%0 Journal Article
	%A S. I. V. Sousa and  F.G. Martins and  M. C. Pereira and  M. C. M. Alvim-Ferraz and  H. Ribeiro and  M. Oliveira and  I. Abreu
	%D 2008
	%J International Journal of Environmental and Ecological Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 20, 2008
	%T Use of Multiple Linear Regressions to Evaluate the Influence of O3 and PM10 on Biological Pollutants
	%U https://publications.waset.org/pdf/15256
	%V 20
	%X Exposure to ambient air pollution has been linked to a
number of health outcomes, starting from modest transient changes in
the respiratory tract and impaired pulmonary function, continuing to
restrict activity/reduce performance and to the increase emergency
rooms visits, hospital admissions or mortality. The increase of
allergenic symptoms has been associated with air contaminants such
as ozone, particulate matter, fungal spores and pollen.
Considering the potential relevance of crossed effects of nonbiological
pollutants and airborne pollens and fungal spores on
allergy worsening, the aim of this work was to evaluate the influence
of non-biological pollutants (O3 and PM10) and meteorological
parameters on the concentrations of pollen and fungal spores using
multiple linear regressions.
The data considered in this study were collected in Oporto which
is the second largest Portuguese city, located in the North. Daily
mean of O3, PM10, pollen and fungal spore concentrations,
temperature, relative humidity, precipitation, wind velocity, pollen
and fungal spore concentrations, for 2003, 2004 and 2005 were
considered. Results showed that the 90th percentile of the adjusted
coefficient of determination, P90 (R2aj), of the multiple regressions
varied from 0.613 to 0.916 for pollen and from 0.275 to 0.512 for
fungal spores. O3 and PM10 showed to have some influence on the
biological pollutants. Among the meteorological parameters
analysed, temperature was the one that most influenced the pollen
and fungal spores airborne concentrations. Relative humidity also
showed to have some influence on the fungal spore dispersion.
Nevertheless, the models for each pollen and fungal spore were
different depending on the analysed period, which means that the
correlations identified as statistically significant can not be, even so,
consistent enough.
	%P 105 - 110