Search results for: regression models.
2785 Modeling the Saltatory Conduction in Myelinated Axons by Order Reduction
Authors: Ruxandra Barbulescu, Daniel Ioan, Gabriela Ciuprina
Abstract:
The saltatory conduction is the way the action potential is transmitted along a myelinated axon. The potential diffuses along the myelinated compartments and it is regenerated in the Ranvier nodes due to the ion channels allowing the flow across the membrane. For an efficient simulation of populations of neurons, it is important to use reduced order models both for myelinated compartments and for Ranvier nodes and to have control over their accuracy and inner parameters. The paper presents a reduced order model of this neural system which allows an efficient simulation method for the saltatory conduction in myelinated axons. This model is obtained by concatenating reduced order linear models of 1D myelinated compartments and nonlinear 0D models of Ranvier nodes. The models for the myelinated compartments are selected from a series of spatially distributed models developed and hierarchized according to their modeling errors. The extracted model described by a nonlinear PDE of hyperbolic type is able to reproduce the saltatory conduction with acceptable accuracy and takes into account the finite propagation speed of potential. Finally, this model is again reduced in order to make it suitable for the inclusion in large-scale neural circuits.Keywords: Saltatory conduction, action potential, myelinated compartments, nonlinear, Ranvier nodes, reduced order models, POD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8462784 Comparison of Stochastic Point Process Models of Rainfall in Singapore
Abstract:
Extensive rainfall disaggregation approaches have been developed and applied in climate change impact studies such as flood risk assessment and urban storm water management.In this study, five rainfall models that were capable ofdisaggregating daily rainfall data into hourly one were investigated for the rainfall record in theChangi Airport, Singapore. The objectives of this study were (i) to study the temporal characteristics of hourly rainfall in Singapore, and (ii) to evaluate the performance of variousdisaggregation models. The used models included: (i) Rectangular pulse Poisson model (RPPM), (ii) Bartlett-Lewis Rectangular pulse model (BLRPM), (iii) Bartlett-Lewis model with 2 cell types (BL2C), (iv) Bartlett-Lewis Rectangular with cell depth distribution dependent on duration (BLRD), and (v) Neyman-Scott Rectangular pulse model (NSRPM). All of these models werefitted using hourly rainfall data ranging from 1980 to 2005 (which was obtained from Changimeteorological station).The study results indicated that the weight scheme of inversely proportional variance could deliver more accurateoutputs for fitting rainfall patterns in tropical areas, and BLRPM performedrelatively better than other disaggregation models.
Keywords: Rainfall disaggregation, statistical properties, poisson processed, Bartlett-Lewis model, Neyman-Scott model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22812783 Modeling and Simulation for Physical Vapor Deposition: Multiscale Model
Authors: Jürgen Geiser, Robert Röhle
Abstract:
In this paper we present modeling and simulation for physical vapor deposition for metallic bipolar plates. In the models we discuss the application of different models to simulate the transport of chemical reactions of the gas species in the gas chamber. The so called sputter process is an extremely sensitive process to deposit thin layers to metallic plates. We have taken into account lower order models to obtain first results with respect to the gas fluxes and the kinetics in the chamber. The model equations can be treated analytically in some circumstances and complicated multi-dimensional models are solved numerically with a software-package (UG unstructed grids, see [1]). Because of multi-scaling and multi-physical behavior of the models, we discuss adapted schemes to solve more accurate in the different domains and scales. The results are discussed with physical experiments to give a valid model for the assumed growth of thin layers.Keywords: Convection-diffusion equations, multi-scale problem, physical vapor deposition, reaction equations, splitting methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17382782 Performance Comparison of Situation-Aware Models for Activating Robot Vacuum Cleaner in a Smart Home
Authors: Seongcheol Kwon, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
We assume an IoT-based smart-home environment where the on-off status of each of the electrical appliances including the room lights can be recognized in a real time by monitoring and analyzing the smart meter data. At any moment in such an environment, we can recognize what the household or the user is doing by referring to the status data of the appliances. In this paper, we focus on a smart-home service that is to activate a robot vacuum cleaner at right time by recognizing the user situation, which requires a situation-aware model that can distinguish the situations that allow vacuum cleaning (Yes) from those that do not (No). We learn as our candidate models a few classifiers such as naïve Bayes, decision tree, and logistic regression that can map the appliance-status data into Yes and No situations. Our training and test data are obtained from simulations of user behaviors, in which a sequence of user situations such as cooking, eating, dish washing, and so on is generated with the status of the relevant appliances changed in accordance with the situation changes. During the simulation, both the situation transition and the resulting appliance status are determined stochastically. To compare the performances of the aforementioned classifiers we obtain their learning curves for different types of users through simulations. The result of our empirical study reveals that naïve Bayes achieves a slightly better classification accuracy than the other compared classifiers.Keywords: Situation-awareness, Smart home, IoT, Machine learning, Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18562781 E-government Security Modeling: Explaining Main Factors and Analysing Existing Models
Authors: N. Alharbi
Abstract:
E-government is becoming more important these days. However, the adoption of e-government is often slowed down by technical and non-technical security factors. Nowadays, there many security models that can make the e-government services more secure. This paper will explain the main security factors that affected the level of e-government security. Moreover, it will also analyse current existing models. Finally, the paper will suggest a comprehensive security model that will contain most of technical and non-technical factors.
Keywords: E-government, technical, non-technical, security model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20732780 Assessing Semantic Consistency of Business Process Models
Authors: Bernhard G. Humm, Janina Fengel
Abstract:
Business process modeling has become an accepted means for designing and describing business operations. Thereby, consistency of business process models, i.e., the absence of modeling faults, is of upmost importance to organizations. This paper presents a concept and subsequent implementation for detecting faults in business process models and for computing a measure of their consistency. It incorporates not only syntactic consistency but also semantic consistency, i.e., consistency regarding the meaning of model elements from a business perspective.Keywords: Business process modeling, model analysis, semantic consistency, Semantic Web
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18532779 A Novel SVM-Based OOK Detector in Low SNR Infrared Channels
Authors: J. P. Dubois, O. M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a recent class of statistical classification and regression techniques playing an increasing role in applications to detection problems in various engineering problems, notably in statistical signal processing, pattern recognition, image analysis, and communication systems. In this paper, SVM is applied to an infrared (IR) binary communication system with different types of channel models including Ricean multipath fading and partially developed scattering channel with additive white Gaussian noise (AWGN) at the receiver. The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these channel stochastic models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to classical binary signal maximum likelihood detection using a matched filter driven by On-Off keying (OOK) modulation. We found that the performance of SVM is superior to that of the traditional optimal detection schemes used in statistical communication, especially for very low signal-to-noise ratio (SNR) ranges. For large SNR, the performance of the SVM is similar to that of the classical detectors. The implication of these results is that SVM can prove very beneficial to IR communication systems that notoriously suffer from low SNR at the cost of increased computational complexity.
Keywords: Least square-support vector machine, on-off keying, matched filter, maximum likelihood detector, wireless infrared communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19532778 Efficient System for Speech Recognition using General Regression Neural Network
Authors: Abderrahmane Amrouche, Jean Michel Rouvaen
Abstract:
In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural network (GRNN). The relative performances of the proposed model are compared to the similar recognition systems based on the Multilayer Perceptron (MLP), the Recurrent Neural Network (RNN) and the well known Discrete Hidden Markov Model (HMM-VQ) that we have achieved also. Experimental results obtained with Arabic digits have shown that the use of nonparametric density estimation with an appropriate smoothing factor (spread) improves the generalization power of the neural network. The word error rate (WER) is reduced significantly over the baseline HMM method. GRNN computation is a successful alternative to the other neural network and DHMM.Keywords: Speech Recognition, General Regression NeuralNetwork, Hidden Markov Model, Recurrent Neural Network, ArabicDigits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21852777 Calculating Strain Energy in Multi-Surface Models of Cyclic Plasticity
Authors: S. Shahrooi, I. H. Metselaar, Z. Huda
Abstract:
When considering the development of constitutive equations describing the behavior of materials under cyclic plastic strains, different kinds of formulations can be adopted. The primary intention of this study is to develop computer programming of plasticity models to accurately predict the life of engineering components. For this purpose, the energy or cyclic strain is computed in multi-surface plasticity models in non-proportional loading and to present their procedures and codes results.Keywords: Strain energy, cyclic plasticity model, multi-surface model, codes result.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20932776 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction
Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju
Abstract:
The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.Keywords: Comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15422775 Quantitative Structure Activity Relationship and Insilco Docking of Substituted 1,3,4-Oxadiazole Derivatives as Potential Glucosamine-6-Phosphate Synthase Inhibitors
Authors: Suman Bala, Sunil Kamboj, Vipin Saini
Abstract:
Quantitative Structure Activity Relationship (QSAR) analysis has been developed to relate antifungal activity of novel substituted 1,3,4-oxadiazole against Candida albicans and Aspergillus niger using computer assisted multiple regression analysis. The study has shown the better relationship between antifungal activities with respect to various descriptors established by multiple regression analysis. The analysis has shown statistically significant correlation with R2 values 0.932 and 0.782 against Candida albicans and Aspergillus niger respectively. These derivatives were further subjected to molecular docking studies to investigate the interactions between the target compounds and amino acid residues present in the active site of glucosamine-6-phosphate synthase. All the synthesized compounds have better docking score as compared to standard fluconazole. Our results could be used for the further design as well as development of optimal and potential antifungal agents.Keywords: 1, 3, 4-Oxadiazole, QSAR, Multiple linear regression, Docking, Glucosamine-6-Phosphate Synthase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15962774 Comparing and Combining the Axial with the Network Maps for Analyzing Urban Street Pattern
Authors: Nophaket Napong
Abstract:
Rooted in the study of social functioning of space in architecture, Space Syntax (SS) and the more recent Network Pattern (NP) researches demonstrate the 'spatial structures' of city, i.e. the hierarchical patterns of streets, junctions and alley ends. Applying SS and NP models, planners can conceptualize the real city-s patterns. Although, both models yield the optimal path of the city their underpinning displays of the city-s spatial configuration differ. The Axial Map analyzes the topological non-distance-based connectivity structure, whereas, the Central-Node Map and the Shortcut-Path Map, in contrast, analyze the metrical distance-based structures. This research contrasts and combines them to understand various forms of city-s structures. It concludes that, while they reveal different spatial structures, Space Syntax and Network Pattern urban models support each the other. Combining together they simulate the global access and the locally compact structures namely the central nodes and the shortcuts for the city.
Keywords: Street pattern, space syntax, syntactic and metrical models, network pattern models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14612773 Application of RP Technology with Polycarbonate Material for Wind Tunnel Model Fabrication
Authors: A. Ahmadi Nadooshan, S. Daneshmand, C. Aghanajafi
Abstract:
Traditionally, wind tunnel models are made of metal and are very expensive. In these years, everyone is looking for ways to do more with less. Under the right test conditions, a rapid prototype part could be tested in a wind tunnel. Using rapid prototype manufacturing techniques and materials in this way significantly reduces time and cost of production of wind tunnel models. This study was done of fused deposition modeling (FDM) and their ability to make components for wind tunnel models in a timely and cost effective manner. This paper discusses the application of wind tunnel model configuration constructed using FDM for transonic wind tunnel testing. A study was undertaken comparing a rapid prototyping model constructed of FDM Technologies using polycarbonate to that of a standard machined steel model. Testing covered the Mach range of Mach 0.3 to Mach 0.75 at an angle-ofattack range of - 2° to +12°. Results from this study show relatively good agreement between the two models and rapid prototyping Method reduces time and cost of production of wind tunnel models. It can be concluded from this study that wind tunnel models constructed using rapid prototyping method and materials can be used in wind tunnel testing for initial baseline aerodynamic database development.Keywords: Polycarbonate, Fabrication, FDM, Model, RapidPrototyping, Wind Tunnel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24462772 On the Dynamic Model of Service Innovation in Manufacturing Industry
Authors: Yongyoon Suh, Chulhyun Kim, Moon-soo Kim
Abstract:
As the trend of manufacturing is being dominated depending on services, products and processes are more and more related with sophisticated services. Thus, this research starts with the discussion about integration of the product, process, and service in the innovation process. In particular, this paper sets out some foundations for a theory of service innovation in the field of manufacturing, and proposes the dynamic model of service innovation related to product and process. Two dynamic models of service innovation are suggested to investigate major tendencies and dynamic variations during the innovation cycle: co-innovation and sequential innovation. To structure dynamic models of product, process, and service innovation, the innovation stages in which two models are mainly achieved are identified. The research would encourage manufacturers to formulate strategy and planning for service development with product and process.
Keywords: dynamic model, service innovation, service innovation models, innovation cycle, manufacturing industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20192771 Group Contribution Parameters for Nonrandom Lattice Fluid Equation of State involving COSMO-RS
Authors: Alexander Breitholz, Wolfgang Arlt, Ki-Pung Yoo
Abstract:
Group contribution based models are widely used in industrial applications for its convenience and flexibility. Although a number of group contribution models have been proposed, there were certain limitations inherent to those models. Models based on group contribution excess Gibbs free energy are limited to low pressures and models based on equation of state (EOS) cannot properly describe highly nonideal mixtures including acids without introducing additional modification such as chemical theory. In the present study new a new approach derived from quantum chemistry have been used to calculate necessary EOS group interaction parameters. The COSMO-RS method, based on quantum mechanics, provides a reliable tool for fluid phase thermodynamics. Benefits of the group contribution EOS are the consistent extension to hydrogen-bonded mixtures and the capability to predict polymer-solvent equilibria up to high pressures. The authors are confident that with a sufficient parameter matrix the performance of the lattice EOS can be improved significantly.Keywords: COSMO-RS, Equation of State, Group contribution, Lattice Fluid, Phase equilibria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19202770 Corporate Credit Rating using Multiclass Classification Models with order Information
Authors: Hyunchul Ahn, Kyoung-Jae Kim
Abstract:
Corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has been one of the attractive research topics in the literature. In recent years, multiclass classification models such as artificial neural network (ANN) or multiclass support vector machine (MSVM) have become a very appealing machine learning approaches due to their good performance. However, most of them have only focused on classifying samples into nominal categories, thus the unique characteristic of the credit rating - ordinality - has been seldom considered in their approaches. This study proposes new types of ANN and MSVM classifiers, which are named OMANN and OMSVM respectively. OMANN and OMSVM are designed to extend binary ANN or SVM classifiers by applying ordinal pairwise partitioning (OPP) strategy. These models can handle ordinal multiple classes efficiently and effectively. To validate the usefulness of these two models, we applied them to the real-world bond rating case. We compared the results of our models to those of conventional approaches. The experimental results showed that our proposed models improve classification accuracy in comparison to typical multiclass classification techniques with the reduced computation resource.Keywords: Artificial neural network, Corporate credit rating, Support vector machines, Ordinal pairwise partitioning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34402769 Hydrological Modeling of Watersheds Using the Only Corresponding Competitor Method: The Case of M’Zab Basin, South East Algeria
Authors: Oulad Naoui Noureddine, Cherif ELAmine, Djehiche Abdelkader
Abstract:
Water resources management includes several disciplines; the modeling of rainfall-runoff relationship is the most important discipline to prevent natural risks. There are several models to study rainfall-runoff relationship in watersheds. However, the majority of these models are not applicable in all basins of the world. In this study, a new stochastic method called The Only Corresponding Competitor method (OCC) was used for the hydrological modeling of M’ZAB Watershed (South East of Algeria) to adapt a few empirical models for any hydrological regime. The results obtained allow to authorize a certain number of visions, in which it would be interesting to experiment with hydrological models that improve collectively or separately the data of a catchment by the OCC method.
Keywords: Empirical model, modeling, OCC, rainfall-runoff relationship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11562768 Statistical Analysis of the Impact of Maritime Transport Gross Domestic Product on Nigeria’s Economy
Authors: K. P. Oyeduntan, K. Oshinubi
Abstract:
Nigeria is referred as the ‘Giant of Africa’ due to high population, land mass and large economy. However, it still trails far behind many smaller economies in the continent in terms of maritime operations. As we have seen that the maritime industry is the sparkplug for national growth, because it houses the most crucial infrastructure that generates wealth for a nation, it is worrisome that a nation with six seaports lag in maritime activities. In this research, we have studied how the Gross Domestic Product (GDP) of the maritime transport influences the Nigerian economy. To do this, we applied Simple Linear Regression (SLR), Support Vector Machine (SVM), Polynomial Regression Model (PRM), Generalized Additive Model (GAM) and Generalized Linear Mixed Model (GLMM) to model the relationship between the nation’s Total GDP (TGDP) and the Maritime Transport GDP (MGDP) using a time series data of 20 years. The result showed that the MGDP is statistically significant to the Nigerian economy. Amongst the statistical tool applied, the PRM of order 4 describes the relationship better when compared to other methods. The recommendations presented in this study will guide policy makers and help improve the economy of Nigeria.
Keywords: Economy, GDP, maritime transport, port, regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442767 Application of Adaptive Neuro-Fuzzy Inference System in the Prediction of Economic Crisis Periods in USA
Authors: Eleftherios Giovanis
Abstract:
In this paper discrete choice models, Logit and Probit are examined in order to predict the economic recession or expansion periods in USA. Additionally we propose an adaptive neuro-fuzzy inference system with triangular membership function. We examine the in-sample period 1947-2005 and we test the models in the out-of sample period 2006-2009. The forecasting results indicate that the Adaptive Neuro-fuzzy Inference System (ANFIS) model outperforms significant the Logit and Probit models in the out-of sample period. This indicates that neuro-fuzzy model provides a better and more reliable signal on whether or not a financial crisis will take place.Keywords: ANFIS, discrete choice models, financial crisis, USeconomy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16102766 Statistical Analysis for Overdispersed Medical Count Data
Authors: Y. N. Phang, E. F. Loh
Abstract:
Many researchers have suggested the use of zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) models in modeling overdispersed medical count data with extra variations caused by extra zeros and unobserved heterogeneity. The studies indicate that ZIP and ZINB always provide better fit than using the normal Poisson and negative binomial models in modeling overdispersed medical count data. In this study, we proposed the use of Zero Inflated Inverse Trinomial (ZIIT), Zero Inflated Poisson Inverse Gaussian (ZIPIG) and zero inflated strict arcsine models in modeling overdispered medical count data. These proposed models are not widely used by many researchers especially in the medical field. The results show that these three suggested models can serve as alternative models in modeling overdispersed medical count data. This is supported by the application of these suggested models to a real life medical data set. Inverse trinomial, Poisson inverse Gaussian and strict arcsine are discrete distributions with cubic variance function of mean. Therefore, ZIIT, ZIPIG and ZISA are able to accommodate data with excess zeros and very heavy tailed. They are recommended to be used in modeling overdispersed medical count data when ZIP and ZINB are inadequate.
Keywords: Zero inflated, inverse trinomial distribution, Poisson inverse Gaussian distribution, strict arcsine distribution, Pearson’s goodness of fit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33162765 Survival of Neutrino Mass Models in Nonthermal Leptogenesis
Authors: Amal Kr Sarma, H Zeen Devi, N Nimai Singh
Abstract:
The Constraints imposed by non-thermal leptogenesis on the survival of the neutrino mass models describing the presently available neutrino mass patterns, are studied numerically. We consider the Majorana CP violating phases coming from right-handed Majorana mass matrices to estimate the baryon asymmetry of the universe, for different neutrino mass models namely quasi-degenerate, inverted hierarchical and normal hierarchical models, with tribimaximal mixings. Considering two possible diagonal forms of Dirac neutrino mass matrix as either charged lepton or up-quark mass matrix, the heavy right-handed mass matrices are constructed from the light neutrino mass matrix. Only the normal hierarchical model leads to the best predictions of baryon asymmetry of the universe, consistent with observations in non-thermal leptogenesis scenario.Keywords: Thermal leptogenesis, Non-thermal leptogenesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12862764 Integrated Models of Reading Comprehension: Understanding to Impact Teaching: The Teacher’s Central Role
Authors: Sally A. Brown
Abstract:
Over the last 30 years, researchers have developed models or frameworks to provide a more structured understanding of the reading comprehension process. Cognitive information processing models and social cognitive theories both provide frameworks to inform reading comprehension instruction. The purpose of this paper is to (a) provide an overview of the historical development of reading comprehension theory, (b) review the literature framed by cognitive information processing, social cognitive, and integrated reading comprehension theories, and (c) demonstrate how these frameworks inform instruction. As integrated models of reading can guide the interpretation of various factors related to student learning, an integrated framework designed by the researcher will be presented. Results indicated that features of cognitive processing and social cognitivism theory—represented in the integrated framework—highlight the importance of the role of the teacher. This model can aide teachers in not only improving reading comprehension instruction but in identifying areas of challenge for students.
Keywords: Explicit instruction, integrated models of reading comprehension, reading comprehension, teacher’s role.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922763 Models to Customise Web Service Discovery Result using Static and Dynamic Parameters
Authors: Kee-Leong Tan, Cheng-Suan Lee, Hui-Na Chua
Abstract:
This paper presents three models which enable the customisation of Universal Description, Discovery and Integration (UDDI) query results, based on some pre-defined and/or real-time changing parameters. These proposed models detail the requirements, design and techniques which make ranking of Web service discovery results from a service registry possible. Our contribution is two fold: First, we present an extension to the UDDI inquiry capabilities. This enables a private UDDI registry owner to customise or rank the query results, based on its business requirements. Second, our proposal utilises existing technologies and standards which require minimal changes to existing UDDI interfaces or its data structures. We believe these models will serve as valuable reference for enhancing the service discovery methods within a private UDDI registry environment.Keywords: Web service, discovery, semantic, SOA, registry, UDDI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14872762 A Combined Neural Network Approach to Soccer Player Prediction
Authors: Wenbin Zhang, Hantian Wu, Jian Tang
Abstract:
An artificial neural network is a mathematical model inspired by biological neural networks. There are several kinds of neural networks and they are widely used in many areas, such as: prediction, detection, and classification. Meanwhile, in day to day life, people always have to make many difficult decisions. For example, the coach of a soccer club has to decide which offensive player to be selected to play in a certain game. This work describes a novel Neural Network using a combination of the General Regression Neural Network and the Probabilistic Neural Networks to help a soccer coach make an informed decision.
Keywords: General Regression Neural Network, Probabilistic Neural Networks, Neural function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37642761 Advances in Artificial Intelligence Using Speech Recognition
Authors: Khaled M. Alhawiti
Abstract:
This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.Keywords: Speech recognition, acoustic phonetic, artificial intelligence, Hidden Markov Models (HMM), statistical models of speech recognition, human machine performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79782760 Lumped Parameter Models for Numerical Simulation of the Dynamic Response of Hoisting Appliances
Authors: Giovanni Incerti, Luigi Solazzi, Candida Petrogalli
Abstract:
This paper describes three lumped parameters models for the study of the dynamic behavior of a boom crane. The models here proposed allows to evaluate the fluctuations of the load arising from the rope and structure elasticity and from the type of the motion command imposed by the winch. A calculation software was developed in order to determine the actual acceleration of the lifted mass and the dynamic overload during the lifting phase. Some application examples are presented, with the aim of showing the correlation between the magnitude of the stress and the type of the employed motion command.Keywords: Crane, dynamic model, overloading condition, vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19642759 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters
Authors: S.A. Alqallaf, S.A. Al-Mawsawi, A. Haider
Abstract:
In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.
Keywords: UPFC, Decoupled model, Load flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20012758 Customer Churn Prediction Using Four Machine Learning Algorithms Integrating Feature Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial part of maintaining a customer-oriented business in the telecommunications industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years, which has made it more important to understand customers’ needs in this strong market. For those who are looking to turn over their service providers, understanding their needs is especially important. Predictive churn is now a mandatory requirement for retaining customers in the telecommunications industry. Machine learning can be used to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.
Keywords: Machine Learning, Gradient Boosting, Logistic Regression, Churn, Random Forest, Decision Tree, ROC, AUC, F1-score.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4082757 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model
Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok
Abstract:
The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.Keywords: Functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8072756 Multistage Condition Monitoring System of Aircraft Gas Turbine Engine
Authors: A. M. Pashayev, D. D. Askerov, C. Ardil, R. A. Sadiqov, P. S. Abdullayev
Abstract:
Researches show that probability-statistical methods application, especially at the early stage of the aviation Gas Turbine Engine (GTE) technical condition diagnosing, when the flight information has property of the fuzzy, limitation and uncertainty is unfounded. Hence the efficiency of application of new technology Soft Computing at these diagnosing stages with the using of the Fuzzy Logic and Neural Networks methods is considered. According to the purpose of this problem training with high accuracy of fuzzy multiple linear and non-linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. For GTE technical condition more adequate model making dynamics of skewness and kurtosis coefficients- changes are analysed. Researches of skewness and kurtosis coefficients values- changes show that, distributions of GTE work parameters have fuzzy character. Hence consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics changes- dynamics of GTE work parameters allows drawing conclusion on necessity of the Fuzzy Statistical Analysis at preliminary identification of the engines' technical condition. Researches of correlation coefficients values- changes shows also on their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (Hard Computing technology is used) on measurements of input and output parameters of the multiple linear and non-linear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The developed GTE condition monitoring system provides stageby- stage estimation of engine technical conditions. As application of the given technique the estimation of the new operating aviation engine technical condition was made.Keywords: aviation gas turbine engine, technical condition, fuzzy logic, neural networks, fuzzy statistics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570