship between dependent and the independent parameters in turning operations.

Keywords: Field data based model, Artificial neural network, Simulation, Convectional Turning, Material removal rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
4517 Optimizing the Probabilistic Neural Network Training Algorithm for Multi-Class Identification

Authors: Abdelhadi Lotfi, Abdelkader Benyettou

Abstract:

In this work, a training algorithm for probabilistic neural networks (PNN) is presented. The algorithm addresses one of the major drawbacks of PNN, which is the size of the hidden layer in the network. By using a cross-validation training algorithm, the number of hidden neurons is shrunk to a smaller number consisting of the most representative samples of the training set. This is done without affecting the overall architecture of the network. Performance of the network is compared against performance of standard PNN for different databases from the UCI database repository. Results show an important gain in network size and performance.

Keywords: Classification, probabilistic neural networks, network optimization, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223
4516 Artificial Neural Network Application on Ti/Al Joint Using Laser Beam Welding – A Review

Authors: K. Kalaiselvan, A. Elango, N. M. Nagarajan

Abstract:

Today automobile and aerospace industries realise Laser Beam Welding for a clean and non contact source of heating and fusion for joining of sheets. The welding performance is mainly based on by the laser welding parameters. Some concepts related to Artificial Neural Networks and how can be applied to model weld bead geometry and mechanical properties in terms of equipment parameters are reported in order to evaluate the accuracy and compare it with traditional modeling schemes. This review reveals the output features of Titanium and Aluminium weld bead geometry and mechanical properties such as ultimate tensile strength, yield strength, elongation and reduction of the area of the weld using Artificial Neural Network.

Keywords: Laser Beam Welding (LBW), Artificial Neural Networks (ANN), Optimization, Titanium and Aluminium sheets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
4515 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments

Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda

Abstract:

In the context of the handwriting recognition, we propose an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods. The Distribution parameters, the centered moments of the different projections of the different segments, the centered moments of the word image coding according to the directions of Freeman, and the Barr features applied binary image of the word and on its different segments. The classification is achieved by a multi layers perceptron. A detailed experiment is carried and satisfactory recognition results are reported.

Keywords: Handwritten word recognition, neural networks, image processing, pattern recognition, features extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
4514 Forecasting the Istanbul Stock Exchange National 100 Index Using an Artificial Neural Network

Authors: Birol Yildiz, Abdullah Yalama, Metin Coskun

Abstract:

Many studies have shown that Artificial Neural Networks (ANN) have been widely used for forecasting financial markets, because of many financial and economic variables are nonlinear, and an ANN can model flexible linear or non-linear relationship among variables. The purpose of the study was to employ an ANN models to predict the direction of the Istanbul Stock Exchange National 100 Indices (ISE National-100). As a result of this study, the model forecast the direction of the ISE National-100 to an accuracy of 74, 51%.

Keywords: Artificial Neural Networks, Istanbul StockExchange, Non-linear Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239
4513 Existence and Exponential Stability of Almost Periodic Solution for Recurrent Neural Networks on Time Scales

Authors: Lili Wang, Meng Hu

Abstract:

In this paper, a class of recurrent neural networks (RNNs) with variable delays are studied on almost periodic time scales, some sufficient conditions are established for the existence and global exponential stability of the almost periodic solution. These results have important leading significance in designs and applications of RNNs. Finally, two examples and numerical simulations are presented to illustrate the feasibility and effectiveness of the results.

Keywords: Recurrent neural network, Almost periodic solution, Global exponential stability, Time scale.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
4512 Advanced Neural Network Learning Applied to Pulping Modeling

Authors: Z. Zainuddin, W. D. Wan Rosli, R. Lanouette, S. Sathasivam

Abstract:

This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of pulping problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified odified problem M-1 Ax= M-1b where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.

Keywords: Convergence, pulping modeling, neural networks, preconditioned conjugate gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
4511 Application of Adaptive Neural Network Algorithms for Determination of Salt Composition of Waters Using Laser Spectroscopy

Authors: Tatiana A. Dolenko, Sergey A. Burikov, Alexander O. Efitorov, Sergey A. Dolenko

Abstract:

In this study, a comparative analysis of the approaches associated with the use of neural network algorithms for effective solution of a complex inverse problem – the problem of identifying and determining the individual concentrations of inorganic salts in multicomponent aqueous solutions by the spectra of Raman scattering of light – is performed. It is shown that application of artificial neural networks provides the average accuracy of determination of concentration of each salt no worse than 0.025 M. The results of comparative analysis of input data compression methods are presented. It is demonstrated that use of uniform aggregation of input features allows decreasing the error of determination of individual concentrations of components by 16-18% on the average.

Keywords: Inverse problems, multi-component solutions, neural networks, Raman spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
4510 Gasifier System Identification for Biomass Power Plants using Neural Network

Authors: Jittarat Satonsaowapak, Thanatchai. Kulworawanichpong., Ratchadaporn Oonsivilai, Anant Oonsivilai

Abstract:

The use of renewable energy sources becomes more necessary and interesting. As wider applications of renewable energy devices at domestic, commercial and industrial levels has not only resulted in greater awareness, but also significantly installed capacities. In addition, biomass principally is in the form of woods, which is a form of energy by humans for a long time. Gasification is a process of conversion of solid carbonaceous fuel into combustible gas by partial combustion. Many gasifier models have various operating conditions; the parameters kept in each model are different. This study applied experimental data, which has three inputs, which are; biomass consumption, temperature at combustion zone and ash discharge rate. One output is gas flow rate. For this paper, neural network was used to identify the gasifier system suitable for the experimental data. In the result,neural networkis usable to attain the answer.

Keywords: Gasifier System, Identification, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
4509 Genetic Algorithm with Fuzzy Genotype Values and Its Application to Neuroevolution

Authors: Hidehiko Okada

Abstract:

The author proposes an extension of genetic algorithm (GA) for solving fuzzy-valued optimization problems. In the proposed GA, values in the genotypes are not real numbers but fuzzy numbers. Evolutionary processes in GA are extended so that GA can handle genotype instances with fuzzy numbers. The proposed method is applied to evolving neural networks with fuzzy weights and biases. Experimental results showed that fuzzy neural networks evolved by the fuzzy GA could model hidden target fuzzy functions well despite the fact that no training data was explicitly provided.

Keywords: Evolutionary algorithm, genetic algorithm, fuzzy number, neural network, neuroevolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
4508 A Multi-layer Artificial Neural Network Architecture Design for Load Forecasting in Power Systems

Authors: Axay J Mehta, Hema A Mehta, T.C.Manjunath, C. Ardil

Abstract:

In this paper, the modelling and design of artificial neural network architecture for load forecasting purposes is investigated. The primary pre-requisite for power system planning is to arrive at realistic estimates of future demand of power, which is known as Load Forecasting. Short Term Load Forecasting (STLF) helps in determining the economic, reliable and secure operating strategies for power system. The dependence of load on several factors makes the load forecasting a very challenging job. An over estimation of the load may cause premature investment and unnecessary blocking of the capital where as under estimation of load may result in shortage of equipment and circuits. It is always better to plan the system for the load slightly higher than expected one so that no exigency may arise. In this paper, a load-forecasting model is proposed using a multilayer neural network with an appropriately modified back propagation learning algorithm. Once the neural network model is designed and trained, it can forecast the load of the power system 24 hours ahead on daily basis and can also forecast the cumulative load on daily basis. The real load data that is used for the Artificial Neural Network training was taken from LDC, Gujarat Electricity Board, Jambuva, Gujarat, India. The results show that the load forecasting of the ANN model follows the actual load pattern more accurately throughout the forecasted period.

Keywords: Power system, Load forecasting, Neural Network, Neuron, Stabilization, Network structure, Load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3423
4507 Use of Radial Basis Function Neural Network for Bearing Pressure Prediction of Strip Footing on Reinforced Granular Bed Overlying Weak Soil

Authors: Srinath Shetty K., Shivashankar R., Rashmi P. Shetty

Abstract:

Earth reinforcing techniques have become useful and economical to solve problems related to difficult grounds and provide satisfactory foundation performance. In this context, this paper uses radial basis function neural network (RBFNN) for predicting the bearing pressure of strip footing on reinforced granular bed overlying weak soil. The inputs for the neural network models included plate width, thickness of granular bed and number of layers of reinforcements, settlement ratio, water content, dry density, cohesion and angle of friction. The results indicated that RBFNN model exhibited more than 84 % prediction accuracy, thereby demonstrating its application in a geotechnical problem.

Keywords: Bearing pressure, granular bed, radial basis function neural network, strip footing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1946
4506 Fast Forecasting of Stock Market Prices by using New High Speed Time Delay Neural Networks

Authors: Hazem M. El-Bakry, Nikos Mastorakis

Abstract:

Fast forecasting of stock market prices is very important for strategic planning. In this paper, a new approach for fast forecasting of stock market prices is presented. Such algorithm uses new high speed time delay neural networks (HSTDNNs). The operation of these networks relies on performing cross correlation in the frequency domain between the input data and the input weights of neural networks. It is proved mathematically and practically that the number of computation steps required for the presented HSTDNNs is less than that needed by traditional time delay neural networks (TTDNNs). Simulation results using MATLAB confirm the theoretical computations.

Keywords: Fast Forecasting, Stock Market Prices, Time Delay NeuralNetworks, Cross Correlation, Frequency Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
4505 Improved Exponential Stability Analysis for Delayed Recurrent Neural Networks

Authors: Miaomiao Yang, Shouming Zhong

Abstract:

This paper studies the problem of exponential stability analysis for recurrent neural networks with time-varying delay.By establishing a suitable augmented LyapunovCKrasovskii function and a novel sufficient condition is obtained to guarantee the exponential stability of the considered system.In order to get a less conservative results of the condition,zero equalities and reciprocally convex approach are employed. The several exponential stability criterion proposed in this paper is simpler and effective. A numerical example is provided to demonstrate the feasibility and effectiveness of our results.

Keywords: Exponential stability , Neural networks, Linear matrix inequality, Lyapunov-Krasovskii, Time-varying.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1766
4504 Stability Analysis of Neural Networks with Leakage, Discrete and Distributed Delays

Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract:

This paper deals with the problem of stability of neural networks with leakage, discrete and distributed delays. A new Lyapunov functional which contains some new double integral terms are introduced. By using appropriate model transformation that shifts the considered systems into the neutral-type time-delay system, and by making use of some inequality techniques, delay-dependent criteria are developed to guarantee the stability of the considered system. Finally, numerical examples are provided to illustrate the usefulness of the proposed main results.

Keywords: Neural networks, Stability, Time-varying delays, Linear matrix inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
4503 Neuroplasticity: A Fresh Beginning for Life

Authors: Leila Maleki, Ezatollah Ahmadi

Abstract:

Neuroplasticity or the flexibility of the neural system is the ability of the brain to adapt to the lack or deterioration of sense and the capability of the neural system to modify itself through changing shape and function. Not only have studies revealed that neuroplasticity does not end in childhood, but also they have proven that it continues till the end of life and is not limited to the neural system and covers the cognitive system as well. In the field of cognition, neuroplasticity is defined as the ability to change old thoughts according to new conditions and the individuals' differences in using various styles of cognitive regulation inducing several social, emotional and cognitive outcomes. This paper attempts to discuss and define major theories and principles of neuroplasticity and elaborate on nature or nurture.

Keywords: Neuroplasticity, Cognitive plasticity, Plasticity theories, Plasticity mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
4502 A Proposed Performance Prediction Approach for Manufacturing Processes using ANNs

Authors: M. S. Abdelwahed, M. A. El-Baz, T. T. El-Midany

Abstract:

this paper aims to provide an approach to predict the performance of the product produced after multi-stages of manufacturing processes, as well as the assembly. Such approach aims to control and subsequently identify the relationship between the process inputs and outputs so that a process engineer can more accurately predict how the process output shall perform based on the system inputs. The approach is guided by a six-sigma methodology to obtain improved performance. In this paper a case study of the manufacture of a hermetic reciprocating compressor is presented. The application of artificial neural networks (ANNs) technique is introduced to improve performance prediction within this manufacturing environment. The results demonstrate that the approach predicts accurately and effectively.

Keywords: Artificial neural networks, Reciprocating compressor manufacturing, Performance prediction, Quality improvement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
4501 New Approach for Load Modeling

Authors: S. Chokri

Abstract:

Load modeling is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.

Keywords: Neural network, Load Forecasting, Fuzzy inference, Machine learning, Fuzzy modeling and rule extraction, Support Vector Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
4500 Optical Fish Tracking in Fishways using Neural Networks

Authors: Alvaro Rodriguez, Maria Bermudez, Juan R. Rabuñal, Jeronimo Puertas

Abstract:

One of the main issues in Computer Vision is to extract the movement of one or several points or objects of interest in an image or video sequence to conduct any kind of study or control process. Different techniques to solve this problem have been applied in numerous areas such as surveillance systems, analysis of traffic, motion capture, image compression, navigation systems and others, where the specific characteristics of each scenario determine the approximation to the problem. This paper puts forward a Computer Vision based algorithm to analyze fish trajectories in high turbulence conditions in artificial structures called vertical slot fishways, designed to allow the upstream migration of fish through obstructions in rivers. The suggested algorithm calculates the position of the fish at every instant starting from images recorded with a camera and using neural networks to execute fish detection on images. Different laboratory tests have been carried out in a full scale fishway model and with living fishes, allowing the reconstruction of the fish trajectory and the measurement of velocities and accelerations of the fish. These data can provide useful information to design more effective vertical slot fishways.

Keywords: Computer Vision, Neural Network, Fishway, Fish Trajectory, Tracking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
4499 Modeling of Pulping of Sugar Maple Using Advanced Neural Network Learning

Authors: W. D. Wan Rosli, Z. Zainuddin, R. Lanouette, S. Sathasivam

Abstract:

This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of Pulping of Sugar Maple problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified problem where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.

Keywords: Convergence, Modeling, Neural Networks, Preconditioned Conjugate Gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
4498 Antenna Array Beamforming Using Neural Network

Authors: Maja Sarevska, Abdel-Badeeh M. Salem

Abstract:

This paper considers the problem of Null-Steering beamforming using Neural Network (NN) approach for antenna array system. Two cases are presented. First, unlike the other authors, the estimated Direction Of Arrivals (DOAs) are used for antenna array weights NN-based determination and the imprecise DOAs estimations are taken into account. Second, the blind null-steering beamforming is presented. In this case the antenna array outputs are presented at the input of the NN without DOAs estimation. The results of computer simulations will show much better relative mean error performances of the first NN approach compared to the NNbased blind beamforming.

Keywords: Beamforming, DOAs, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
4497 Application of Artificial Neural Network for the Prediction of Pressure Distribution of a Plunging Airfoil

Authors: F. Rasi Maezabadi, M. Masdari, M. R. Soltani

Abstract:

Series of experimental tests were conducted on a section of a 660 kW wind turbine blade to measure the pressure distribution of this model oscillating in plunging motion. In order to minimize the amount of data required to predict aerodynamic loads of the airfoil, a General Regression Neural Network, GRNN, was trained using the measured experimental data. The network once proved to be accurate enough, was used to predict the flow behavior of the airfoil for the desired conditions. Results showed that with using a few of the acquired data, the trained neural network was able to predict accurate results with minimal errors when compared with the corresponding measured values. Therefore with employing this trained network the aerodynamic coefficients of the plunging airfoil, are predicted accurately at different oscillation frequencies, amplitudes, and angles of attack; hence reducing the cost of tests while achieving acceptable accuracy.

Keywords: Airfoil, experimental, GRNN, Neural Network, Plunging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
4496 Generator Damage Recognition Based on Artificial Neural Network

Authors: Chang-Hung Hsu, Chun-Yao Lee, Guan-Lin Liao, Yung-Tsan Jou, Jin-Maun Ho, Yu-Hua Hsieh, Yi-Xing Shen

Abstract:

This article simulates the wind generator set which has two fault bearing collar rail destruction and the gear box oil leak fault. The electric current signal which produced by the generator, We use Empirical Mode Decomposition (EMD) as well as Fast Fourier Transform (FFT) obtains the frequency range-s signal figure and characteristic value. The last step is use a kind of Artificial Neural Network (ANN) classifies which determination fault signal's type and reason. The ANN purpose of the automatic identification wind generator set fault..

Keywords: Wind-driven generator, Fast Fourier Transform, Neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
4495 A Model-following Adaptive Controller for Linear/Nonlinear Plantsusing Radial Basis Function Neural Networks

Authors: Yuichi Masukake, Yoshihisa Ishida

Abstract:

In this paper, we proposed a method to design a model-following adaptive controller for linear/nonlinear plants. Radial basis function neural networks (RBF-NNs), which are known for their stable learning capability and fast training, are used to identify linear/nonlinear plants. Simulation results show that the proposed method is effective in controlling both linear and nonlinear plants with disturbance in the plant input.

Keywords: Linear/nonlinear plants, neural networks, radial basisfunction networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
4494 Stability Criteria for Uncertainty Markovian Jumping Parameters of BAM Neural Networks with Leakage and Discrete Delays

Authors: Qingqing Wang, Baocheng Chen, Shouming Zhong

Abstract:

In this paper, the problem of stability criteria for Markovian jumping BAM neural networks with leakage and discrete delays has been investigated. Some new sufficient condition are derived based on a novel Lyapunov-Krasovskii functional approach. These new criteria based on delay partitioning idea are proved to be less conservative because free-weighting matrices method and a convex optimization approach are considered. Finally, one numerical example is given to illustrate the the usefulness and feasibility of the proposed main results.

Keywords: Stability, Markovian jumping neural networks, Timevarying delays, Linear matrix inequality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5140