Search results for: Partition function form games
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3861

Search results for: Partition function form games

351 Optimal Design of Selective Excitation Pulses in Magnetic Resonance Imaging using Genetic Algorithms

Authors: Mohammed A. Alolfe, Abou-Bakr M. Youssef, Yasser M. Kadah

Abstract:

The proper design of RF pulses in magnetic resonance imaging (MRI) has a direct impact on the quality of acquired images, and is needed for many applications. Several techniques have been proposed to obtain the RF pulse envelope given the desired slice profile. Unfortunately, these techniques do not take into account the limitations of practical implementation such as limited amplitude resolution. Moreover, implementing constraints for special RF pulses on most techniques is not possible. In this work, we propose to develop an approach for designing optimal RF pulses under theoretically any constraints. The new technique will pose the RF pulse design problem as a combinatorial optimization problem and uses efficient techniques from this area such as genetic algorithms (GA) to solve this problem. In particular, an objective function will be proposed as the norm of the difference between the desired profile and the one obtained from solving the Bloch equations for the current RF pulse design values. The proposed approach will be verified using analytical solution based RF simulations and compared to previous methods such as Shinnar-Le Roux (SLR) method, and analysis, selected, and tested the options and parameters that control the Genetic Algorithm (GA) can significantly affect its performance to get the best improved results and compared to previous works in this field. The results show a significant improvement over conventional design techniques, select the best options and parameters for GA to get most improvement over the previous works, and suggest the practicality of using of the new technique for most important applications as slice selection for large flip angles, in the area of unconventional spatial encoding, and another clinical use.

Keywords: Selective excitation, magnetic resonance imaging, combinatorial optimization, pulse design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
350 Accurate And Efficient Global Approximation using Adaptive Polynomial RSM for Complex Mechanical and Vehicular Performance Models

Authors: Y. Z. Wu, Z. Dong, S. K. You

Abstract:

Global approximation using metamodel for complex mathematical function or computer model over a large variable domain is often needed in sensibility analysis, computer simulation, optimal control, and global design optimization of complex, multiphysics systems. To overcome the limitations of the existing response surface (RS), surrogate or metamodel modeling methods for complex models over large variable domain, a new adaptive and regressive RS modeling method using quadratic functions and local area model improvement schemes is introduced. The method applies an iterative and Latin hypercube sampling based RS update process, divides the entire domain of design variables into multiple cells, identifies rougher cells with large modeling error, and further divides these cells along the roughest dimension direction. A small number of additional sampling points from the original, expensive model are added over the small and isolated rough cells to improve the RS model locally until the model accuracy criteria are satisfied. The method then combines local RS cells to regenerate the global RS model with satisfactory accuracy. An effective RS cells sorting algorithm is also introduced to improve the efficiency of model evaluation. Benchmark tests are presented and use of the new metamodeling method to replace complex hybrid electrical vehicle powertrain performance model in vehicle design optimization and optimal control are discussed.

Keywords: Global approximation, polynomial response surface, domain decomposition, domain combination, multiphysics modeling, hybrid powertrain optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
349 Route Training in Mobile Robotics through System Identification

Authors: Roberto Iglesias, Theocharis Kyriacou, Ulrich Nehmzow, Steve Billings

Abstract:

Fundamental sensor-motor couplings form the backbone of most mobile robot control tasks, and often need to be implemented fast, efficiently and nevertheless reliably. Machine learning techniques are therefore often used to obtain the desired sensor-motor competences. In this paper we present an alternative to established machine learning methods such as artificial neural networks, that is very fast, easy to implement, and has the distinct advantage that it generates transparent, analysable sensor-motor couplings: system identification through nonlinear polynomial mapping. This work, which is part of the RobotMODIC project at the universities of Essex and Sheffield, aims to develop a theoretical understanding of the interaction between the robot and its environment. One of the purposes of this research is to enable the principled design of robot control programs. As a first step towards this aim we model the behaviour of the robot, as this emerges from its interaction with the environment, with the NARMAX modelling method (Nonlinear, Auto-Regressive, Moving Average models with eXogenous inputs). This method produces explicit polynomial functions that can be subsequently analysed using established mathematical methods. In this paper we demonstrate the fidelity of the obtained NARMAX models in the challenging task of robot route learning; we present a set of experiments in which a Magellan Pro mobile robot was taught to follow four different routes, always using the same mechanism to obtain the required control law.

Keywords: Mobile robotics, system identification, non-linear modelling, NARMAX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
348 An Integrated CFD and Experimental Analysis on Double-Skin Window

Authors: Sheam-Chyun Lin, Wei-Kai Chen, Hung-Cheng Yen, Yung-Jen Cheng, Yu-Cheng Chen

Abstract:

Result from the constant dwindle in natural resources, the alternative way to reduce the costs in our daily life would be urgent to be found in the near future. As the ancient technique based on the theory of solar chimney since roman times, the double-skin façade are simply composed of two large glass panels in purpose of daylighting and also natural ventilation in the daytime. Double-skin façade is generally installed on the exterior side of buildings as function as the window, so there is always a huge amount of passive solar energy the façade would receive to induce the airflow every sunny day. Therefore, this article imposes a domestic double-skin window for residential usage and attempts to improve the volume flow rate inside the cavity between the panels by the frame geometry design, the installation of outlet guide plate and the solar energy collection system. Note that the numerical analyses are applied to investigate the characteristics of flow field, and the boundary conditions in the simulation are totally based on the practical experiment of the original prototype. Then we redesign the prototype from the knowledge of the numerical results and fluid dynamic theory, and later the experiments of modified prototype will be conducted to verify the simulation results. The velocities at the inlet of each case are increase by 5%, 45% and 15% from the experimental data, and also the numerical simulation results reported 20% improvement in volume flow rate both for the frame geometry design and installation of outlet guide plate.

Keywords: Solar energy, Double-skin façades, Thermal buoyancy, Fluid machinery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1484
347 Optimal Efficiency Control of Pulse Width Modulation - Inverter Fed Motor Pump Drive Using Neural Network

Authors: O. S. Ebrahim, M. A. Badr, A. S. Elgendy, K. O. Shawky, P. K. Jain

Abstract:

This paper demonstrates an improved Loss Model Control (LMC) for a 3-phase induction motor (IM) driving pump load. Compared with other power loss reduction algorithms for IM, the presented one has the advantages of fast and smooth flux adaptation, high accuracy, and versatile implementation. The performance of LMC depends mainly on the accuracy of modeling the motor drive and losses. A loss-model for IM drive that considers the surplus power loss caused by inverter voltage harmonics using closed-form equations and also includes the magnetic saturation has been developed. Further, an Artificial Neural Network (ANN) controller is synthesized and trained offline to determine the optimal flux level that achieves maximum drive efficiency. The drive’s voltage and speed control loops are connecting via the stator frequency to avoid the possibility of excessive magnetization. Besides, the resistance change due to temperature is considered by a first-order thermal model. The obtained thermal information enhances motor protection and control. These together have the potential of making the proposed algorithm reliable. Simulation and experimental studies are performed on 5.5 kW test motor using the proposed control method. The test results are provided and compared with the fixed flux operation to validate the effectiveness.

Keywords: Artificial neural network, ANN, efficiency optimization, induction motor, IM, Pulse Width Modulated, PWM, harmonic losses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 293
346 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm

Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon

Abstract:

Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.

Keywords: Exergy analysis, Genetic algorithm, Rankine cycle, Single and Multi-objective function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 597
345 Performance Analysis of Reconstruction Algorithms in Diffuse Optical Tomography

Authors: K. Uma Maheswari, S. Sathiyamoorthy, G. Lakshmi

Abstract:

Diffuse Optical Tomography (DOT) is a non-invasive imaging modality used in clinical diagnosis for earlier detection of carcinoma cells in brain tissue. It is a form of optical tomography which produces gives the reconstructed image of a human soft tissue with by using near-infra-red light. It comprises of two steps called forward model and inverse model. The forward model provides the light propagation in a biological medium. The inverse model uses the scattered light to collect the optical parameters of human tissue. DOT suffers from severe ill-posedness due to its incomplete measurement data. So the accurate analysis of this modality is very complicated. To overcome this problem, optical properties of the soft tissue such as absorption coefficient, scattering coefficient, optical flux are processed by the standard regularization technique called Levenberg - Marquardt regularization. The reconstruction algorithms such as Split Bregman and Gradient projection for sparse reconstruction (GPSR) methods are used to reconstruct the image of a human soft tissue for tumour detection. Among these algorithms, Split Bregman method provides better performance than GPSR algorithm. The parameters such as signal to noise ratio (SNR), contrast to noise ratio (CNR), relative error (RE) and CPU time for reconstructing images are analyzed to get a better performance.

Keywords: Diffuse optical tomography, ill-posedness, Levenberg Marquardt method, Split Bregman, the Gradient projection for sparse reconstruction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
344 Numerical Simulation in the Air-Curtain Installed Subway Tunnel for the Indoor Air Quality

Authors: Kyung Jin Ryu, Makhsuda Juraeva, Sang-Hyun Jeong, Dong Joo Song

Abstract:

The Platform Screen Doors improve Indoor Air Quality (IAQ) in the subway station; however, and the air quality is degraded in the subway tunnel. CO2 concentration and indoor particulate matter value are high in the tunnel. The IAQ level in subway tunnel degrades by increasing the train movements. Air-curtain installation reduces dusts, particles and moving toxic smokes and permits traffic by generating virtual wall. The ventilation systems of the subway tunnel need improvements to have better air-quality. Numerical analyses might be effective tools analyze the flowfield inside the air-curtain installed subway tunnel. The ANSYS CFX software is used for steady computations of the airflow inside the tunnel. The single-track subway tunnel has the natural shaft, the mechanical shaft, and the PSDs installed stations. The height and width of the tunnel are 6.0 m and 4.0 m respectively. The tunnel is 400 m long and the air-curtain is installed at the top of the tunnel. The thickness and the width of the air-curtain are 0.08 m and 4 m respectively. The velocity of the air-curtain changes between 20 - 30 m/s. Three cases are analyzed depending on the installing location of the air-curtain. The discharged-air through the natural shafts increases as the velocity of the air-curtain increases when the air-curtain is installed between the mechanical and the natural shafts. The pollutant-air is exhausted by the mechanical and the natural shafts and remained air is pushed toward tunnel end. The discharged-air through the natural shaft is low when the air-curtain installed before the natural shaft. The mass flow rate decreases in the tunnel after the mechanical shaft as the air-curtain velocity increases. The computational results of the air-curtain installed tunnel become basis for the optimum design study. The air-curtain installing location is chosen between the mechanical and the natural shafts. The velocity of the air-curtain is fixed as 25 m/s. The thickness and the blowing angles of the air-curtain are the design variables for the optimum design study. The object function of the design optimization is maximizing the discharged air through the natural shaft.

Keywords: air-curtain, indoor air quality, single-track subway tunnel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2603
343 Genetic Algorithm Application in a Dynamic PCB Assembly with Carryover Sequence- Dependent Setups

Authors: M. T. Yazdani Sabouni, Rasaratnam Logendran

Abstract:

We consider a typical problem in the assembly of printed circuit boards (PCBs) in a two-machine flow shop system to simultaneously minimize the weighted sum of weighted tardiness and weighted flow time. The investigated problem is a group scheduling problem in which PCBs are assembled in groups and the interest is to find the best sequence of groups as well as the boards within each group to minimize the objective function value. The type of setup operation between any two board groups is characterized as carryover sequence-dependent setup time, which exactly matches with the real application of this problem. As a technical constraint, all of the boards must be kitted before the assembly operation starts (kitting operation) and by kitting staff. The main idea developed in this paper is to completely eliminate the role of kitting staff by assigning the task of kitting to the machine operator during the time he is idle which is referred to as integration of internal (machine) and external (kitting) setup times. Performing the kitting operation, which is a preparation process of the next set of boards while the other boards are currently being assembled, results in the boards to continuously enter the system or have dynamic arrival times. Consequently, a dynamic PCB assembly system is introduced for the first time in the assembly of PCBs, which also has characteristics similar to that of just-in-time manufacturing. The problem investigated is computationally very complex, meaning that finding the optimal solutions especially when the problem size gets larger is impossible. Thus, a heuristic based on Genetic Algorithm (GA) is employed. An example problem on the application of the GA developed is demonstrated and also numerical results of applying the GA on solving several instances are provided.

Keywords: Genetic algorithm, Dynamic PCB assembly, Carryover sequence-dependent setup times, Multi-objective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
342 Pictorial Multimodal Analysis of Selected Paintings of Salvador Dali

Authors: Shaza Melies, Abeer Refky, Nihad Mansoor

Abstract:

Multimodality involves the communication between verbal and visual components in various discourses. A painting represents a form of communication between the artist and the viewer in terms of colors, shades, objects, and the title. This paper aims to present how multimodality can be used to decode the verbal and visual dimensions a painting holds. For that purpose, this study uses Kress and van Leeuwen’s theoretical framework of visual grammar for the analysis of the multimodal semiotic resources of selected paintings of Salvador Dali. This study investigates the visual decoding of the selected paintings of Salvador Dali and analyzing their social and political meanings using Kress and van Leeuwen’s framework of visual grammar. The paper attempts to answer the following questions: 1. How far can multimodality decode the verbal and non-verbal meanings of surrealistic art? 2. How can Kress and van Leeuwen’s theoretical framework of visual grammar be applied to analyze Dali’s paintings? 3. To what extent is Kress and van Leeuwen’s theoretical framework of visual grammar apt to deliver political and social messages of Dali? The paper reached the following findings: the framework’s descriptive tools (representational, interactive, and compositional meanings) can be used to analyze the paintings’ title and their visual elements. Social and political messages were delivered by appropriate usage of color, gesture, vectors, modality, and the way social actors were represented.

Keywords: Multimodality, multimodal analysis, paintings analysis, Salvador Dali, visual grammar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 703
341 Detecting Cavitation in a Vertical Sea water Centrifugal Lift Pump Related to Iran Oil Industry Cooling Water Circulation System

Authors: Omid A. Zargar

Abstract:

Cavitation is one of the most well-known process faults that may occur in different industrial equipment especially centrifugal pumps. Cavitation also may happen in water pumps and turbines. Sometimes cavitation has been severe enough to wear holes in the impeller and damage the vanes to such a degree that the impeller becomes very ineffective. More commonly, the pump efficiency will decrease significantly during cavitation and continue to decrease as damage to the impeller increases. Typically, when cavitation occurs, an audible sound similar to ‘marbles’ or ‘crackling’ is reported to be emitted from the pump. In this paper, the most effective monitoring items and techniques in detecting cavitation discussed in details. Besides, some successful solutions for solving this problem for sea water vertical Centrifugal lift Pump discussed through a case history related to Iran oil industry. Furthermore, balance line modification, strainer choking and random resonance in sea water pumps discussed. In addition, a new Method for diagnosing mechanical conditions of sea water vertical Centrifugal lift Pumps introduced. This method involves disaggregating bus current by device into disaggregated currents having correspondences with operating currents in response to measured bus current. Moreover, some new patents and innovations in mechanical sea water pumping and cooling systems discussed in this paper.

Keywords: Cavitation, Vibration Analysis, Centrifugal Pump, Vertical Pump, Sea Water Pump, Balance Line, Strainer, Time Wave Form (TWF), Fast Fourier Transform (FFT)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4121
340 An Analysis of Collapse Mechanism of Thin- Walled Circular Tubes Subjected to Bending

Authors: Somya Poonaya, Chawalit Thinvongpituk, Umphisak Teeboonma

Abstract:

Circular tubes have been widely used as structural members in engineering application. Therefore, its collapse behavior has been studied for many decades, focusing on its energy absorption characteristics. In order to predict the collapse behavior of members, one could rely on the use of finite element codes or experiments. These tools are helpful and high accuracy but costly and require extensive running time. Therefore, an approximating model of tubes collapse mechanism is an alternative for early step of design. This paper is also aimed to develop a closed-form solution of thin-walled circular tube subjected to bending. It has extended the Elchalakani et al.-s model (Int. J. Mech. Sci.2002; 44:1117-1143) to include the rate of energy dissipation of rolling hinge in the circumferential direction. The 3-D geometrical collapse mechanism was analyzed by adding the oblique hinge lines along the longitudinal tube within the length of plastically deforming zone. The model was based on the principal of energy rate conservation. Therefore, the rates of internal energy dissipation were calculated for each hinge lines which are defined in term of velocity field. Inextensional deformation and perfect plastic material behavior was assumed in the derivation of deformation energy rate. The analytical result was compared with experimental result. The experiment was conducted with a number of tubes having various D/t ratios. Good agreement between analytical and experiment was achieved.

Keywords: Bending, Circular tube, Energy, Mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3468
339 Modified Energy and Link Failure Recovery Routing Algorithm for Wireless Sensor Network

Authors: M. Jayekumar, V. Nagarajan

Abstract:

Wireless sensor network finds role in environmental monitoring, industrial applications, surveillance applications, health monitoring and other supervisory applications. Sensing devices form the basic operational unit of the network that is self-battery powered with limited life time. Sensor node spends its limited energy for transmission, reception, routing and sensing information. Frequent energy utilization for the above mentioned process leads to network lifetime degradation. To enhance energy efficiency and network lifetime, we propose a modified energy optimization and node recovery post failure method, Energy-Link Failure Recovery Routing (E-LFRR) algorithm. In our E-LFRR algorithm, two phases namely, Monitored Transmission phase and Replaced Transmission phase are devised to combat worst case link failure conditions. In Monitored Transmission phase, the Actuator Node monitors and identifies suitable nodes for shortest path transmission. The Replaced Transmission phase dispatches the energy draining node at early stage from the active link and replaces it with the new node that has sufficient energy. Simulation results illustrate that this combined methodology reduces overhead, energy consumption, delay and maintains considerable amount of alive nodes thereby enhancing the network performance.

Keywords: Actuator node, energy efficient routing, energy hole, link failure recovery, link utilization, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1160
338 Dynamic Threshold Adjustment Approach For Neural Networks

Authors: Hamza A. Ali, Waleed A. J. Rasheed

Abstract:

The use of neural networks for recognition application is generally constrained by their inherent parameters inflexibility after the training phase. This means no adaptation is accommodated for input variations that have any influence on the network parameters. Attempts were made in this work to design a neural network that includes an additional mechanism that adjusts the threshold values according to the input pattern variations. The new approach is based on splitting the whole network into two subnets; main traditional net and a supportive net. The first deals with the required output of trained patterns with predefined settings, while the second tolerates output generation dynamically with tuning capability for any newly applied input. This tuning comes in the form of an adjustment to the threshold values. Two levels of supportive net were studied; one implements an extended additional layer with adjustable neuronal threshold setting mechanism, while the second implements an auxiliary net with traditional architecture performs dynamic adjustment to the threshold value of the main net that is constructed in dual-layer architecture. Experiment results and analysis of the proposed designs have given quite satisfactory conducts. The supportive layer approach achieved over 90% recognition rate, while the multiple network technique shows more effective and acceptable level of recognition. However, this is achieved at the price of network complexity and computation time. Recognition generalization may be also improved by accommodating capabilities involving all the innate structures in conjugation with Intelligence abilities with the needs of further advanced learning phases.

Keywords: Classification, Recognition, Neural Networks, Pattern Recognition, Generalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
337 Ghost Frequency Noise Reduction through Displacement Deviation Analysis

Authors: Paua Ketan, Bhagate Rajkumar, Adiga Ganesh, M. Kiran

Abstract:

Low gear noise is an important sound quality feature in modern passenger cars. Annoying gear noise from the gearbox is influenced by the gear design, gearbox shaft layout, manufacturing deviations in the components, assembly errors and the mounting arrangement of the complete gearbox. Geometrical deviations in the form of profile and lead errors are often present on the flanks of the inspected gears. Ghost frequencies of a gear are very challenging to identify in standard gear measurement and analysis process due to small wavelengths involved. In this paper, gear whine noise occurring at non-integral multiples of gear mesh frequency of passenger car gearbox is investigated and the root cause is identified using the displacement deviation analysis (DDA) method. DDA method is applied to identify ghost frequency excitations on the flanks of gears arising out of generation grinding. Frequency identified through DDA correlated with the frequency of vibration and noise on the end-of-line machine as well as vehicle level measurements. With the application of DDA method along with standard lead profile measurement, gears with ghost frequency geometry deviations were identified on the production line to eliminate defective parts and thereby eliminate ghost frequency noise from a vehicle. Further, displacement deviation analysis can be used in conjunction with the manufacturing process simulation to arrive at suitable countermeasures for arresting the ghost frequency.

Keywords: Displacement deviation analysis, gear whine, ghost frequency, sound quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 728
336 Transmission Line Congestion Management Using Hybrid Fish-Bee Algorithm with Unified Power Flow Controller

Authors: P. Valsalal, S. Thangalakshmi

Abstract:

There is a widespread changeover in the electrical power industry universally from old-style monopolistic outline towards a horizontally distributed competitive structure to come across the demand of rising consumption. When the transmission lines of derestricted system are incapable to oblige the entire service needs, the lines are overloaded or congested. The governor between customer and power producer is nominated as Independent System Operator (ISO) to lessen the congestion without obstructing transmission line restrictions. Among the existing approaches for congestion management, the frequently used approaches are reorganizing the generation and load curbing. There is a boundary for reorganizing the generators, and further loads may not be supplemented with the prevailing resources unless more private power producers are added in the system by considerably raising the cost. Hence, congestion is relaxed by appropriate Flexible AC Transmission Systems (FACTS) devices which boost the existing transfer capacity of transmission lines. The FACTs device, namely, Unified Power Flow Controller (UPFC) is preferred, and the correct placement of UPFC is more vital and should be positioned in the highly congested line. Hence, the weak line is identified by using power flow performance index with the new objective function with proposed hybrid Fish – Bee algorithm. Further, the location of UPFC at appropriate line reduces the branch loading and minimizes the voltage deviation. The power transfer capacity of lines is determined with and without UPFC in the identified congested line of IEEE 30 bus structure and the simulated results are compared with prevailing algorithms. It is observed that the transfer capacity of existing line is increased with the presented algorithm and thus alleviating the congestion.

Keywords: Available line transfer capability, congestion management, FACTS device, hybrid fish-bee algorithm, ISO, UPFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
335 Gender Differences in Negotiation: Considering the Usual Driving Forces?

Authors: Claude Alavoine, Ferkan Kaplanseren

Abstract:

Negotiation is a specific form of interaction based on communication in which the parties enter into deliberately, each with clear but different interests or goals and a mutual dependency towards a decision due to be taken at the end of the confrontation. Consequently, negotiation is a complex activity involving many different disciplines from the strategic aspects and the decision making process to the evaluation of alternatives or outcomes and the exchange of information. While gender differences can be considered as one of the most researched topic within negotiation studies, empirical works and theory present many conflicting evidences and results about the role of gender in the process or the outcome. Furthermore, little interest has been shown over gender differences in the definition of what is negotiation, its essence or fundamental elements. Or, as differences exist in practices, it might be essential to study if the starting point of these discrepancies does not come from different considerations about what is negotiation and what will encourage the participants in their strategic decisions. Some recent and promising experiments made with diverse groups show that male and female participants in a common and shared situation barely consider the same way the concepts of power, trust or stakes which are largely considered as the usual driving forces of any negotiation. Furthermore, results from Human Resource self-assessment tests display and confirm considerable differences between individuals regarding essential behavioral dimensions like capacity to improvise and to achieve, aptitude to conciliate or to compete and orientation towards power and group domination which are also part of negotiation skills. Our intention in this paper is to confront these dimensions with negotiation’s usual driving forces in order to build up new paths for further research.

Keywords: Gender, negotiation, personality, power, stakes, trust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3278
334 The Effects of Sodium Chloride in the Formation of Size and Shape of Gold (Au)Nanoparticles by Microwave-Polyol Method for Mercury Adsorption

Authors: Mawarni F. Mohamad, Khairul S.N. Kamarudin, Nik N.F.N.M. Fathilah, Mohamad M. Salleh

Abstract:

Mercury is a natural occurring element and present in various concentrations in the environment. Due to its toxic effects, it is desirable to research mercury sensitive materials to adsorb mercury. This paper describes the preparation of Au nanoparticles for mercury adsorption by using a microwave (MW)-polyol method in the presence of three different Sodium Chloride (NaCl) concentrations (10, 20 and 30 mM). Mixtures of spherical, triangular, octahedral, decahedral particles and 1-D product were obtained using this rapid method. Sizes and shapes was found strongly depend on the concentrations of NaCl. Without NaCl concentration, spherical, triangular plates, octahedral, decahedral nanoparticles and 1D product were produced. At the lower NaCl concentration (10 mM), spherical, octahedral and decahedral nanoparticles were present, while spherical and decahedral nanoparticles were preferentially form by using 20 mM of NaCl concentration. Spherical, triangular plates, octahedral and decahedral nanoparticles were obtained at the highest NaCl concentration (30 mM). The amount of mercury adsorbed using 20 ppm mercury solution is the highest (67.5 %) for NaCl concentration of 30 mM. The high yield of polygonal particles will increase the mercury adsorption. In addition, the adsorption of mercury is also due to the sizes of the particles. The sizes of particles become smaller with increasing NaCl concentrations (size ranges, 5- 16 nm) than those synthesized without addition of NaCl (size ranges 11-32 nm). It is concluded that NaCl concentrations affects the formation of sizes and shapes of Au nanoparticles thus affects the mercury adsorption.

Keywords: Adsorption, Au Nanoparticles, Mercury, SodiumChloride.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3612
333 A Development of Home Service Robot using Omni-Wheeled Mobility and Task-Based Manipulation

Authors: Hijun Kim, Jungkeun Sung, Seungwoo Kim

Abstract:

In this paper, a Smart Home Service Robot, McBot II, which performs mess-cleanup function etc. in house, is designed much more optimally than other service robots. It is newly developed in much more practical system than McBot I which we had developed two years ago. One characteristic attribute of mobile platforms equipped with a set of dependent wheels is their omni- directionality and the ability to realize complex translational and rotational trajectories for agile navigation in door. An accurate coordination of steering angle and spinning rate of each wheel is necessary for a consistent motion. This paper develops trajectory controller of 3-wheels omni-directional mobile robot using fuzzy azimuth estimator. A specialized anthropomorphic robot manipulator which can be attached to the housemaid robot McBot II, is developed in this paper. This built-in type manipulator consists of both arms with 3 DOF (Degree of Freedom) each and both hands with 3 DOF each. The robotic arm is optimally designed to satisfy both the minimum mechanical size and the maximum workspace. Minimum mass and length are required for the built-in cooperated-arms system. But that makes the workspace so small. This paper proposes optimal design method to overcome the problem by using neck joint to move the arms horizontally forward/backward and waist joint to move them vertically up/down. The robotic hand, which has two fingers and a thumb, is also optimally designed in task-based concept. Finally, the good performance of the developed McBot II is confirmed through live tests of the mess-cleanup task.

Keywords: Holonomic Omni-wheeled Mobile Robot, Special-purpose, Manipulation, Home Service Robot

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2366
332 Estimation of Seismic Ground Motion and Shaking Parameters Based On Microtremor Measurements at Palu City, Central Sulawesi Province, Indonesia

Authors: P. S. Thein, S. Pramumijoyo, K. S. Brotopuspito, J. Kiyono, W. Wilopo, A. Furukawa, A. Setianto

Abstract:

In this study, we estimated the seismic ground motion parameters based on microtremor measurements atPalu City. Several earthquakes have struck along the Palu-Koro Fault during recent years. The USGS epicenter, magnitude Mw 6.3 event that occurred on January 23, 2005 caused several casualties. We conducted a microtremor survey to estimate the strong ground motion distribution during the earthquake. From this surveywe produced a map of the peak ground acceleration, velocity, seismic vulnerability index and ground shear strain maps in Palu City. We performed single observations of microtremor at 151 sites in Palu City. We also conducted8-site microtremors array investigation to gain a representative determination of the soil condition of subsurface structures in Palu City.From the array observations, Palu City corresponds to relatively soil condition with Vs ≤ 300m/s, the predominant periods due to horizontal vertical ratios (HVSRs) are in the range of 0.4 to 1.8 s and the frequency are in the range of 0.7 to 3.3 Hz. Strong ground motions of the Palu area were predicted based on the empirical stochastic green’s function method. Peak ground acceleration and velocity becomes more than 400 gal and 30 kine in some areas, which causes severe damage for buildings in high probability. Microtremor survey results showed that in hilly areas had low seismic vulnerability index and ground shear strain, whereas in coastal alluvium was composed of material having a high seismic vulnerability and ground shear strain indication.

Keywords: Palu-Koro Fault, Microtremor, Peak Ground Acceleration, Peak Ground Velocity and Seismic Vulnerability Index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3279
331 Multipath Routing Sensor Network for Finding Crack in Metallic Structure Using Fuzzy Logic

Authors: Dulal Acharjee, Punyaban Patel

Abstract:

For collecting data from all sensor nodes, some changes in Dynamic Source Routing (DSR) protocol is proposed. At each hop level, route-ranking technique is used for distributing packets to different selected routes dynamically. For calculating rank of a route, different parameters like: delay, residual energy and probability of packet loss are used. A hybrid topology of DMPR(Disjoint Multi Path Routing) and MMPR(Meshed Multi Path Routing) is formed, where braided topology is used in different faulty zones of network. For reducing energy consumption, variant transmission ranges is used instead of fixed transmission range. For reducing number of packet drop, a fuzzy logic inference scheme is used to insert different types of delays dynamically. A rule based system infers membership function strength which is used to calculate the final delay amount to be inserted into each of the node at different clusters. In braided path, a proposed 'Dual Line ACK Link'scheme is proposed for sending ACK signal from a damaged node or link to a parent node to ensure that any error in link or any node-failure message may not be lost anyway. This paper tries to design the theoretical aspects of a model which may be applied for collecting data from any large hanging iron structure with the help of wireless sensor network. But analyzing these data is the subject of material science and civil structural construction technology, that part is out of scope of this paper.

Keywords: Metallic corrosion, Multi Path Routing, DisjointMPR, Meshed MPR, braided path, dual line ACK link, route rankingand Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
330 Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases

Authors: Mohammad A. Bani-Khaled

Abstract:

In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.

Keywords: Coupled dynamics, geometric complexity, Proper Orthogonal Decomposition (POD), thin walled beams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 984
329 The Use of Information and Communication Technologies in Electoral Procedures: Comments on Electronic Voting Security

Authors: Magdalena Musiał-Karg

Abstract:

The expansion of telecommunication and progress of electronic media constitute important elements of our times. The recent worldwide convergence of information and communication technologies (ICT) and dynamic development of the mass media is leading to noticeable changes in the functioning of contemporary states and societies. Currently, modern technologies play more and more important roles and filter down to almost every field of contemporary human life. It results in the growth of online interactions that can be observed by the inconceivable increase in the number of people with home PCs and Internet access. The proof of it is undoubtedly the emergence and use of concepts such as e-society, e-banking, e-services, e-government, e-government, e-participation and e-democracy. The newly coined word e-democracy evidences that modern technologies have also been widely used in politics. Without any doubt in most countries all actors of political market (politicians, political parties, servants in political/public sector, media) use modern forms of communication with the society. Most of these modern technologies progress the processes of getting and sending information to the citizens, communication with the electorate, and also – which seems to be the biggest advantage – electoral procedures. Thanks to implementation of ICT the interaction between politicians and electorate are improved. The main goal of this text is to analyze electronic voting (e-voting) as one of the important forms of electronic democracy in terms of security aspects. The author of this paper aimed at answering the questions of security of electronic voting as an additional form of participation in elections and referenda.

Keywords: Electronic democracy, electronic participation, electronic voting, security of e-voting, ICT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
328 The Effect of the Side-Weir Crest Height to Scour in Clay-Sand Mixed Sediments

Authors: F. Ayça Varol Saraçoğlu, Hayrullah Ağaçcıoğlu

Abstract:

Experimental studies to investigate the depth of the scour conducted at a side-weir intersection located at the 1800 curved flume which located Hydraulic Laboratory of Yıldız Technical University, Istanbul, Turkey. Side weirs were located at the middle of the straight part of the main channel. Three different lengths (25, 40 and 50 cm) and three different weir crest height (7, 10 and 12 cm) of the side weir placed on the side weir station. There is no scour when the material is only kaolin. Therefore, the cohesive bed was prepared by properly mixing clay material (kaolin) with 31% sand in all experiments. Following 24h consolidation time, in order to observe the effect of flow intensity on the scour depth, experiments were carried out for five different upstream Froude numbers in the range of 0.33-0.81. As a result of this study the relation between scour depth and upstream flow intensity as a function of time have been established. The longitudinal velocities decreased along the side weir; towards the downstream due to overflow over the side-weirs. At the beginning, the scour depth increases rapidly with time and then asymptotically approached constant values in all experiments for all side weir dimensions as in non-cohesive sediment. Thus, the scour depth reached equilibrium conditions. Time to equilibrium depends on the approach flow intensity and the dimensions of side weirs. For different heights of the weir crest, dimensionless scour depths increased with increasing upstream Froude number. Equilibrium scour depths which formed 7 cm side-weir crest height were obtained higher than that of the 12 cm side-weir crest height. This means when side-weir crest height increased equilibrium scour depths decreased. Although the upstream side of the scour hole is almost vertical, the downstream side of the hole is inclined.

Keywords: Clay-sand mixed sediments, scour, side weir.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
327 Investigation of Boll Properties on Cotton Picker Machine Performance

Authors: Shahram Nowrouzieh, Abbas Rezaei Asl, Mohamad Ali Jafari

Abstract:

Cotton, as a strategic crop, plays an important role in providing human food and clothing need, because of its oil, protein, and fiber. Iran has been one of the largest cotton producers in the world in the past, but unfortunately, for economic reasons, its production is reduced now. One of the ways to reduce the cost of cotton production is to expand the mechanization of cotton harvesting. Iranian farmers do not accept the function of cotton harvesters. One reason for this lack of acceptance of cotton harvesting machines is the number of field losses on these machines. So, the majority of cotton fields are harvested by hand. Although the correct setting of the harvesting machine is very important in the cotton losses, the morphological properties of the cotton plant also affect the performance of cotton harvesters. In this study, the effect of some cotton morphological properties such as the height of the cotton plant, number, and length of sympodial and monopodial branches, boll dimensions, boll weight, number of carpels and bracts angle were evaluated on the performance of cotton picker. In this research, the efficiency of John Deere 9920 spindle Cotton picker is investigated on five different Iranian cotton cultivars. The results indicate that there was a significant difference between the five cultivars in terms of machine harvest efficiency. Golestan cultivar showed the best cotton harvester performance with an average of 87.6% of total harvestable seed cotton and Khorshid cultivar had the least cotton harvester performance. The principal component analysis showed that, at 50.76% probability, the cotton picker efficiency is affected by the bracts angle positively and by boll dimensions, the number of carpels and the height of cotton plants negatively. The seed cotton remains (in the plant and on the ground) after harvester in PCA scatter plot were in the same zone with boll dimensions and several carpels.

Keywords: Cotton, bract, harvester, carpel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661
326 Tailoring of ECSS Standard for Space Qualification Test of CubeSat Nano-Satellite

Authors: B. Tiseo, V. Quaranta, G. Bruno, G. Sisinni

Abstract:

There is an increasing demand of nano-satellite development among universities, small companies, and emerging countries. Low-cost and fast-delivery are the main advantages of such class of satellites achieved by the extensive use of commercial-off-the-shelf components. On the other side, the loss of reliability and the poor success rate are limiting the use of nano-satellite to educational and technology demonstration and not to the commercial purpose. Standardization of nano-satellite environmental testing by tailoring the existing test standard for medium/large satellites is then a crucial step for their market growth. Thus, it is fundamental to find the right trade-off between the improvement of reliability and the need to keep their low-cost/fast-delivery advantages. This is particularly even more essential for satellites of CubeSat family. Such miniaturized and standardized satellites have 10 cm cubic form and mass no more than 1.33 kilograms per 1 unit (1U). For this class of nano-satellites, the qualification process is mandatory to reduce the risk of failure during a space mission. This paper reports the description and results of the space qualification test campaign performed on Endurosat’s CubeSat nano-satellite and modules. Mechanical and environmental tests have been carried out step by step: from the testing of the single subsystem up to the assembled CubeSat nano-satellite. Functional tests have been performed during all the test campaign to verify the functionalities of the systems. The test duration and levels have been selected by tailoring the European Space Agency standard ECSS-E-ST-10-03C and GEVS: GSFC-STD-7000A.

Keywords: CubeSat, Nano-satellite, shock, testing, vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
325 Multi-Objective Optimal Design of a Cascade Control System for a Class of Underactuated Mechanical Systems

Authors: Yuekun Chen, Yousef Sardahi, Salam Hajjar, Christopher Greer

Abstract:

This paper presents a multi-objective optimal design of a cascade control system for an underactuated mechanical system. Cascade control structures usually include two control algorithms (inner and outer). To design such a control system properly, the following conflicting objectives should be considered at the same time: 1) the inner closed-loop control must be faster than the outer one, 2) the inner loop should fast reject any disturbance and prevent it from propagating to the outer loop, 3) the controlled system should be insensitive to measurement noise, and 4) the controlled system should be driven by optimal energy. Such a control problem can be formulated as a multi-objective optimization problem such that the optimal trade-offs among these design goals are found. To authors best knowledge, such a problem has not been studied in multi-objective settings so far. In this work, an underactuated mechanical system consisting of a rotary servo motor and a ball and beam is used for the computer simulations, the setup parameters of the inner and outer control systems are tuned by NSGA-II (Non-dominated Sorting Genetic Algorithm), and the dominancy concept is used to find the optimal design points. The solution of this problem is not a single optimal cascade control, but rather a set of optimal cascade controllers (called Pareto set) which represent the optimal trade-offs among the selected design criteria. The function evaluation of the Pareto set is called the Pareto front. The solution set is introduced to the decision-maker who can choose any point to implement. The simulation results in terms of Pareto front and time responses to external signals show the competing nature among the design objectives. The presented study may become the basis for multi-objective optimal design of multi-loop control systems.

Keywords: Cascade control, multi-loop control systems, multi-objective optimization, optimal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 870
324 Meanings and Construction: Evolution of Inheriting the Traditions in Chinese Modern Architecture in the 1980s

Authors: Wei Wang

Abstract:

Queli Hotel, Xixi Scenery Spot Reception and Square Pagoda Garden are three important landmarks of localized Chinese modern architecture (LCMA) in the architectural design context of "Inheriting the Traditions in Modern Architecture" in the 1980s. As the most representative cases of LCMA in the 1980s, they interpret the traditions of Chinese garden and imperial roof from different perspectives. Based on the research text, conceptual drawings, construction drawings and site investigation, this paper extracts two groups of prominent contradictions in practice ("Pattern-Material-Structure" and "Type-Topography-Body") for keyword-based analysis to compare and examine different choices and balances by architects. Based on this, this paper attempts to indicate that the ideographic form derived from macro-narrative and the innovative investigation in construction is a pair of inevitable contradictions that must be handled and coordinated in these practices. The collision of the contradictions under specific conditions results in three cognitive attitudes and practical strategies towards traditions: Formal symbolism, spatial abstraction and construction-based narrative. These differentiated thoughts about Localization and Chineseness reflect various professional ideologies and value standpoints in the transition of Chinese Architecture discipline in the 1980s. The great variety in this particular circumstance suggests tremendous potential and possibilities of the future LCMA.

Keywords: Construction, Meaning, Queli Hotel, Square Pagoda Garden, Tradition, Xixi Scenery Spot Reception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 611
323 The Importance of Zakat in Struggle against Circle of Poverty and Income Redistribution

Authors: Hasan Bulent Kantarcı

Abstract:

This paper examines how “Zakat” provides fair income redistribution and aids the struggle against poverty. Providing fair income redistribution and combating poverty constitutes some of the fundamental tasks performed by countries all over the world. Each country seeks a solution for these problems according to their political, economic and administrative styles through applying various economic and financial policies. The same situation can be handled via “zakat” association in Islam. Nowadays, we observe different versions of “zakat” in developed countries. Applications such as negative income tax denote merely a different form of “zakat” that is being applied almost in the same way but under changed names. However, the minimum values to donate under zakat (e.g. 85 gr. gold and 40 animals) get altered and various amounts are put into practice. It might be named as negative income tax instead of zakat, nonetheless, these applications are based on the Holy Koran and the hadith released 1400 years ago. Besides, considering the savage and slavery in the world at those times, we might easily recognize the true value of the zakat being applied for the first time then in the Islamic system. Through zakat, governments are able to transfer incomes to the poor as a means of enabling them achieve the minimum standard of living required. With regards to who benefits from the Zakat, an objective and fair criteria was used to determine who benefits from the zakat contrary to the notion that it was based on peoples’ own choices. Since the zakat is obligatory, the transfers do not get forwarded directly but via the government and get distributed, which requires vast governmental organizations. Through the application of Zakat, reduced levels of poverty can be achieved and also ensure the fair income redistribution.

Keywords: Cycle of poverty, Islamic finance, income redistribution, zakat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
322 Image Magnification Using Adaptive Interpolationby Pixel Level Data-Dependent Geometrical Shapes

Authors: Muhammad Sajjad, Naveed Khattak, Noman Jafri

Abstract:

World has entered in 21st century. The technology of computer graphics and digital cameras is prevalent. High resolution display and printer are available. Therefore high resolution images are needed in order to produce high quality display images and high quality prints. However, since high resolution images are not usually provided, there is a need to magnify the original images. One common difficulty in the previous magnification techniques is that of preserving details, i.e. edges and at the same time smoothing the data for not introducing the spurious artefacts. A definitive solution to this is still an open issue. In this paper an image magnification using adaptive interpolation by pixel level data-dependent geometrical shapes is proposed that tries to take into account information about the edges (sharp luminance variations) and smoothness of the image. It calculate threshold, classify interpolation region in the form of geometrical shapes and then assign suitable values inside interpolation region to the undefined pixels while preserving the sharp luminance variations and smoothness at the same time. The results of proposed technique has been compared qualitatively and quantitatively with five other techniques. In which the qualitative results show that the proposed method beats completely the Nearest Neighbouring (NN), bilinear(BL) and bicubic(BC) interpolation. The quantitative results are competitive and consistent with NN, BL, BC and others.

Keywords: Adaptive, digital image processing, imagemagnification, interpolation, geometrical shapes, qualitative &quantitative analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765