Search results for: maintenance strategy selection multiple criteria decision-making analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11763

Search results for: maintenance strategy selection multiple criteria decision-making analysis

8313 Application of Model Free Adaptive Control in Main Steam Temperature System of Thermal Power Plant

Authors: Khaing Yadana Swe, Lillie Dewan

Abstract:

At present, the cascade PID control is widely used to control the superheating temperature (main steam temperature). As Main Steam Temperature has the characteristics of large inertia, large time-delay and time varying, etc., conventional PID control strategy cannot achieve good control performance. In order to overcome the bad performance and deficiencies of main steam temperature control system, Model Free Adaptive Control (MFAC) - P cascade control system is proposed in this paper. By substituting MFAC in PID of the main control loop of the main steam temperature control, it can overcome time delays, non-linearity, disturbance and time variation.

Keywords: Model free Adaptive Control, Cascade Control, Adaptive Control, PID.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2801
8312 Automatic Recognition of an Unknown and Time-Varying Number of Simultaneous Environmental Sound Sources

Authors: S. Ntalampiras, I. Potamitis, N. Fakotakis, S. Kouzoupis

Abstract:

The present work faces the problem of automatic enumeration and recognition of an unknown and time-varying number of environmental sound sources while using a single microphone. The assumption that is made is that the sound recorded is a realization of sound sources belonging to a group of audio classes which is known a-priori. We describe two variations of the same principle which is to calculate the distance between the current unknown audio frame and all possible combinations of the classes that are assumed to span the soundscene. We concentrate on categorizing environmental sound sources, such as birds, insects etc. in the task of monitoring the biodiversity of a specific habitat.

Keywords: automatic recognition of multiple sound sources, enumeration of sound sources, computational ecology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
8311 An Algorithm of Regulation of Glucose-Insulin Concentration in the Blood

Authors: B. Selma, S. Chouraqui

Abstract:

The pancreas is an elongated organ that extends across the abdomen, below the stomach. In addition, it secretes certain enzymes that aid in food digestion. The pancreas also manufactures hormones responsible for regulating blood glucose levels. In the present paper, we propose a mathematical model to study the homeostasis of glucose and insulin in healthy human, and a simulation of this model, which depicts the physiological events after a meal, will be represented in ordinary humans. The aim of this paper is to design an algorithm which regulates the level of glucose in the blood. The algorithm applied the concept of expert system for performing an algorithm control in the form of an "active" used to prescribe the rate of insulin infusion. By decomposing the system into subsystems, we have developed parametric models of each subsystem by using a forcing function strategy. The results showed a performance of the control system.

Keywords: Modeling, algorithm, regulation, glucose-insulin, blood, control system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1182
8310 Robust Regression and its Application in Financial Data Analysis

Authors: Mansoor Momeni, Mahmoud Dehghan Nayeri, Ali Faal Ghayoumi, Hoda Ghorbani

Abstract:

This research is aimed to describe the application of robust regression and its advantages over the least square regression method in analyzing financial data. To do this, relationship between earning per share, book value of equity per share and share price as price model and earning per share, annual change of earning per share and return of stock as return model is discussed using both robust and least square regressions, and finally the outcomes are compared. Comparing the results from the robust regression and the least square regression shows that the former can provide the possibility of a better and more realistic analysis owing to eliminating or reducing the contribution of outliers and influential data. Therefore, robust regression is recommended for getting more precise results in financial data analysis.

Keywords: Financial data analysis, Influential data, Outliers, Robust regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
8309 On Identity Disclosure Risk Measurement for Shared Microdata

Authors: M. N. Huda, S. Yamada, N. Sonehara

Abstract:

Probability-based identity disclosure risk measurement may give the same overall risk for different anonymization strategy of the same dataset. Some entities in the anonymous dataset may have higher identification risks than the others. Individuals are more concerned about higher risks than the average and are more interested to know if they have a possibility of being under higher risk. A notation of overall risk in the above measurement method doesn-t indicate whether some of the involved entities have higher identity disclosure risk than the others. In this paper, we have introduced an identity disclosure risk measurement method that not only implies overall risk, but also indicates whether some of the members have higher risk than the others. The proposed method quantifies the overall risk based on the individual risk values, the percentage of the records that have a risk value higher than the average and how larger the higher risk values are compared to the average. We have analyzed the disclosure risks for different disclosure control techniques applied to original microdata and present the results.

Keywords: Anonymization, microdata, disclosure risk, privacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
8308 Power Flow and Modal Analysis of a Power System Including Unified Power Flow Controller

Authors: Djilani Kobibi Youcef Islam, Hadjeri Samir, Djehaf Mohamed Abdeldjalil

Abstract:

The Flexible AC Transmission System (FACTS) technology is a new advanced solution that increases the reliability and provides more flexibility, controllability, and stability of a power system. The Unified Power Flow Controller (UPFC), as the most versatile FACTS device for regulating power flow, is able to control respectively transmission line real power, reactive power, and node voltage. The main purpose of this paper is to analyze the effect of the UPFC on the load flow, the power losses, and the voltage stability using NEPLAN software modules, Newton-Raphson load flow is used for the power flow analysis and the modal analysis is used for the study of the voltage stability. The simulation was carried out on the IEEE 14-bus test system.

Keywords: FACTS, load flow, modal analysis, UPFC, voltage stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2367
8307 Effect of Soil Corrosion in Failures of Buried Gas Pipelines

Authors: Saima Ali, Pathamanathan Rajeev, Imteaz A. Monzur

Abstract:

In this paper, a brief review of the corrosion mechanism in buried pipe and modes of failure is provided together with the available corrosion models. Moreover, the sensitivity analysis is performed to understand the influence of corrosion model parameters on the remaining life estimation. Further, the probabilistic analysis is performed to propagate the uncertainty in the corrosion model on the estimation of the renaming life of the pipe. Finally, the comparison among the corrosion models on the basis of the remaining life estimation will be provided to improve the renewal plan.

Keywords: Corrosion, pit depth, sensitivity analysis, exposure period.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
8306 Association Rules Mining and NOSQL Oriented Document in Big Data

Authors: Sarra Senhadji, Imene Benzeguimi, Zohra Yagoub

Abstract:

Big Data represents the recent technology of manipulating voluminous and unstructured data sets over multiple sources. Therefore, NOSQL appears to handle the problem of unstructured data. Association rules mining is one of the popular techniques of data mining to extract hidden relationship from transactional databases. The algorithm for finding association dependencies is well-solved with Map Reduce. The goal of our work is to reduce the time of generating of frequent itemsets by using Map Reduce and NOSQL database oriented document. A comparative study is given to evaluate the performances of our algorithm with the classical algorithm Apriori.

Keywords: Apriori, Association rules mining, Big Data, data mining, Hadoop, Map Reduce, MongoDB, NoSQL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 694
8305 Distortion of Flow Measurement and Cavitation Occurs Due to Orifice Inlet Velocity Profiles

Authors: Byung-Soo Shin, Nam-Seok Kim, Sang-Kyu Lee, O-Hyun Keum

Abstract:

This analysis investigates the distortion of flow measurement and the increase of cavitation along orifice flowmeter. The analysis using the numerical method (CFD) validated the distortion of flow measurement through the inlet velocity profile considering the convergence and grid dependency. Realizable k-e model was selected and y+ was about 50 in this numerical analysis. This analysis also estimated the vulnerability of cavitation effect due to inlet velocity profile. The investigation concludes that inclined inlet velocity profile could vary the pressure which was measured at pressure tab near pipe wall and it led to distort the pressure values ranged from -3.8% to 5.3% near the orifice plate and to make the increase of cavitation. The investigation recommends that the fully developed inlet velocity flow is beneficial to accurate flow measurement in orifice flowmeter.

Keywords: Orifice, k-e model, CFD

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
8304 Enhance the Power of Sentiment Analysis

Authors: Yu Zhang, Pedro Desouza

Abstract:

Since big data has become substantially more accessible and manageable due to the development of powerful tools for dealing with unstructured data, people are eager to mine information from social media resources that could not be handled in the past. Sentiment analysis, as a novel branch of text mining, has in the last decade become increasingly important in marketing analysis, customer risk prediction and other fields. Scientists and researchers have undertaken significant work in creating and improving their sentiment models. In this paper, we present a concept of selecting appropriate classifiers based on the features and qualities of data sources by comparing the performances of five classifiers with three popular social media data sources: Twitter, Amazon Customer Reviews, and Movie Reviews. We introduced a couple of innovative models that outperform traditional sentiment classifiers for these data sources, and provide insights on how to further improve the predictive power of sentiment analysis. The modeling and testing work was done in R and Greenplum in-database analytic tools.

Keywords: Sentiment Analysis, Social Media, Twitter, Amazon, Data Mining, Machine Learning, Text Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3518
8303 Stabilization of Clay Soil Using A-3 Soil

Authors: Mohammed Mustapha Alhaji, Salawu Sadiku

Abstract:

A clay soil classified as A-7-6 and CH soil according to AASHTO and unified soil classification system respectively, was stabilized using A-3 soil (AASHTO soil classification system). The clay soil was replaced with 0%, 10%, 20%, to 100% A-3 soil, compacted at both British Standard Light (BSL) and British Standard Heavy (BSH) compaction energy levels and using Unconfined Compressive Strength (UCS) as evaluation criteria. The Maximum Dry Density (MDD) of the treated soils at both the BSL and BSH compaction energy levels showed increase from 0% to 40% A-3 soil replacement after which the values reduced to 100% replacement. The trend of the Optimum Moisture Content (OMC) with varied A-3 soil replacement was similar to that of MDD but in a reversed order. The OMC reduced from 0% to 40% A-3 soil replacement after which the values increased to 100% replacement. This trend was attributed to the observed reduction in void ratio from 0% to 40% replacement after which the void ratio increased to 100% replacement. The maximum UCS for the soil at varied A-3 soil replacement increased from 272 and 770 kN/m2 for BSL and BSH compaction energy level at 0% replacement to 295 and 795 kN/m2 for BSL and BSH compaction energy level respectively at 10% replacement after which the values reduced to 22 and 60 kN/m2 for BSL and BSH compaction energy level respectively at 70% replacement. Beyond 70% replacement, the mixtures could not be moulded for UCS test.

Keywords: A-3 soil, clay soil, pozzolanic action, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2402
8302 An Efficient Passive Planar Micromixer with Finshaped Baffles in the Tee Channel for Wide Reynolds Number Flow Range

Authors: C. A. Cortes-Quiroz, A. Azarbadegan, E. Moeendarbary

Abstract:

A new design of a planar passive T-micromixer with fin-shaped baffles in the mixing channel is presented. The mixing efficiency and the level of pressure loss in the channel have been investigated by numerical simulations in the range of Reynolds number (Re) 1 to 50. A Mixing index (Mi) has been defined to quantify the mixing efficiency, which results over 85% at both ends of the Re range, what demonstrates the micromixer can enhance mixing using the mechanisms of diffusion (lower Re) and convection (higher Re). Three geometric dimensions: radius of baffle, baffles pitch and height of the channel define the design parameters, and the mixing index and pressure loss are the performance parameters used to optimize the micromixer geometry with a multi-criteria optimization method. The Pareto front of designs with the optimum trade-offs, maximum mixing index with minimum pressure loss, is obtained. Experiments for qualitative and quantitative validation have been implemented.

Keywords: Computational fluids dynamics, fin-shaped baffle, mixing strategies, multi-objective optimization, passive micromixer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
8301 Operations Research Applications in Audit Planning and Scheduling

Authors: Abdel-Aziz M. Mohamed

Abstract:

This paper presents a state-of-the-art survey of the operations research models developed for internal audit planning. Two alternative approaches have been followed in the literature for audit planning: (1) identifying the optimal audit frequency; and (2) determining the optimal audit resource allocation. The first approach identifies the elapsed time between two successive audits, which can be presented as the optimal number of audits in a given planning horizon, or the optimal number of transactions after which an audit should be performed. It also includes the optimal audit schedule. The second approach determines the optimal allocation of audit frequency among all auditable units in the firm. In our review, we discuss both the deterministic and probabilistic models developed for audit planning. In addition, game theory models are reviewed to find the optimal auditing strategy based on the interactions between the auditors and the clients.

Keywords: Operations research applications, audit frequency, audit planning, audit-staff scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2934
8300 A Distributed Algorithm for Intrinsic Cluster Detection over Large Spatial Data

Authors: Sauravjyoti Sarmah, Rosy Das, Dhruba Kr. Bhattacharyya

Abstract:

Clustering algorithms help to understand the hidden information present in datasets. A dataset may contain intrinsic and nested clusters, the detection of which is of utmost importance. This paper presents a Distributed Grid-based Density Clustering algorithm capable of identifying arbitrary shaped embedded clusters as well as multi-density clusters over large spatial datasets. For handling massive datasets, we implemented our method using a 'sharednothing' architecture where multiple computers are interconnected over a network. Experimental results are reported to establish the superiority of the technique in terms of scale-up, speedup as well as cluster quality.

Keywords: Clustering, Density-based, Grid-based, Adaptive Grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
8299 Adaptive Pulse Coupled Neural Network Parameters for Image Segmentation

Authors: Thejaswi H. Raya, Vineetha Bettaiah, Heggere S. Ranganath

Abstract:

For over a decade, the Pulse Coupled Neural Network (PCNN) based algorithms have been successfully used in image interpretation applications including image segmentation. There are several versions of the PCNN based image segmentation methods, and the segmentation accuracy of all of them is very sensitive to the values of the network parameters. Most methods treat PCNN parameters like linking coefficient and primary firing threshold as global parameters, and determine them by trial-and-error. The automatic determination of appropriate values for linking coefficient, and primary firing threshold is a challenging problem and deserves further research. This paper presents a method for obtaining global as well as local values for the linking coefficient and the primary firing threshold for neurons directly from the image statistics. Extensive simulation results show that the proposed approach achieves excellent segmentation accuracy comparable to the best accuracy obtainable by trial-and-error for a variety of images.

Keywords: Automatic Selection of PCNN Parameters, Image Segmentation, Neural Networks, Pulse Coupled Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2288
8298 Biospeckle Supported Fruit Bruise Detection

Authors: Adilson M. Enes, Juliana A. Fracarolli, Inácio M. Dal Fabbro, Silvestre Rodrigues

Abstract:

This research work proposed a study of fruit bruise detection by means of a biospeckle method, selecting the papaya fruit (Carica papaya) as testing body. Papaya is recognized as a fruit of outstanding nutritional qualities, showing high vitamin A content, calcium, carbohydrates, exhibiting high popularity all over the world, considering consumption and acceptability. The commercialization of papaya faces special problems which are associated to bruise generation during harvesting, packing and transportation. Papaya is classified as climacteric fruit, permitting to be harvested before the maturation is completed. However, by one side bruise generation is partially controlled once the fruit flesh exhibits high mechanical firmness. By the other side, mechanical loads can set a future bruise at that maturation stage, when it can not be detected yet by conventional methods. Mechanical damages of fruit skin leave an entrance door to microorganisms and pathogens, which will cause severe losses of quality attributes. Traditional techniques of fruit quality inspection include total soluble solids determination, mechanical firmness tests, visual inspections, which would hardly meet required conditions for a fully automated process. However, the pertinent literature reveals a new method named biospeckle which is based on the laser reflectance and interference phenomenon. The laser biospeckle or dynamic speckle is quantified by means of the Moment of Inertia, named after its mechanical counterpart due to similarity between the defining formulae. Biospeckle techniques are able to quantify biological activities of living tissues, which has been applied to seed viability analysis, vegetable senescence and similar topics. Since the biospeckle techniques can monitor tissue physiology, it could also detect changes in the fruit caused by mechanical damages. The proposed technique holds non invasive character, being able to generate numerical results consistent with an adequate automation. The experimental tests associated to this research work included the selection of papaya fruit at different maturation stages which were submitted to artificial mechanical bruising tests. Damages were visually compared with the frequency maps yielded by the biospeckle technique. Results were considered in close agreement.

Keywords: Biospeckle, papaya, mechanical damages, vegetable bruising.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573
8297 An Improved Scheduling Strategy in Cloud Using Trust Based Mechanism

Authors: D. Sumathi, P. Poongodi

Abstract:

Cloud Computing refers to applications delivered as services over the internet, and the datacenters that provide those services with hardware and systems software. These were earlier referred to as Software as a Service (SaaS). Scheduling is justified by job components (called tasks), lack of information. In fact, in a large fraction of jobs from machine learning, bio-computing, and image processing domains, it is possible to estimate the maximum time required for a task in the job. This study focuses on Trust based scheduling to improve cloud security by modifying Heterogeneous Earliest Finish Time (HEFT) algorithm. It also proposes TR-HEFT (Trust Reputation HEFT) which is then compared to Dynamic Load Scheduling.

Keywords: Software as a Service (SaaS), Trust, Heterogeneous Earliest Finish Time (HEFT) algorithm, Dynamic Load Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2196
8296 Visual Object Tracking in 3D with Color Based Particle Filter

Authors: Pablo Barrera, Jose M. Canas, Vicente Matellan

Abstract:

This paper addresses the problem of determining the current 3D location of a moving object and robustly tracking it from a sequence of camera images. The approach presented here uses a particle filter and does not perform any explicit triangulation. Only the color of the object to be tracked is required, but not any precisemotion model. The observation model we have developed avoids the color filtering of the entire image. That and the Monte Carlotechniques inside the particle filter provide real time performance.Experiments with two real cameras are presented and lessons learned are commented. The approach scales easily to more than two cameras and new sensor cues.

Keywords: Monte Carlo sampling, multiple view, particle filters, visual tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1931
8295 A Robust STATCOM Controller for a Multi-Machine Power System Using Particle Swarm Optimization and Loop-Shaping

Authors: S.F. Faisal, A.H.M.A. Rahim, J.M. Bakhashwain

Abstract:

Design of a fixed parameter robust STATCOM controller for a multi-machine power system through an H-? based loop-shaping procedure is presented. The trial and error part of the graphical loop-shaping procedure has been eliminated by embedding a particle swarm optimization (PSO) technique in the design loop. Robust controllers were designed considering the detailed dynamics of the multi-machine system and results were compared with reduced order models. The robust strategy employing loop-shaping and PSO algorithms was observed to provide very good damping profile for a wide range of operation and for various disturbance conditions. 

Keywords: STATCOM, Robust control, Power system damping, Particle Swarm Optimization, Loop-shaping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1881
8294 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: Classification, machine learning, time representation, stock prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1155
8293 Dynamic Economic Dispatch Constrained by Wind Power Weibull Distribution: A Here-and-Now Strategy

Authors: Mostafa A. Elshahed, Magdy M. Elmarsfawy, Hussain M. Zain Eldain

Abstract:

In this paper, a Dynamic Economic Dispatch (DED) model is developed for the system consisting of both thermal generators and wind turbines. The inclusion of a significant amount of wind energy into power systems has resulted in additional constraints on DED to accommodate the intermittent nature of the output. The probability of stochastic wind power based on the Weibull probability density function is included in the model as a constraint; A Here-and-Now Approach. The Environmental Protection Agency-s hourly emission target, which gives the maximum emission during the day, is used as a constraint to reduce the atmospheric pollution. A 69-bus test system with non-smooth cost function is used to illustrate the effectiveness of the proposed model compared with static economic dispatch model with including the wind power.

Keywords: Dynamic Economic Dispatch, StochasticOptimization, Weibull Distribution, Wind Power

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2960
8292 Taiwan’s Democratic Institutions: The Electoral Rise and Recall of Kuomintang’s Han Kuo-yu Mayor

Authors: Ryan Brading

Abstract:

The results of Taiwan’s presidential election, which took place on 11 January 2020, were alarming for the Kuomintang (KMT). A party that was once the pillar of Taiwan’s institutional apparatus is now losing its direction. Since 2016, the inability of KMT to construct a winning presidential election campaign strategy has made its Chinese ancestry an obstacle in Taiwan’s vibrant and transparent democracy. The appearance of the little-known legislator Han Kuo-yu as the leadership alternative opened the possibility of reigniting the party. Han’s victory in the Kaohsiung mayoral election in November 2018 provided hope that Han could also win the presidency. Wrongly described as a populist, Han, however, was defeated in the January 2020 presidential race. This article analyses why Han is not a populist, his triumph in Kaohsiung, humiliation in running for the presidency and suffering a complete ‘loss of face’ when Kaohsiungers democratically ousted him from the mayoral post on 6 June 2020.

Keywords: Populism, ‘1992 Consensus’, Taiwan, youth vote, Han’s recall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 392
8291 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients

Authors: Subha D. Puthankattil, Paul K. Joseph

Abstract:

Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.

Keywords: EEG, Depression, Wavelet entropy, Approximate entropy, Relative Wavelet energy, Multiresolution decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3639
8290 Biplot Analysis for Evaluation of Tolerance in Some Bean (Phaseolus vulgaris L.) Genotypes to Bean Common Mosaic Virus (BCMV)

Authors: S. Ghasemi, M. M. Kamelmanesh, A. Namayandeh, R. Biabanikhankahdani

Abstract:

The common bean is the most important grain legume for direct human consumption in the world and BCMV is one of the world's most serious bean diseases that can reduce yield and quality of harvested product. To determine the best tolerance index to BCMV and recognize tolerant genotypes, 2 experiments were conducted in field conditions. Twenty five common bean genotypes were sown in 2 separate RCB design with 3 replications under contamination and non-contamination conditions. On the basis of the results of indices correlations GMP, MP and HARM were determined as the most suitable tolerance indices. The results of principle components analysis indicated 2 first components totally explained 98.52% of variations among data. The first and second components were named potential yield and stress susceptible respectively. Based on the results of BCMV tolerance indices assessment and biplot analysis WA8563-4, WA8563-2 and Cardinal were the genotypes that exhibited potential seed yield under contamination and noncontamination conditions.

Keywords: Phaseolus vulgaris, BCMV, principle components analysis, bi-plot analysis, tolerance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1358
8289 A Digital Media e-Learning Training Strategy for Healthcare Employees: Cost effective Distance Learning by Collaborative offline / online Engagement and Assessment

Authors: Lynn. J. MacFarlane. A

Abstract:

Within the healthcare system, training and continued professional development although essential, can be effected by cost and logistical restraints due to the nature of healthcare provision e.g employee shift patterns, access to expertise, cost factors in releasing staff to attend training etc. The use of multimedia technology for the development of e-learning applications is also a major cost consideration for healthcare management staff, and this type of media whether optical or on line requires careful planning in order to remain inclusive of all staff with potentially varied access to multimedia computing. This paper discusses a project in which the use of DVD authoring technology has been successfully implemented to meet the needs of distance learning and user considerations, and is based on film production techniques and reduced product turnaround deadlines.

Keywords: DVD, healthcare, distance learning, cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
8288 Construction of a Fusion Gene Carrying E10A and K5 with 2A Peptide-Linked by Using Overlap Extension PCR

Authors: Tiancheng Lan

Abstract:

E10A is a kind of replication-defective adenovirus which carries the human endostatin gene to inhibit the growth of tumors. Kringle 5(K5) has almost the same function as angiostatin to also inhibit the growth of tumors since they are all the byproduct of the proteolytic cleavage of plasminogen. Tumor size increasing can be suppressed because both of the endostatin and K5 can restrain the angiogenesis process. Therefore, in order to improve the treatment effect on tumor, 2A peptide is used to construct a fusion gene carrying both E10A and K5. Using 2A peptide is an ideal strategy when a fusion gene is expressed because it can avoid many problems during the expression of more than one kind of protein. The overlap extension PCR is also used to connect 2A peptide with E10A and K5. The final construction of fusion gene E10A-2A-K5 can provide a possible new method of the anti-angiogenesis treatment with a better expression performance.

Keywords: E10A, Kringle 5, 2A peptide, overlap extension PCR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 395
8287 An Improved k Nearest Neighbor Classifier Using Interestingness Measures for Medical Image Mining

Authors: J. Alamelu Mangai, Satej Wagle, V. Santhosh Kumar

Abstract:

The exponential increase in the volume of medical image database has imposed new challenges to clinical routine in maintaining patient history, diagnosis, treatment and monitoring. With the advent of data mining and machine learning techniques it is possible to automate and/or assist physicians in clinical diagnosis. In this research a medical image classification framework using data mining techniques is proposed. It involves feature extraction, feature selection, feature discretization and classification. In the classification phase, the performance of the traditional kNN k nearest neighbor classifier is improved using a feature weighting scheme and a distance weighted voting instead of simple majority voting. Feature weights are calculated using the interestingness measures used in association rule mining. Experiments on the retinal fundus images show that the proposed framework improves the classification accuracy of traditional kNN from 78.57 % to 92.85 %.

Keywords: Medical Image Mining, Data Mining, Feature Weighting, Association Rule Mining, k nearest neighbor classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3308
8286 Occupational Safety Need Analysis for Turkey and Europe

Authors: Ismail Muratoglu, Ahmet Meyveci, Abdurrahman Tuncer, Erkan Demirci

Abstract:

This study is dedicated to the analysis of the problems of occupational safety in Turkey, Italy and Poland. The need analysis was applied to three different countries which are Turkey; 4, Poland; 1, Italy; 1 state. The number of the subjects is 891 in Turkey. The number of the subjects is 26 in Italy and the number of the subjects is 19 in Poland. The total number of samples of study is 936. Four different forms (Job Security Experts Form, Student Form, Teacher Form and Company Form) were applied. Results of experts of job security forms are rate of 7.1%. Then, the students’ forms are rate of 34.3%, teacher or instructor forms are rate of 9.9%. The last corporation forms are rate of 48.7%.

Keywords: Europe, need analysis, occupational safety, Turkey, vocational education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
8285 A Study on Fatigue Performance of Asphalt Using AMPT

Authors: Yuan Jie Kelvin Lu, Amin Chegenizadeh

Abstract:

Asphalt pavement itself is a mixture made up of mainly aggregates, binders, and fillers that acts as a composition used for pavement construction. An experimental program was setup to determine the fatigue performance test of Asphalt with three different grades of conventional binders. Asphalt specimen has achieved the maximum optimum bulk density and air voids with a consistent bulk density of 2.3 t/m3, with an air void of 5% ± 0.5, before loading into the Asphalt Mixture Performance Tested (AMPT) for fatigue test. The number of cycles is defined as the point where phase angle drops, which is caused by the formation of cracks due to the increasing micro cracks when asphalt is undergoing repeated cycles of loading. Thus, the data collected are analyzed using the drop of phase angle as failure criteria. Based in the data analyzed, it is evident that the fatigue life of asphalt lies on the grade of binder. The result obtained shows that all specimens do experience a drop in phase angle due to macro cracks in the asphalt specimen.

Keywords: Asphalt binder, AMPT, CX test, simplified–viscoelastic continuum damage (S-VECD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
8284 A Proposal on the Educational Transactional Analysis as a Dialogical Vision of Culture: Conceptual Signposts and Practical Tools for Educators

Authors: Marina Sartor Hoffer

Abstract:

The multicultural composition of today's societies poses new challenges to educational contexts. Schools are therefore called first to develop dialogic aptitudes and communicative skills adapted to the complex reality of post-modern societies. It is indispensable for educators and for young people to learn theoretical and practical tools during their scholastic path, in order to allow the knowledge of themselves and of the others with the aim of recognizing the value of the others regardless of their culture. Dialogic Skills help to understand and manage individual differences by allowing the solution of problems and preventing conflicts. The Educational Sector of Eric Berne’s Transactional Analysis offers a range of methods and techniques for this purpose. Educational Transactional Analysis is firmly anchored in the Personalist Philosophy and deserves to be promoted as a theoretical frame suitable to face the challenges of contemporary education. The goal of this paper is therefore to outline some conceptual and methodological signposts for the education to dialogue by drawing concepts and methodologies from educational transactional analysis.

Keywords: Dialogic process, education to dialogue, educational transactional analysis, personalism, the good of the relationship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 908