Search results for: tool wear prediction
2427 A Thermal-Shock Fatigue Design of Automotive Heat Exchangers
Authors: A. Chidley, F. Roger, A. Traidia
Abstract:
A method is presented for using thermo-mechanical fatigue analysis as a tool in the design of automotive heat exchangers. Use of infra-red thermography to measure the real thermal history in the heat exchanger reduces the time necessary for calculating design parameters and improves prediction accuracy. Thermal shocks are the primary cause of heat exchanger damage. Thermo-mechanical simulation is based on the mean behavior of the aluminum tubes used in the heat exchanger. An energetic fatigue criterion is used to detect critical zones.
Keywords: Heat exchanger, Fatigue, Thermal shocks. I.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15672426 General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study
Authors: Raja Das, M. K. Pradhan
Abstract:
This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.
Keywords: Electrical-discharge machining, General Regression Neural Network, Back-propagation Neural Network, Radial Overcut.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31162425 Designing Early Warning System: Prediction Accuracy of Currency Crisis by Using k-Nearest Neighbour Method
Authors: Nor Azuana Ramli, Mohd Tahir Ismail, Hooy Chee Wooi
Abstract:
Developing a stable early warning system (EWS) model that is capable to give an accurate prediction is a challenging task. This paper introduces k-nearest neighbour (k-NN) method which never been applied in predicting currency crisis before with the aim of increasing the prediction accuracy. The proposed k-NN performance depends on the choice of a distance that is used where in our analysis; we take the Euclidean distance and the Manhattan as a consideration. For the comparison, we employ three other methods which are logistic regression analysis (logit), back-propagation neural network (NN) and sequential minimal optimization (SMO). The analysis using datasets from 8 countries and 13 macro-economic indicators for each country shows that the proposed k-NN method with k = 4 and Manhattan distance performs better than the other methods.
Keywords: Currency crisis, k-nearest neighbour method, logit, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22992424 Investigation of Tool Temperature and Surface Quality in Hot Machining of Hard-to-Cut Materials
Authors: M.Davami, M.Zadshakoyan
Abstract:
Production of hard-to-cut materials with uncoated carbide cutting tools in turning, not only cause tool life reduction but also, impairs the product surface roughness. In this paper, influence of hot machining method were studied and presented in two cases. Case1-Workpiece surface roughness quality with constant cutting parameter and 300 ºC initial workpiece surface temperature. Case 2- Tool temperature variation when cutting with two speeds 78.5 (m/min) and 51 (m/min). The workpiece material and tool used in this study were AISI 1060 steel (45HRC) and uncoated carbide TNNM 120408-SP10(SANDVIK Coromant) respectively. A gas flam heating source was used to preheating of the workpiece surface up to 300 ºC, causing reduction of yield stress about 15%. Results obtained experimentally, show that the method used can considerably improved surface quality of the workpiece.
Keywords: Hard-to-cut material, Hot machining, Surfaceroughness, Tool Temperature
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22062423 The Video Database for Teaching and Learning in Football Refereeing
Authors: M. Armenteros, A. Domínguez, M. Fernández, A. J. Benítez
Abstract:
The following paper describes the video database tool used by the Fédération Internationale de Football Association (FIFA) as part of the research project developed in collaboration with the Carlos III University of Madrid. The database project began in 2012, with the aim of creating an educational tool for the training of instructors, referees and assistant referees, and it has been used in all FUTURO III courses since 2013. The platform now contains 3,135 video clips of different match situations from FIFA competitions. It has 1,835 users (FIFA instructors, referees and assistant referees). In this work, the main features of the database are described, such as the use of a search tool and the creation of multimedia presentations and video quizzes. The database has been developed in MySQL, ActionScript, Ruby on Rails and HTML. This tool has been rated by users as "very good" in all courses, which prompt us to introduce it as an ideal tool for any other sport that requires the use of video analysis.Keywords: Video database, FIFA, refereeing, e-learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13162422 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line
Abstract:
Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.Keywords: Computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18342421 Sequence-based Prediction of Gamma-turn Types using a Physicochemical Property-based Decision Tree Method
Authors: Chyn Liaw, Chun-Wei Tung, Shinn-Jang Ho, Shinn-Ying Ho
Abstract:
The γ-turns play important roles in protein folding and molecular recognition. The prediction and analysis of γ-turn types are important for both protein structure predictions and better understanding the characteristics of different γ-turn types. This study proposed a physicochemical property-based decision tree (PPDT) method to interpretably predict γ-turn types. In addition to the good prediction performance of PPDT, three simple and human interpretable IF-THEN rules are extracted from the decision tree constructed by PPDT. The identified informative physicochemical properties and concise rules provide a simple way for discriminating and understanding γ-turn types.Keywords: Classification and regression tree (CART), γ-turn, Physicochemical properties, Protein secondary structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15522420 Tool Tracker: A Toolkit Ensembling Useful Online Networking Tools for Efficient Management and Operation of a Network
Authors: Onkar Bhat Kodical, Sridhar Srinivasan, N.K. Srinath
Abstract:
Tool Tracker is a client-server based application. It is essentially a catalogue of various network monitoring and management tools that are available online. There is a database maintained on the server side that contains the information about various tools. Several clients can access this information simultaneously and utilize this information. The various categories of tools considered are packet sniffers, port mappers, port scanners, encryption tools, and vulnerability scanners etc for the development of this application. This application provides a front end through which the user can invoke any tool from a central repository for the purpose of packet sniffing, port scanning, network analysis etc. Apart from the tool, its description and the help files associated with it would also be stored in the central repository. This facility will enable the user to view the documentation pertaining to the tool without having to download and install the tool. The application would update the central repository with the latest versions of the tools. The application would inform the user about the availability of a newer version of the tool currently being used and give the choice of installing the newer version to the user. Thus ToolTracker provides any network administrator that much needed abstraction and ease-ofuse with respect to the tools that he can use to efficiently monitor a network.
Keywords: Network monitoring, single platform, client/server application, version management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13012419 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction
Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju
Abstract:
The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.Keywords: Comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15422418 Combining Similarity and Dissimilarity Measurements for the Development of QSAR Models Applied to the Prediction of Antiobesity Activity of Drugs
Authors: Irene Luque Ruiz, Manuel Urbano Cuadrado, Miguel Ángel Gómez-Nieto
Abstract:
In this paper we study different similarity based approaches for the development of QSAR model devoted to the prediction of activity of antiobesity drugs. Classical similarity approaches are compared regarding to dissimilarity models based on the consideration of the calculation of Euclidean distances between the nonisomorphic fragments extracted in the matching process. Combining the classical similarity and dissimilarity approaches into a new similarity measure, the Approximate Similarity was also studied, and better results were obtained. The application of the proposed method to the development of quantitative structure-activity relationships (QSAR) has provided reliable tools for predicting of inhibitory activity of drugs. Acceptable results were obtained for the models presented here.Keywords: Graph similarity, Nonisomorphic dissimilarity, Approximate similarity, Drugs activity prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15592417 Micromachining with ECDM: Research Potentials and Experimental Investigations
Authors: C.S. Jawalkar, Apurbba Kumar Sharma, Pradeep Kumar
Abstract:
Electro Chemical Discharge Machining (ECDM) is an emerging hybrid machining process used in precision machining of hard and brittle non-conducting materials. The present paper gives a critical review on materials machined by ECDM under the prevailing machining conditions; capability indicators of the process are reported. Some results obtained while performing experiments in micro-channeling on soda lime glass using ECDM are also presented. In these experiments, Tool Wear (TW) and Material Removal (MR) were studied using design of experiments and L–4 orthogonal array. Experimental results showed that the applied voltage was the most influencing parameter in both MR and TW studies. Field emission scanning electron microscopy (FESEM) results obtained on the microchannels confirmed the presence of micro-cracks, primarily responsible for MR. Chemical etching was also seen along the edges. The Energy dispersive spectroscopy (EDS) results were used to detect the elements present in the debris and specimens.Keywords: ECDM, applied-voltage, FESEM, EDS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29822416 Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering
Authors: Hamza Nejib, Okba Taouali
Abstract:
This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.Keywords: KLMS, online prediction, KAF, signal processing, RKHS, Kernel methods, KRLS, KLMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10542415 Fatigue Life Prediction on Steel Beam Bridges under Variable Amplitude Loading
Authors: M. F. V. Montezuma, E. P. Deus, M. C. Carvalho
Abstract:
Steel bridges are normally subjected to random loads with different traffic frequencies. They are structures with dynamic behavior and are subject to fatigue failure process, where the nucleation of a crack, growth and failure can occur. After locating and determining the size of an existing fault, it is important to predict the crack propagation and the convenient time for repair. Therefore, fracture mechanics and fatigue concepts are essential to the right approach to the problem. To study the fatigue crack growth, a computational code was developed by using the root mean square (RMS) and the cycle-by-cycle models. One observes the variable amplitude loading influence on the life structural prediction. Different loads histories and initial crack length were considered as input variables. Thus, it was evaluated the dispersion of results of the expected structural life choosing different initial parameters.
Keywords: Fatigue crack propagation, life prediction, variable loadings, steel bridges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5312414 ED Machining of Particulate Reinforced MMC’s
Authors: Sarabjeet Singh Sidhu, Ajay Batish, Sanjeev Kumar
Abstract:
This paper reports the optimal process conditions for machining of three different types of MMC’s 65vol%SiC/A356.2; 10vol%SiC-5vol%quartz/Al and 30vol%SiC/A359 using PMEDM process. MRR, TWR, SR and surface integrity were evaluated after each trial and contributing process parameters were identified. The four responses were then collectively optimized using TOPSIS and optimal process conditions were identified for each type of MMC. The density of reinforced particles shields the matrix material from spark energy hence the high MRR and SR was observed with lowest reinforced particle. TWR was highest with Cu-Gr electrode due to disintegration of the weakly bonded particles in the composite electrode. Each workpiece was examined for surface integrity and ranked as per severity of surface defects observed and their rankings were used for arriving at the most optimal process settings for each workpiece.
Keywords: Metal matrix composites (MMCs), Metal removal rate (MRR), Surface roughness (SR), Surface integrity (SI), Tool wear rate (TWR), Technique for order preference by similarity to ideal solution (TOPSIS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28782413 Stock Market Prediction by Regression Model with Social Moods
Authors: Masahiro Ohmura, Koh Kakusho, Takeshi Okadome
Abstract:
This paper presents a regression model with autocorrelated errors in which the inputs are social moods obtained by analyzing the adjectives in Twitter posts using a document topic model, where document topics are extracted using LDA. The regression model predicts Dow Jones Industrial Average (DJIA) more precisely than autoregressive moving-average models.
Keywords: Regression model, social mood, stock market prediction, Twitter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24362412 Software Maintenance Severity Prediction with Soft Computing Approach
Authors: E. Ardil, Erdem Uçar, Parvinder S. Sandhu
Abstract:
As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done on time especially for the critical applications. In this paper, we have explored the different predictor models to NASA-s public domain defect dataset coded in Perl programming language. Different machine learning algorithms belonging to the different learner categories of the WEKA project including Mamdani Based Fuzzy Inference System and Neuro-fuzzy based system have been evaluated for the modeling of maintenance severity or impact of fault severity. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provides relatively better prediction accuracy as compared to other models and hence, can be used for the maintenance severity prediction of the software.Keywords: Software Metrics, Fuzzy, Neuro-Fuzzy, SoftwareFaults, Accuracy, MAE, RMSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15832411 Machinability Analysis in Drilling Flax Fiber-Reinforced Polylactic Acid Bio-Composite Laminates
Authors: Amirhossein Lotfi, Huaizhong Li, Dzung Viet Dao
Abstract:
Interest in natural fiber-reinforced composites (NFRC) is progressively growing both in terms of academia research and industrial applications thanks to their abundant advantages such as low cost, biodegradability, eco-friendly nature and relatively good mechanical properties. However, their widespread use is still presumed as challenging because of the specificity of their non-homogeneous structure, limited knowledge on their machinability characteristics and parameter settings, to avoid defects associated with the machining process. The present work is aimed to investigate the effect of the cutting tool geometry and material on the drilling-induced delamination, thrust force and hole quality produced when drilling a fully biodegradable flax/poly (lactic acid) composite laminate. Three drills with different geometries and material were used at different drilling conditions to evaluate the machinability of the fabricated composites. The experimental results indicated that the choice of cutting tool, in terms of material and geometry, has a noticeable influence on the cutting thrust force and subsequently drilling-induced damages. The lower value of thrust force and better hole quality was observed using high-speed steel (HSS) drill, whereas Carbide drill (with point angle of 130o) resulted in the highest value of thrust force. Carbide drill presented higher wear resistance and stability in variation of thrust force with a number of holes drilled, while HSS drill showed the lower value of thrust force during the drilling process. Finally, within the selected cutting range, the delamination damage increased noticeably with feed rate and moderately with spindle speed.
Keywords: Natural fiber-reinforced composites, machinability, thrust force, delamination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8152410 The Effect of Maximum Strain on Fatigue Life Prediction for Natural Rubber Material
Authors: Chang S. Woo, Hyun S. Park, Wan D. Kim
Abstract:
Fatigue life prediction and evaluation are the key technologies to assure the safety and reliability of automotive rubber components. The objective of this study is to develop the fatigue analysis process for vulcanized rubber components, which is applicable to predict fatigue life at initial product design step. Fatigue life prediction methodology of vulcanized natural rubber was proposed by incorporating the finite element analysis and fatigue damage parameter of maximum strain appearing at the critical location determined from fatigue test. In order to develop an appropriate fatigue damage parameter of the rubber material, a series of displacement controlled fatigue test was conducted using threedimensional dumbbell specimen with different levels of mean displacement. It was shown that the maximum strain was a proper damage parameter, taking the mean displacement effects into account. Nonlinear finite element analyses of three-dimensional dumbbell specimens were performed based on a hyper-elastic material model determined from the uni-axial tension, equi-biaxial tension and planar test. Fatigue analysis procedure employed in this study could be used approximately for the fatigue design.Keywords: Rubber, Material test, Finite element analysis, Strain, Fatigue test, Fatigue life prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46662409 Virulent-GO: Prediction of Virulent Proteins in Bacterial Pathogens Utilizing Gene Ontology Terms
Authors: Chia-Ta Tsai, Wen-Lin Huang, Shinn-Jang Ho, Li-Sun Shu, Shinn-Ying Ho
Abstract:
Prediction of bacterial virulent protein sequences can give assistance to identification and characterization of novel virulence-associated factors and discover drug/vaccine targets against proteins indispensable to pathogenicity. Gene Ontology (GO) annotation which describes functions of genes and gene products as a controlled vocabulary of terms has been shown effectively for a variety of tasks such as gene expression study, GO annotation prediction, protein subcellular localization, etc. In this study, we propose a sequence-based method Virulent-GO by mining informative GO terms as features for predicting bacterial virulent proteins. Each protein in the datasets used by the existing method VirulentPred is annotated by using BLAST to obtain its homologies with known accession numbers for retrieving GO terms. After investigating various popular classifiers using the same five-fold cross-validation scheme, Virulent-GO using the single kind of GO term features with an accuracy of 82.5% is slightly better than VirulentPred with 81.8% using five kinds of sequence-based features. For the evaluation of independent test, Virulent-GO also yields better results (82.0%) than VirulentPred (80.7%). When evaluating single kind of feature with SVM, the GO term feature performs much well, compared with each of the five kinds of features.Keywords: Bacterial virulence factors, GO terms, prediction, protein sequence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21902408 Influence of Ti, B, and Sr on Microstructure, Mechanical and Tribological Properties of as Cast, Cast Aged, and Forge Aged A356 Alloy – A Comparative Study
Authors: R. V. Kurahatti, D. G. Mallapur, K. Rajendra Udupa
Abstract:
In the present work, a comparative study on the microstructure and mechanical properties of as cast, cast aged and forged aged A356 alloy has been investigated. The study reveals that mechanical properties of A356 alloy are highly influenced by melt treatment and solid state processing. Cast aged alloys achieve highest strength and hardness compared to as cast and forge aged ones. Ones treated with combined addition of grain refiners and modifiers achieve maximum strength and hardness. Cast aged A356 alloy possesses higher wear resistance compared to as cast and forge aged ones. Forging improves both strength and ductility of alloys over as cast ones. However, the improvement in ductility is perceptible only for properly grain refined and modified alloys. Ones refined with 0.65% Al-3Ti shows highest improvement in ductility while ones treated with 0.20% Al-10Sr exhibits less improvement in ductility.Keywords: Forged A356 alloy, Grain refinement, Modification, Wear
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26842407 Active Intra-ONU Scheduling with Cooperative Prediction Mechanism in EPONs
Authors: Chuan-Ching Sue, Shi-Zhou Chen, Ting-Yu Huang
Abstract:
Dynamic bandwidth allocation in EPONs can be generally separated into inter-ONU scheduling and intra-ONU scheduling. In our previous work, the active intra-ONU scheduling (AS) utilizes multiple queue reports (QRs) in each report message to cooperate with the inter-ONU scheduling and makes the granted bandwidth fully utilized without leaving unused slot remainder (USR). This scheme successfully solves the USR problem originating from the inseparability of Ethernet frame. However, without proper setting of threshold value in AS, the number of QRs constrained by the IEEE 802.3ah standard is not enough, especially in the unbalanced traffic environment. This limitation may be solved by enlarging the threshold value. The large threshold implies the large gap between the adjacent QRs, thus resulting in the large difference between the best granted bandwidth and the real granted bandwidth. In this paper, we integrate AS with a cooperative prediction mechanism and distribute multiple QRs to reduce the penalty brought by the prediction error. Furthermore, to improve the QoS and save the usage of queue reports, the highest priority (EF) traffic which comes during the waiting time is granted automatically by OLT and is not considered in the requested bandwidth of ONU. The simulation results show that the proposed scheme has better performance metrics in terms of bandwidth utilization and average delay for different classes of packets.Keywords: EPON, Inter-ONU and Intra-ONU scheduling, Prediction, Unused slot remainder
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15962406 Roller Guide Design and Manufacturing for Spatial Cylindrical Cams
Authors: Yuan L. Lai, Jui P. Hung, Jian H. Chen
Abstract:
This paper was aimed at developing a computer aided design and manufacturing system for spatial cylindrical cams. In the proposed system, a milling tool with a diameter smaller than that of the roller, instead of the standard cutter for traditional machining process, was used to generate the tool path for spatial cams. To verify the feasibility of the proposed method, a multi-axis machining simulation software was further used to simulate the practical milling operation of spatial cams. It was observed from computer simulation that the tool path of small-sized cutter were within the motion range of a standard cutter, no occurrence of overcutting. Examination of a finished cam component clearly verifies the accuracy of the tool path generated for small-sized milling tool. It is believed that the use of small-sized cutter for the machining of the spatial cylindrical cams can generate a better surface morphology with higher accuracy. The improvement in efficiency and cost for the manufacturing of the spatial cylindrical cam can be expected through the proposed method.Keywords: Cylindrical cams, Computer-aided manufacturing, Tool path.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34522405 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market
Authors: Cristian Păuna
Abstract:
In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.
Keywords: Algorithmic trading, automated investment system, DAX Deutscher Aktienindex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6962404 Performance Evaluation of Neural Network Prediction for Data Prefetching in Embedded Applications
Authors: Sofien Chtourou, Mohamed Chtourou, Omar Hammami
Abstract:
Embedded systems need to respect stringent real time constraints. Various hardware components included in such systems such as cache memories exhibit variability and therefore affect execution time. Indeed, a cache memory access from an embedded microprocessor might result in a cache hit where the data is available or a cache miss and the data need to be fetched with an additional delay from an external memory. It is therefore highly desirable to predict future memory accesses during execution in order to appropriately prefetch data without incurring delays. In this paper, we evaluate the potential of several artificial neural networks for the prediction of instruction memory addresses. Neural network have the potential to tackle the nonlinear behavior observed in memory accesses during program execution and their demonstrated numerous hardware implementation emphasize this choice over traditional forecasting techniques for their inclusion in embedded systems. However, embedded applications execute millions of instructions and therefore millions of addresses to be predicted. This very challenging problem of neural network based prediction of large time series is approached in this paper by evaluating various neural network architectures based on the recurrent neural network paradigm with pre-processing based on the Self Organizing Map (SOM) classification technique.Keywords: Address, data set, memory, prediction, recurrentneural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16762403 Design of an Stable GPC for Nonminimum Phase LTI Systems
Authors: Mahdi Yaghobi, Mohammad Haeri
Abstract:
The current methods of predictive controllers are utilized for those processes in which the rate of output variations is not high. For such processes, therefore, stability can be achieved by implementing the constrained predictive controller or applying infinite prediction horizon. When the rate of the output growth is high (e.g. for unstable nonminimum phase process) the stabilization seems to be problematic. In order to avoid this, it is suggested to change the method in the way that: first, the prediction error growth should be decreased at the early stage of the prediction horizon, and second, the rate of the error variation should be penalized. The growth of the error is decreased through adjusting its weighting coefficients in the cost function. Reduction in the error variation is possible by adding the first order derivate of the error into the cost function. By studying different examples it is shown that using these two remedies together, the closed-loop stability of unstable nonminimum phase process can be achieved.Keywords: GPC, Stability, Varying Weighting Coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12752402 An Optimization Tool-Based Design Strategy Applied to Divide-by-2 Circuits with Unbalanced Loads
Authors: Agord M. Pinto Jr., Yuzo Iano, Leandro T. Manera, Raphael R. N. Souza
Abstract:
This paper describes an optimization tool-based design strategy for a Current Mode Logic CML divide-by-2 circuit. Representing a building block for output frequency generation in a RFID protocol based-frequency synthesizer, the circuit was designed to minimize the power consumption for driving of multiple loads with unbalancing (at transceiver level). Implemented with XFAB XC08 180 nm technology, the circuit was optimized through MunEDA WiCkeD tool at Cadence Virtuoso Analog Design Environment ADE.Keywords: Divide-by-2 circuit, CMOS technology, PLL phase locked-loop, optimization tool, CML current mode logic, RF transceiver.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21312401 Ray Tracing Modified 3D Image Method Simulation of Picocellular Propagation Channel Environment
Authors: F. Alwafie
Abstract:
In this paper, we present the simulation of the propagation characteristics of the picocellular propagation channel environment. The first aim has been to find a correct description of the environment for received wave.
The result of the first investigations is that the environment of the indoor wave significantly changes as we change the electric parameters of material constructions. A modified 3D ray tracing image method tool has been utilized for the coverage prediction. A detailed analysis of the dependence of the indoor wave on the wideband characteristics of the channel: root mean square (RMS) delay spread characteristics and Mean excess delay, is also investigated.
Keywords: Propagation, Ray Tracing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19542400 Towards the Prediction of Aesthetic Requirements for Women’s Apparel Product
Authors: Yu Zhao, Min Zhang, Yuanqian Wang, Qiuyu Yu
Abstract:
The prediction of aesthetics of apparel is helpful for the development of a new type of apparel. This study is to build the quantitative relationship between the aesthetics and its design parameters. In particular, women’s pants have been preliminarily studied. This aforementioned relationship has been carried out by statistical analysis. The contributions of this study include the development of a more personalized apparel design mechanism and the provision of some empirical knowledge for the development of other products in the aspect of aesthetics.Keywords: Aesthetics, crease line, cropped straight leg pants, knee width.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7902399 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.
Keywords: Lèvy flight, situation awareness, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5402398 An Improved Heat Transfer Prediction Model for Film Condensation inside a Tube with Interphacial Shear Effect
Authors: V. G. Rifert, V. V. Gorin, V. V. Sereda, V. V. Treputnev
Abstract:
The analysis of heat transfer design methods in condensing inside plain tubes under existing influence of shear stress is presented in this paper. The existing discrepancy in more than 30-50% between rating heat transfer coefficients and experimental data has been noted. The analysis of existing theoretical and semi-empirical methods of heat transfer prediction is given. The influence of a precise definition concerning boundaries of phase flow (it is especially important in condensing inside horizontal tubes), shear stress (friction coefficient) and heat flux on design of heat transfer is shown. The substantiation of boundary conditions of the values of parameters, influencing accuracy of rated relationships, is given. More correct relationships for heat transfer prediction, which showed good convergence with experiments made by different authors, are substantiated in this work.
Keywords: Film condensation, heat transfer, plain tube, shear stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1000