Search results for: Faculty Training
840 Measuring Hazard Analysis and Critical Control Points Implementation in Riyadh Hospitals
Authors: A. Alrasheed, I. Connerton
Abstract:
Daily provision of high quality food and hygiene to patients is a challenging goal of the healthcare. In Saudi Arabia, matters related to food safety and hygiene are regulated by the Ministry of Health (MOH) and the Saudi Food and Drugs Authority (SFDA). The purpose of this research is to discuss the food safety management inconsistencies and flaws, in particular the ones related to Hazard Analysis and Critical Control Points (HACCP) in Riyadh’s MOH hospitals. As required by law, written HACCP regulations must be implemented, and food handlers need to receive the training accordingly. However, in Saudi hospitals, this is not a requirement, and the food handlers do not need to hold training certificates in food safety or HACCP. Nowadays, the matter of food safety and hygiene have become increasingly important since the decision makers want to align these regulations with the majority of the world and to implement HACCP fully and for this purpose, the SFDA was established.
Keywords: Food safety, patients, hospitals, HACCP, Saudi Arabia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327839 Suspended Matter Model on Alsat-1 Image by MLP Network and Mathematical Morphology: Prototypes by K-Means
Authors: S. Loumi, H. Merrad, F. Alilat, B. Sansal
Abstract:
In this article, we propose a methodology for the characterization of the suspended matter along Algiers-s bay. An approach by multi layers perceptron (MLP) with training by back propagation of the gradient optimized by the algorithm of Levenberg Marquardt (LM) is used. The accent was put on the choice of the components of the base of training where a comparative study made for four methods: Random and three alternatives of classification by K-Means. The samples are taken from suspended matter image, obtained by analytical model based on polynomial regression by taking account of in situ measurements. The mask which selects the zone of interest (water in our case) was carried out by using a multi spectral classification by ISODATA algorithm. To improve the result of classification, a cleaning of this mask was carried out using the tools of mathematical morphology. The results of this study presented in the forms of curves, tables and of images show the founded good of our methodology.Keywords: Classification K-means, mathematical morphology, neural network MLP, remote sensing, suspended particulate matter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523838 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water
Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri
Abstract:
In this research, the capability of neural networks in modeling and learning complicated and nonlinear relations has been used to develop a model for the prediction of changes in the diameter of bubbles in pool boiling distilled water. The input parameters used in the development of this network include element temperature, heat flux, and retention time of bubbles. The test data obtained from the experiment of the pool boiling of distilled water, and the measurement of the bubbles form on the cylindrical element. The model was developed based on training algorithm, which is typologically of back-propagation type. Considering the correlation coefficient obtained from this model is 0.9633. This shows that this model can be trusted for the simulation and modeling of the size of bubble and thermal transfer of boiling.
Keywords: Bubble Diameter, Heat Flux, Neural Network, Training Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456837 Self-Supervised Pretraining on Paired Sequences of fMRI Data for Transfer Learning to Brain Decoding Tasks
Authors: Sean Paulsen, Michael Casey
Abstract:
In this work, we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.
Keywords: Transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151836 On Speeding Up Support Vector Machines: Proximity Graphs Versus Random Sampling for Pre-Selection Condensation
Authors: Xiaohua Liu, Juan F. Beltran, Nishant Mohanchandra, Godfried T. Toussaint
Abstract:
Support vector machines (SVMs) are considered to be the best machine learning algorithms for minimizing the predictive probability of misclassification. However, their drawback is that for large data sets the computation of the optimal decision boundary is a time consuming function of the size of the training set. Hence several methods have been proposed to speed up the SVM algorithm. Here three methods used to speed up the computation of the SVM classifiers are compared experimentally using a musical genre classification problem. The simplest method pre-selects a random sample of the data before the application of the SVM algorithm. Two additional methods use proximity graphs to pre-select data that are near the decision boundary. One uses k-Nearest Neighbor graphs and the other Relative Neighborhood Graphs to accomplish the task.Keywords: Machine learning, data mining, support vector machines, proximity graphs, relative-neighborhood graphs, k-nearestneighbor graphs, random sampling, training data condensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919835 Analyzing the Perception of Social Networking Sites as a Learning Tool among University Students: Case Study of a Business School in India
Authors: Bhaskar Basu
Abstract:
Universities and higher education institutes are finding it increasingly difficult to engage students fruitfully through traditional pedagogic tools. Web 2.0 technologies comprising social networking sites (SNSs) offer a platform for students to collaborate and share information, thereby enhancing their learning experience. Despite the potential and reach of SNSs, its use has been limited in academic settings promoting higher education. The purpose of this paper is to assess the perception of social networking sites among business school students in India and analyze its role in enhancing quality of student experiences in a business school leading to the proposal of an agenda for future research. In this study, more than 300 students of a reputed business school were involved in a survey of their preferences of different social networking sites and their perceptions and attitudes towards these sites. A questionnaire with three major sections was designed, validated and distributed among a sample of students, the research method being descriptive in nature. Crucial questions were addressed to the students concerning time commitment, reasons for usage, nature of interaction on these sites, and the propensity to share information leading to direct and indirect modes of learning. It was further supplemented with focus group discussion to analyze the findings. The paper notes the resistance in the adoption of new technology by a section of business school faculty, who are staunch supporters of the classical “face-to-face” instruction. In conclusion, social networking sites like Facebook and LinkedIn provide new avenues for students to express themselves and to interact with one another. Universities could take advantage of the new ways in which students are communicating with one another. Although interactive educational options such as Moodle exist, social networking sites are rarely used for academic purposes. Using this medium opens new ways of academically-oriented interactions where faculty could discover more about students' interests, and students, in turn, might express and develop more intellectual facets of their lives. hitherto unknown intellectual facets. This study also throws up the enormous potential of mobile phones as a tool for “blended learning” in business schools going forward.
Keywords: Business school, India, learning, social media, social networking, university.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428834 Estimating Saturated Hydraulic Conductivity from Soil Physical Properties using Neural Networks Model
Authors: B. Ghanbarian-Alavijeh, A.M. Liaghat, S. Sohrabi
Abstract:
Saturated hydraulic conductivity is one of the soil hydraulic properties which is widely used in environmental studies especially subsurface ground water. Since, its direct measurement is time consuming and therefore costly, indirect methods such as pedotransfer functions have been developed based on multiple linear regression equations and neural networks model in order to estimate saturated hydraulic conductivity from readily available soil properties e.g. sand, silt, and clay contents, bulk density, and organic matter. The objective of this study was to develop neural networks (NNs) model to estimate saturated hydraulic conductivity from available parameters such as sand and clay contents, bulk density, van Genuchten retention model parameters (i.e. r θ , α , and n) as well as effective porosity. We used two methods to calculate effective porosity: : (1) eff s FC φ =θ -θ , and (2) inf φ =θ -θ eff s , in which s θ is saturated water content, FC θ is water content retained at -33 kPa matric potential, and inf θ is water content at the inflection point. Total of 311 soil samples from the UNSODA database was divided into three groups as 187 for the training, 62 for the validation (to avoid over training), and 62 for the test of NNs model. A commercial neural network toolbox of MATLAB software with a multi-layer perceptron model and back propagation algorithm were used for the training procedure. The statistical parameters such as correlation coefficient (R2), and mean square error (MSE) were also used to evaluate the developed NNs model. The best number of neurons in the middle layer of NNs model for methods (1) and (2) were calculated 44 and 6, respectively. The R2 and MSE values of the test phase were determined for method (1), 0.94 and 0.0016, and for method (2), 0.98 and 0.00065, respectively, which shows that method (2) estimates saturated hydraulic conductivity better than method (1).Keywords: Neural network, Saturated hydraulic conductivity, Soil physical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2557833 Robot Exploration and Navigation in Unseen Environments Using Deep Reinforcement Learning
Authors: Romisaa Ali
Abstract:
This paper presents a comparison between twin-delayed Deep Deterministic Policy Gradient (TD3) and Soft Actor-Critic (SAC) reinforcement learning algorithms in the context of training robust navigation policies for Jackal robots. By leveraging an open-source framework and custom motion control environments, the study evaluates the performance, robustness, and transferability of the trained policies across a range of scenarios. The primary focus of the experiments is to assess the training process, the adaptability of the algorithms, and the robot’s ability to navigate in previously unseen environments. Moreover, the paper examines the influence of varying environment complexities on the learning process and the generalization capabilities of the resulting policies. The results of this study aim to inform and guide the development of more efficient and practical reinforcement learning-based navigation policies for Jackal robots in real-world scenarios.
Keywords: Jackal robot environments, reinforcement learning, TD3, SAC, robust navigation, transferability, Custom Environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 67832 A Unified Robust Algorithm for Detection of Human and Non-human Object in Intelligent Safety Application
Authors: M A Hannan, A. Hussain, S. A. Samad, K. A. Ishak, A. Mohamed
Abstract:
This paper presents a general trainable framework for fast and robust upright human face and non-human object detection and verification in static images. To enhance the performance of the detection process, the technique we develop is based on the combination of fast neural network (FNN) and classical neural network (CNN). In FNN, a useful correlation is exploited to sustain high level of detection accuracy between input image and the weight of the hidden neurons. This is to enable the use of Fourier transform that significantly speed up the time detection. The combination of CNN is responsible to verify the face region. A bootstrap algorithm is used to collect non human object, which adds the false detection to the training process of the human and non-human object. Experimental results on test images with both simple and complex background demonstrate that the proposed method has obtained high detection rate and low false positive rate in detecting both human face and non-human object.Keywords: Algorithm, detection of human and non-human object, FNN, CNN, Image training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1633831 Teachers’ Emotional Experience in Online Classes in Adult Education in Selected European Countries
Authors: Andreas Ahrens, Jelena Zascerinska
Abstract:
Emotions are crucial in online classes in adult education. Despite that, a little attention was devoted to the emotional experience of being an online teacher in the field of andragogy, and the online teacher’s emotional perspectives in ever changing environments have to be analysed. The paper aims at the analysis of teachers’ emotional experience in online classes in adult education in selected European countries. The research tends to propose implications for training of teachers who work in online classes in adult education. The survey was conducted in April 2022. In the selected European countries 78 respondents took part in the study. Among them, 30 respondents represented Germany, 28 respondents Greece, and 20 respondents were from Italy. The theoretical findings allow defining teacher emotional experience. The analysis of the elements of the respondents’ emotional experience allows concluding that teachers’ attitude to online classes has to be developed. The key content for teacher training is presented. Directions of further work are proposed.
Keywords: Adult education, online classes, teacher emotional experience, European countries.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 438830 Improving Air Temperature Prediction with Artificial Neural Networks
Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom
Abstract:
The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. Previous work established that the Ward-style artificial neural network (ANN) is a suitable tool for developing such models. The current research focused on developing ANN models with reduced average prediction error by increasing the number of distinct observations used in training, adding additional input terms that describe the date of an observation, increasing the duration of prior weather data included in each observation, and reexamining the number of hidden nodes used in the network. Models were created to predict air temperature at hourly intervals from one to 12 hours ahead. Each ANN model, consisting of a network architecture and set of associated parameters, was evaluated by instantiating and training 30 networks and calculating the mean absolute error (MAE) of the resulting networks for some set of input patterns. The inclusion of seasonal input terms, up to 24 hours of prior weather information, and a larger number of processing nodes were some of the improvements that reduced average prediction error compared to previous research across all horizons. For example, the four-hour MAE of 1.40°C was 0.20°C, or 12.5%, less than the previous model. Prediction MAEs eight and 12 hours ahead improved by 0.17°C and 0.16°C, respectively, improvements of 7.4% and 5.9% over the existing model at these horizons. Networks instantiating the same model but with different initial random weights often led to different prediction errors. These results strongly suggest that ANN model developers should consider instantiating and training multiple networks with different initial weights to establish preferred model parameters.Keywords: Decision support systems, frost protection, fruit, time-series prediction, weather modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2725829 Inferential Reasoning for Heterogeneous Multi-Agent Mission
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts.Keywords: Distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 640828 Food Habits and Nutritional Status of Fiji Rugby Players
Authors: Jimaima Lako, Subramaniam Sotheeswaran, Ketan Christi
Abstract:
The 15-a-side Fiji rugby team trains well in preparations for any rugby competition but rarely performs to expectations. In order to help the Fiji local based rugby players to identify some key basic areas in improving their performance, a series of workshops were conducted to assess their nutritional status and dietary habits in relation to energy demand during rugby matches. The nutrition workshop included the administration of questionnaires to 19 local based rugby players, requesting the following information: usual food intakes, training camp food intakes, carbohydrate loading, pre-game meals and post-game meals. The study revealed that poor eating habits of the players resulted in the low carbohydrate intake, which may have contributed to increase levels of fatigue leading to loss of stamina even before the second half of the game. It appears that the diet of most 15-a-side players does not provide enough energy to enable them to last the full eightyminutes of the game.
Keywords: Fiji rugby, Food habits, Physical fitness, Training meals
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4312827 Design and Development of an MPH Program for Distance Education Delivery
Authors: Steven R. Hawks
Abstract:
The Master-s of Public Health (MPH) degree is growing in popularity among a number of higher education institutions throughout the world as a distance education graduate program. This paper offers an overview of program design and development strategies that promote successful distance delivery of MPH programs. Design and development challenges are discussed in terms of type of distance delivery, accreditation, student demand, faculty development, user needs, course content, and marketing strategies. The ongoing development of a distance education MPH program at Utah State University will be used to highlight and consider various aspects of this important but challenging process.Keywords: Public health, course content, distance education, higher education, graduate students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458826 Differences in Students` Satisfaction with Distance Learning Studies
Authors: Ana Horvat, Maja Krsmanovic, Mladen Djuric
Abstract:
Rapid growth of distance learning resulted in importance to conduct research on students- satisfaction with distance learning because differences in students- satisfaction might influence educational opportunities for learning in a relevant Web-based environment. In line with this, this paper deals with satisfaction of students with distance module at Faculty of organizational sciences (FOS) in Serbia as well as some factors affecting differences in their satisfaction . We have conducted a research on a population of 68 first-year students of distance learning studies at FOS. Using statistical techniques, we have found out that there is no significant difference in students- satisfaction with distance learning module between men and women. In the same way, we also concluded that there is a difference in satisfaction with distance learning module regarding to student-s perception of opportunity to gain knowledge as the classic students.Keywords: distance learning, students' satisfaction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599825 An Analysis of Gamification in the Post-Secondary Classroom
Authors: F. Saccucci
Abstract:
Gamification has now started to take root in the post-secondary classroom. Educators have learned much about gamification to date but there is still a great deal to learn. One definition of gamification is the ability to engage post-secondary students with games that are fun and correlate to class room curriculum. There is no shortage of literature illustrating the advantages of gamification in the class room. This study is an extension of similar thought as well as an extension of a previous study where in class testing proved with the used of paired T-test that gamification did significantly improve the students’ understanding of subject material. Gamification itself in the class room can range from high end computer simulated software to paper based games of which both have advantages and disadvantages. This analysis used a paper based game to highlight certain qualitative advantages of gamification. The paper based game in this analysis was inexpensive, required low preparation time for the faculty member and consumed approximately 20 minutes of class room time. Data for the study was collected through in class student feedback surveys and narrative from the faculty member moderating the game. Students were randomly selected into groups of four. Qualitative advantages identified in this analysis included: 1. Students had a chance to meet, connect and know other students. 2. Students enjoyed the gamification process given there was a sense of fun and competition. 3. The post assessment that followed the simulation game was not part of their grade calculation therefore it was an opportunity to participate in a low risk activity whereby students could subsequently self-assess their understanding of the subject material. 4. In the view of the student, content knowledge did increase after the gamification process. These qualitative advantages identified in this analysis contribute to the argument that there should be an attempt to use gamification in today’s post-secondary class room. The analysis also highlighted that eighty (80) percent of the respondents believe twenty minutes devoted to the gamification process was appropriate, however twenty (20) percentage of respondents believed that rather than scheduling a gamification process and its post quiz in the last week, a review for the final exam may have been more useful. An additional study to this hopes to determine if the scheduling of the gamification had any correlation to a percentage of the students not wanting to be engaged in the process. As well, the additional study hopes to determine at what incremental level of time invested in class room gamification produce no material incremental benefits to the student as well as determine if any correlation exist between respondents preferring not to have it at the end of the semester to students not believing the gamification process added to the increase of their curricular knowledge.
Keywords: Gamification, inexpensive, qualitative advantages, post-secondary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869824 Automated, Objective Assessment of Pilot Performance in Simulated Environment
Authors: Maciej Zasuwa, Grzegorz Ptasinski, Antoni Kopyt
Abstract:
Nowadays flight simulators offer tremendous possibilities for safe and cost-effective pilot training, by utilization of powerful, computational tools. Due to technology outpacing methodology, vast majority of training related work is done by human instructors. It makes assessment not efficient, and vulnerable to instructors’ subjectivity. The research presents an Objective Assessment Tool (gOAT) developed at the Warsaw University of Technology, and tested on SW-4 helicopter flight simulator. The tool uses database of the predefined manoeuvres, defined and integrated to the virtual environment. These were implemented, basing on Aeronautical Design Standard Performance Specification Handling Qualities Requirements for Military Rotorcraft (ADS-33), with predefined Mission-Task-Elements (MTEs). The core element of the gOAT enhanced algorithm that provides instructor a new set of information. In details, a set of objective flight parameters fused with report about psychophysical state of the pilot. While the pilot performs the task, the gOAT system automatically calculates performance using the embedded algorithms, data registered by the simulator software (position, orientation, velocity, etc.), as well as measurements of physiological changes of pilot’s psychophysiological state (temperature, sweating, heart rate). Complete set of measurements is presented on-line to instructor’s station and shown in dedicated graphical interface. The presented tool is based on open source solutions, and flexible for editing. Additional manoeuvres can be easily added using guide developed by authors, and MTEs can be changed by instructor even during an exercise. Algorithm and measurements used allow not only to implement basic stress level measurements, but also to reduce instructor’s workload significantly. Tool developed can be used for training purpose, as well as periodical checks of the aircrew. Flexibility and ease of modifications allow the further development to be wide ranged, and the tool to be customized. Depending on simulation purpose, gOAT can be adjusted to support simulator of aircraft, helicopter, or unmanned aerial vehicle (UAV).
Keywords: Automated assessment, flight simulator, human factors, pilot training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 808823 Are Lecturers- Ready for Usage of Mobile Technology for Teaching?
Authors: Norazah Mohd Suki, Norbayah Mohd Suki
Abstract:
Descriptive statistics was performed with the aim to achieve research objective of to investigate lecturers- usage of the mobile technology for teaching. A representative sample of 20 lecturers from the Faculty of Industrial Art & Design Technology of Universiti Industri Selangor (UNISEL), Malaysia was selected as the respondents. The result attested that lecturers fully accept the concept of mobility in learning and game play is appealing concept to support classroom learning. Subsequently, analogous experience on small size of keypad, screen resolution, and navigation could be the major problematic factors to students and affect their mobile learning process. Recommendation for future research is also presented.
Keywords: Academics, Mobile e-learning, Mobile technology, Readiness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650822 On Developing a Core Guideline for English Language Training Programs in Business Settings
Authors: T. Ito, K. Kawaguchi, R. Ohta
Abstract:
The purpose of this study is to provide a guideline to assist globally-minded companies in developing task-based English- language programs for their employees. After conducting an online self-assessment questionnaire comprised of 45 job-related tasks, we analyzed responses received from 3,000 Japanese company employees and developed a checklist that considered three areas; i) the percentage of those who need to accomplish English-language tasks in their workplace (need for English), ii) a five-point self-assessment score (task performance level), and iii) the impact of previous task experience on perceived performance (experience factor). The 45 tasks were graded according to five proficiency levels. Our results helped us to create a core guideline that may assist companies in two ways: first, in helping determine which tasks employees with a certain English proficiency should be able to satisfactorily carry out, and secondly, to quickly prioritize which business-related English skills they would need in future English language programs.
Keywords: Business settings, Can-do statements, English language training programs, Self-assessment, Task experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448821 Clustering Based Formulation for Short Term Load Forecasting
Authors: Ajay Shekhar Pandey, D. Singh, S. K. Sinha
Abstract:
A clustering based technique has been developed and implemented for Short Term Load Forecasting, in this article. Formulation has been done using Mean Absolute Percentage Error (MAPE) as an objective function. Data Matrix and cluster size are optimization variables. Model designed, uses two temperature variables. This is compared with six input Radial Basis Function Neural Network (RBFNN) and Fuzzy Inference Neural Network (FINN) for the data of the same system, for same time period. The fuzzy inference system has the network structure and the training procedure of a neural network which initially creates a rule base from existing historical load data. It is observed that the proposed clustering based model is giving better forecasting accuracy as compared to the other two methods. Test results also indicate that the RBFNN can forecast future loads with accuracy comparable to that of proposed method, where as the training time required in the case of FINN is much less.
Keywords: Load forecasting, clustering, fuzzy inference.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626820 Combining Fuzzy Logic and Neural Networks in Modeling Landfill Gas Production
Authors: Mohamed Abdallah, Mostafa Warith, Roberto Narbaitz, Emil Petriu, Kevin Kennedy
Abstract:
Heterogeneity of solid waste characteristics as well as the complex processes taking place within the landfill ecosystem motivated the implementation of soft computing methodologies such as artificial neural networks (ANN), fuzzy logic (FL), and their combination. The present work uses a hybrid ANN-FL model that employs knowledge-based FL to describe the process qualitatively and implements the learning algorithm of ANN to optimize model parameters. The model was developed to simulate and predict the landfill gas production at a given time based on operational parameters. The experimental data used were compiled from lab-scale experiment that involved various operating scenarios. The developed model was validated and statistically analyzed using F-test, linear regression between actual and predicted data, and mean squared error measures. Overall, the simulated landfill gas production rates demonstrated reasonable agreement with actual data. The discussion focused on the effect of the size of training datasets and number of training epochs.
Keywords: Adaptive neural fuzzy inference system (ANFIS), gas production, landfill
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415819 The Difficulties Witnessed by People with Intellectual Disability in Transition to Work in Saudi Arabia
Authors: Adel S. Alanazi
Abstract:
The transition of a student with a disability from school to work is the most crucial phase while moving from the stage of adolescence into early adulthood. In this process, young individuals face various difficulties and challenges in order to accomplish the next venture of life successfully. In this respect, this paper aims to examine the challenges encountered by the individuals with intellectual disabilities in transition to work in Saudi Arabia. For this purpose, this study has undertaken a qualitative research-based methodology; wherein interpretivist philosophy has been followed along with inductive approach and exploratory research design. The data for the research has been gathered with the help of semi-structured interviews, whose findings are analysed with the help of thematic analysis. Semi-structured interviews were conducted with parents of persons with intellectual disabilities, officials, supervisors and specialists of two vocational rehabilitation centres providing training to intellectually disabled students, in addition to that, directors of companies and websites in hiring those individuals. The total number of respondents for the interview was 15. The purposive sampling method was used to select the respondents for the interview. This sampling method is a non-probability sampling method which draws respondents from a known population and allows flexibility and suitability in selecting the participants for the study. The findings gathered from the interview revealed that the lack of awareness among their parents regarding the rights of their children who are intellectually disabled; the lack of adequate communication and coordination between various entities; concerns regarding their training and subsequent employment are the key difficulties experienced by the individuals with intellectual disabilities. Training in programmes such as bookbinding, carpentry, computing, agriculture, electricity and telephone exchange operations were involved as key training programmes. The findings of this study also revealed that information technology and media were playing a significant role in smoothing the transition to employment of individuals with intellectual disabilities. Furthermore, religious and cultural attitudes have been identified to be restricted for people with such disabilities in seeking advantages from job opportunities. On the basis of these findings, it can be implied that the information gathered through this study will serve to be highly beneficial for Saudi Arabian schools/ rehabilitation centres for individuals with intellectual disability to facilitate them in overcoming the problems they encounter during the transition to work.
Keywords: Intellectual disability, transition services, rehabilitation centre.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1326818 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping
Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa
Abstract:
The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.
Keywords: Neural network computing, information processing, input-output mapping, training time, computers with high memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323817 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.
Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239816 Analyzing the Perception of Key Terms in E-Learning in Academia: Case Study of Princess Nourah Bint Abdulrahman University
Authors: M. Almohaimeed, Y. Alhaidari, H. Alhamdan, A. Alfaries, A. Ater Kranov
Abstract:
A university-wide survey to obtain baseline data regarding the perceptions of key terms related to e-learning and distance learning among students, faculty and staff was conducted to help achieve the goals of Princess Nourah bint Abdulrahman University’s and the Kingdom of Saudi Arabia’s National Center for e-learning and Distance Learning. This paper comprises a relevant literature review, the survey methodology, preliminary data analysis, discussion, and recommendations for further research. The major findings indicate a deep and wide differentiation of understanding among users of critical key terms.Keywords: E-learning, distance learning, on-line learning, perceptions of learning environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832815 Collaborative Team Work in Higher Education: A Case Study
Authors: Swapna Bhargavi Gantasala
Abstract:
If teamwork is the key to organizational learning, productivity and growth, then, why do some teams succeed in achieving these, while others falter at different stages? Building teams in higher education institutions has been a challenge and an open-ended constructivist approach was considered on an experimental basis for this study to address this challenge. For this research, teams of students from the MBA program were chosen to study the effect of teamwork in learning, the motivation levels among student team members, and the effect of collaboration in achieving team goals. The teams were built on shared vision and goals, cohesion was ensured, positive induction in the form of faculty mentoring was provided for each participating team and the results have been presented with conclusions and suggestions.
Keywords: Collaboration, Leadership, Motivation, Reinforcement Teamwork.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3022814 Convergence Analysis of Training Two-Hidden-Layer Partially Over-Parameterized ReLU Networks via Gradient Descent
Authors: Zhifeng Kong
Abstract:
Over-parameterized neural networks have attracted a great deal of attention in recent deep learning theory research, as they challenge the classic perspective of over-fitting when the model has excessive parameters and have gained empirical success in various settings. While a number of theoretical works have been presented to demystify properties of such models, the convergence properties of such models are still far from being thoroughly understood. In this work, we study the convergence properties of training two-hidden-layer partially over-parameterized fully connected networks with the Rectified Linear Unit activation via gradient descent. To our knowledge, this is the first theoretical work to understand convergence properties of deep over-parameterized networks without the equally-wide-hidden-layer assumption and other unrealistic assumptions. We provide a probabilistic lower bound of the widths of hidden layers and proved linear convergence rate of gradient descent. We also conducted experiments on synthetic and real-world datasets to validate our theory.Keywords: Over-parameterization, Rectified Linear Units (ReLU), convergence, gradient descent, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 896813 Sport and Exercise Behavior of Students in Suan Sunandha Rajabhat University
Authors: Pimporn Thongmuang
Abstract:
The purpose of this research is to study sport and exercise behavior of students in Suan Sunandha Rajabhat University in September of 2012. The sample group used in this research was a group of regular students in undergraduate school enrolled in faculty of science and technology. This sample group consisted of 1,858 students. The research tool used to collect result was the checklist. The data was calculated by statistical percentage. From the research, it was discovered that most students did exercise in previous month. 71.6% of students exercised by running. 61.1% of students exercised in their neighborhood. 60.4% of students exercised in order to keep fit. 60.2% of students agreed that the result from this research can be educational and inspirational for students in campus in terms of living healthily by exercise.Keywords: Exercise behavior, sport behavior, students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 864812 Cross Project Software Fault Prediction at Design Phase
Authors: Pradeep Singh, Shrish Verma
Abstract:
Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. Earlier we predicted the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven datasets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.Keywords: Software Metrics, Fault prediction, Cross project, Within project.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546811 Debt Reconstruction, Career Development and Famers Household Well-Being in Thailand
Authors: Yothin Sawangdee, Piyawat Katewongsa, Chutima Yousomboon, Kornkanok Pongpradit, Sakapas Saengchai, Phusit Khantikul
Abstract:
Debts reconstruction under some of moratorium projects is one of important method that highly benefits to both the Banks and farmers. The method can reduce probabilities for nonprofits loan. This paper discuss about debts reconstruction and career development training for farmers in Thailand between 2011 and 2013. The research designed is mix-method between quantitative survey and qualitative survey. Sample size for quantitative method is 1003 cases. Data gathering procedure is between October and December 2013. Main results affirmed that debts reconstruction is needed. And there are numerous benefits from farmers’ career development training. Many of farmers who attend field school activities able to bring knowledge learned to apply for the farms’ work. They can reduce production costs. Framers’ quality of life and their household well-being also improve. This program should apply in any countries where farmers have highly debts and highly risks for not return the debts.Keywords: Career development, debts reconstruction, farmers household well-being, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1023