Search results for: IP Based network
9493 Towards an Enhanced Quality of IPTV Media Server Architecture over Software Defined Networking
Authors: Esmeralda Hysenbelliu
Abstract:
The aim of this paper is to present the QoE (Quality of Experience) IPTV SDN-based media streaming server enhanced architecture for configuring, controlling, management and provisioning the improved delivery of IPTV service application with low cost, low bandwidth, and high security. Furthermore, it is given a virtual QoE IPTV SDN-based topology to provide an improved IPTV service based on QoE Control and Management of multimedia services functionalities. Inside OpenFlow SDN Controller there are enabled in high flexibility and efficiency Service Load-Balancing Systems; based on the Loading-Balance module and based on GeoIP Service. This two Load-balancing system improve IPTV end-users Quality of Experience (QoE) with optimal management of resources greatly. Through the key functionalities of OpenFlow SDN controller, this approach produced several important features, opportunities for overcoming the critical QoE metrics for IPTV Service like achieving incredible Fast Zapping time (Channel Switching time) < 0.1 seconds. This approach enabled Easy and Powerful Transcoding system via FFMPEG encoder. It has the ability to customize streaming dimensions bitrates, latency management and maximum transfer rates ensuring delivering of IPTV streaming services (Audio and Video) in high flexibility, low bandwidth and required performance. This QoE IPTV SDN-based media streaming architecture unlike other architectures provides the possibility of Channel Exchanging between several IPTV service providers all over the word. This new functionality brings many benefits as increasing the number of TV channels received by end –users with low cost, decreasing stream failure time (Channel Failure time < 0.1 seconds) and improving the quality of streaming services.
Keywords: Improved QoE, OpenFlow SDN controller, IPTV service application, softwarization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10349492 Specialization-based parallel Processing without Memo-trees
Authors: Hidemi Ogasawara, Kiyoshi Akama, Hiroshi Mabuchi
Abstract:
The purpose of this paper is to propose a framework for constructing correct parallel processing programs based on Equivalent Transformation Framework (ETF). ETF regards computation as In the framework, a problem-s domain knowledge and a query are described in definite clauses, and computation is regarded as transformation of the definite clauses. Its meaning is defined by a model of the set of definite clauses, and the transformation rules generated must preserve meaning. We have proposed a parallel processing method based on “specialization", a part of operation in the transformations, which resembles substitution in logic programming. The method requires “Memo-tree", a history of specialization to maintain correctness. In this paper we proposes the new method for the specialization-base parallel processing without Memo-tree.
Keywords: Parallel processing, Program correctness, Equivalent transformation, Specializer generation rule
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13319491 Encrypted Audio Communication Based On Synchronized Unified Chaotic Systems
Authors: C. Cruz-Hernández, E. Inzunza-González, R.M. López-Gutiérrez H. Serrano-Guerrero, E.E.García-Guerrero
Abstract:
In this paper, encrypted audio communications based on synchronization of coupled unified chaotic systems in master-slave configuration is numerically studied. We transmit the encrypted audio messages by using two unsecure channels. Encoding, transmission, and decoding audio messages in chaotic communication is presented.
Keywords: Audio encrypted, chaos, synchronization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17049490 Experimental Investigation on the Lithium-ion Battery Thermal Management System Based on U-Shaped Micro Heat Pipe Array in High Temperature Environment
Authors: Ruyang Ren, Yaohua Zhao, Yanhua Diao
Abstract:
In this study, a type of active air cooling thermal management system (TMS) based on U-shaped micro heat pipe array (MHPA) is established for the battery energy storage box which operates in high ambient temperature all the year round. The thermal management performance of the active air cooling TMS based on U-shaped MHPA under different ambient temperatures and different cooling conditions is analyzed by the method of experimental research. Results show that even if the battery energy storage box operates at a high ambient temperature of 45 °C, the active air cooling TMS based on U-shaped MHPA controls not only the maximum temperature of the battery in the battery energy storage box below 55 °C, but also the maximum temperature difference in the battery energy storage box below 5 °C during the whole charge-discharge process. The experimental results provide guidance for the application of the battery energy storage box TMS that operates in high temperature areas.
Keywords: Active air cooling, lithium-ion battery, micro heat pipe array, thermal management system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3619489 Towards an E-Learning Platform Multi-Agent Based On the E-Tutoring for Collaborative Work
Authors: Badr Hssina, Belaid Bouikhalene, Abdelkrim Merbouha
Abstract:
This article presents our prototype MASET (Multi Agents System for E-Tutoring Learners engaged in online collaborative work). MASET that we propose is a system which basically aims to help tutors in monitoring the collaborative work of students and their various interactions. The evaluation of such interactions by the tutor is based on the results provided by the automatic analysis of the interaction indicators. This system is predicated upon the middleware JADE (Java Agent Development Framework) and e-learning Moodle platform. The MASET environment is modeled by AUML which allows structuring the different interactions between agents for the fulfillment and performance of online collaborative work. This multi-agent system has been the subject of a practical experimentation based on the interactions data between Master Computer Engineering and System students.Keywords: AUML, Collaborative work, E-learning, E-tutoring, JADE, Moodle, SMA, Web Agent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18379488 CFD Modeling of Boiling in a Microchannel Based On Phase-Field Method
Authors: Rahim Jafari, Tuba Okutucu-Özyurt
Abstract:
The hydrodynamics and heat transfer characteristics of a vaporized elongated bubble in a rectangular microchannel have been simulated based on Cahn-Hilliard phase-field method. In the simulations, the initially nucleated bubble starts growing as it comes in contact with superheated water. The growing shape of the bubble compared well with the available experimental data in the literature.
Keywords: Microchannel, boiling, Cahn-Hilliard method, Two-phase flow, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38529487 Approach Based on Fuzzy C-Means for Band Selection in Hyperspectral Images
Authors: Diego Saqui, José H. Saito, José R. Campos, Lúcio A. de C. Jorge
Abstract:
Hyperspectral images and remote sensing are important for many applications. A problem in the use of these images is the high volume of data to be processed, stored and transferred. Dimensionality reduction techniques can be used to reduce the volume of data. In this paper, an approach to band selection based on clustering algorithms is presented. This approach allows to reduce the volume of data. The proposed structure is based on Fuzzy C-Means (or K-Means) and NWHFC algorithms. New attributes in relation to other studies in the literature, such as kurtosis and low correlation, are also considered. A comparison of the results of the approach using the Fuzzy C-Means and K-Means with different attributes is performed. The use of both algorithms show similar good results but, particularly when used attributes variance and kurtosis in the clustering process, however applicable in hyperspectral images.
Keywords: Band selection, fuzzy C-means, K-means, hyperspectral image.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18239486 Hybrid Artificial Immune System for Job Shop Scheduling Problem
Authors: Bin Cai, Shilong Wang, Haibo Hu
Abstract:
The job shop scheduling problem (JSSP) is a notoriously difficult problem in combinatorial optimization. This paper presents a hybrid artificial immune system for the JSSP with the objective of minimizing makespan. The proposed approach combines the artificial immune system, which has a powerful global exploration capability, with the local search method, which can exploit the optimal antibody. The antibody coding scheme is based on the operation based representation. The decoding procedure limits the search space to the set of full active schedules. In each generation, a local search heuristic based on the neighborhood structure proposed by Nowicki and Smutnicki is applied to improve the solutions. The approach is tested on 43 benchmark problems taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed algorithm.Keywords: Artificial immune system, Job shop scheduling problem, Local search, Metaheuristic algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19319485 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks
Authors: Shivakumar, G. S. Vijay, P. Srinivas Pai, B. R. Shrinivasa Rao
Abstract:
In the present study, RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tex and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.Keywords: Radial Basis Function networks, emissions, Performance parameters, Fuzzy c means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17379484 Usability Evaluation of Online News Websites: A User Perspective Approach
Authors: Qasem A. Al-Radaideh, Emad Abu-Shanab, Shaima Hamam, Hani Abu-Salem
Abstract:
Online news websites are one of the main and wide areas of Mass Media. Since the nineties several Jordanian newspapers were introduced to the World Wide Web to reach various and large numbers of audiances. Examples of these newspapers that have online version are Al-Rai, Ad-Dustor and AlGhad. Other pure online news websites include Ammon and Rum. The main aim of this study is to evaluate online newspaper websites using two assessment measures; usability and web content. This aim is achieved by using a questionnaire based evaluation which is based on the definition of usability and web content in the ISO document as the standard number 9241-part 11. The results are obtained based on 204 audiences- responses. The results of the research showed that the usability factor is relatively good for all Jordanian online newspapers whereas the web content factor is moderate.
Keywords: Communication and mass media, Jordanian online news websites, website content, website usability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42479483 A New Image Psychovisual Coding Quality Measurement based Region of Interest
Authors: M. Nahid, A. Bajit, A. Tamtaoui, E. H. Bouyakhf
Abstract:
To model the human visual system (HVS) in the region of interest, we propose a new objective metric evaluation adapted to wavelet foveation-based image compression quality measurement, which exploits a foveation setup filter implementation technique in the DWT domain, based especially on the point and region of fixation of the human eye. This model is then used to predict the visible divergences between an original and compressed image with respect to this region field and yields an adapted and local measure error by removing all peripheral errors. The technique, which we call foveation wavelet visible difference prediction (FWVDP), is demonstrated on a number of noisy images all of which have the same local peak signal to noise ratio (PSNR), but visibly different errors. We show that the FWVDP reliably predicts the fixation areas of interest where error is masked, due to high image contrast, and the areas where the error is visible, due to low image contrast. The paper also suggests ways in which the FWVDP can be used to determine a visually optimal quantization strategy for foveation-based wavelet coefficients and to produce a quantitative local measure of image quality.
Keywords: Human Visual System, Image Quality, ImageCompression, foveation wavelet, region of interest ROI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15049482 Native Language Identification with Cross-Corpus Evaluation Using Social Media Data: 'Reddit'
Authors: Yasmeen Bassas, Sandra Kuebler, Allen Riddell
Abstract:
Native Language Identification is one of the growing subfields in Natural Language Processing (NLP). The task of Native Language Identification (NLI) is mainly concerned with predicting the native language of an author’s writing in a second language. In this paper, we investigate the performance of two types of features; content-based features vs. content independent features when they are evaluated on a different corpus (using social media data “Reddit”). In this NLI task, the predefined models are trained on one corpus (TOEFL) and then the trained models are evaluated on a different data using an external corpus (Reddit). Three classifiers are used in this task; the baseline, linear SVM, and Logistic Regression. Results show that content-based features are more accurate and robust than content independent ones when tested within corpus and across corpus.
Keywords: NLI, NLP, content-based features, content independent features, social media corpus, ML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4369481 An Attribute Based Access Control Model with POL Module for Dynamically Granting and Revoking Authorizations
Authors: Gang Liu, Huimin Song, Can Wang, Runnan Zhang, Lu Fang
Abstract:
Currently, resource sharing and system security are critical issues. This paper proposes a POL module composed of PRIV ILEGE attribute (PA), obligation and log which improves attribute based access control (ABAC) model in dynamically granting authorizations and revoking authorizations. The following describes the new model termed PABAC in terms of the POL module structure, attribute definitions, policy formulation and authorization architecture, which demonstrate the advantages of it. The POL module addresses the problems which are not predicted before and not described by access control policy. It can be one of the subject attributes or resource attributes according to the practical application, which enhances the flexibility of the model compared with ABAC. A scenario that illustrates how this model is applied to the real world is provided.Keywords: Access control, attribute based access control, granting authorizations, privilege, revoking authorizations, system security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10669480 Optimal Based Damping Controllers of Unified Power Flow Controller Using Adaptive Tabu Search
Authors: Rungnapa Taithai, Anant Oonsivilai
Abstract:
This paper presents optimal based damping controllers of Unified Power Flow Controller (UPFC) for improving the damping power system oscillations. The design problem of UPFC damping controller and system configurations is formulated as an optimization with time domain-based objective function by means of Adaptive Tabu Search (ATS) technique. The UPFC is installed in Single Machine Infinite Bus (SMIB) for the performance analysis of the power system and simulated using MATLAB-s simulink. The simulation results of these studies showed that designed controller has an tremendous capability in damping power system oscillations.
Keywords: Adaptive Tabu Search (ATS), damping controller, Single Machine Infinite Bus (SMIB), Unified Power Flow Controller (UPFC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24899479 Ramp Rate and Constriction Factor Based Dual Objective Economic Load Dispatch Using Particle Swarm Optimization
Authors: Himanshu Shekhar Maharana, S. K .Dash
Abstract:
Economic Load Dispatch (ELD) proves to be a vital optimization process in electric power system for allocating generation amongst various units to compute the cost of generation, the cost of emission involving global warming gases like sulphur dioxide, nitrous oxide and carbon monoxide etc. In this dissertation, we emphasize ramp rate constriction factor based particle swarm optimization (RRCPSO) for analyzing various performance objectives, namely cost of generation, cost of emission, and a dual objective function involving both these objectives through the experimental simulated results. A 6-unit 30 bus IEEE test case system has been utilized for simulating the results involving improved weight factor advanced ramp rate limit constraints for optimizing total cost of generation and emission. This method increases the tendency of particles to venture into the solution space to ameliorate their convergence rates. Earlier works through dispersed PSO (DPSO) and constriction factor based PSO (CPSO) give rise to comparatively higher computational time and less good optimal solution at par with current dissertation. This paper deals with ramp rate and constriction factor based well defined ramp rate PSO to compute various objectives namely cost, emission and total objective etc. and compares the result with DPSO and weight improved PSO (WIPSO) techniques illustrating lesser computational time and better optimal solution.
Keywords: Economic load dispatch, constriction factor based particle swarm optimization, dispersed particle swarm optimization, weight improved particle swarm optimization, ramp rate and constriction factor based particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12689478 Multi-Agent Model for Automation of Business Process Management System Based on Service Oriented Architecture
Authors: Soe Winn, May Thwe Oo
Abstract:
Business process automation is an important task in an enterprise business environment software development. The requirements of processing acceleration and automation level of enterprises are inherently different from one organization to another. We present a methodology and system for automation of business process management system architecture by multi-agent collaboration based on SOA. Design layer processes are modeled in semantic markup language for web services application. At the core of our system is considering certain types of human tasks to their further automation across over multiple platform environments. An improved abnormality processing with model for automation of BPMS architecture by multi-agent collaboration based on SOA is introduced. Validating system for efficiency of process automation, an application for educational knowledge base instance would also be described.Keywords: Business process management system, businessprocess automation, multi-agent collaboration, Service OrientedArchitecture, extensible service application
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17649477 Hardware Implementation of Stack-Based Replacement Algorithms
Authors: Hassan Ghasemzadeh, Sepideh Mazrouee, Hassan Goldani Moghaddam, Hamid Shojaei, Mohammad Reza Kakoee
Abstract:
Block replacement algorithms to increase hit ratio have been extensively used in cache memory management. Among basic replacement schemes, LRU and FIFO have been shown to be effective replacement algorithms in terms of hit rates. In this paper, we introduce a flexible stack-based circuit which can be employed in hardware implementation of both LRU and FIFO policies. We propose a simple and efficient architecture such that stack-based replacement algorithms can be implemented without the drawbacks of the traditional architectures. The stack is modular and hence, a set of stack rows can be cascaded depending on the number of blocks in each cache set. Our circuit can be implemented in conjunction with the cache controller and static/dynamic memories to form a cache system. Experimental results exhibit that our proposed circuit provides an average value of 26% improvement in storage bits and its maximum operating frequency is increased by a factor of twoKeywords: Cache Memory, Replacement Algorithms, LeastRecently Used Algorithm, First In First Out Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34489476 Optimal Space Vector Control for Permanent Magnet Synchronous Motor based on Nonrecursive Riccati Equation
Authors: Marian Gaiceanu, Emil Rosu
Abstract:
In this paper the optimal control strategy for Permanent Magnet Synchronous Motor (PMSM) based drive system is presented. The designed full optimal control is available for speed operating range up to base speed. The optimal voltage space-vector assures input energy reduction and stator loss minimization, maintaining the output energy in the same limits with the conventional PMSM electrical drive. The optimal control with three components is based on the energetically criteria and it is applicable in numerical version, being a nonrecursive solution. The simulation results confirm the increased efficiency of the optimal PMSM drive. The properties of the optimal voltage space vector are shown.Keywords: Matlab/Simulink, optimal control, permanent magnet synchronous motor, Riccati equation, space vector PWM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20329475 Modeling Biology Inspired Reactive Agents Using X-machines
Authors: George Eleftherakis, Petros Kefalas, Anna Sotiriadou, Evangelos Kehris
Abstract:
Recent advances in both the testing and verification of software based on formal specifications of the system to be built have reached a point where the ideas can be applied in a powerful way in the design of agent-based systems. The software engineering research has highlighted a number of important issues: the importance of the type of modeling technique used; the careful design of the model to enable powerful testing techniques to be used; the automated verification of the behavioural properties of the system; the need to provide a mechanism for translating the formal models into executable software in a simple and transparent way. This paper introduces the use of the X-machine formalism as a tool for modeling biology inspired agents proposing the use of the techniques built around X-machine models for the construction of effective, and reliable agent-based software systems.
Keywords: Biology inspired agent, formal methods, x-machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15129474 Using a Semantic Self-Organising Web Page-Ranking Mechanism for Public Administration and Education
Authors: Marios Poulos, Sozon Papavlasopoulos, V. S. Belesiotis
Abstract:
In the proposed method for Web page-ranking, a novel theoretic model is introduced and tested by examples of order relationships among IP addresses. Ranking is induced using a convexity feature, which is learned according to these examples using a self-organizing procedure. We consider the problem of selforganizing learning from IP data to be represented by a semi-random convex polygon procedure, in which the vertices correspond to IP addresses. Based on recent developments in our regularization theory for convex polygons and corresponding Euclidean distance based methods for classification, we develop an algorithmic framework for learning ranking functions based on a Computational Geometric Theory. We show that our algorithm is generic, and present experimental results explaining the potential of our approach. In addition, we explain the generality of our approach by showing its possible use as a visualization tool for data obtained from diverse domains, such as Public Administration and Education.Keywords: Computational Geometry, Education, e-Governance, Semantic Web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17639473 A Nonoblivious Image Watermarking System Based on Singular Value Decomposition and Texture Segmentation
Authors: Soroosh Rezazadeh, Mehran Yazdi
Abstract:
In this paper, a robust digital image watermarking scheme for copyright protection applications using the singular value decomposition (SVD) is proposed. In this scheme, an entropy masking model has been applied on the host image for the texture segmentation. Moreover, the local luminance and textures of the host image are considered for watermark embedding procedure to increase the robustness of the watermarking scheme. In contrast to all existing SVD-based watermarking systems that have been designed to embed visual watermarks, our system uses a pseudo-random sequence as a watermark. We have tested the performance of our method using a wide variety of image processing attacks on different test images. A comparison is made between the results of our proposed algorithm with those of a wavelet-based method to demonstrate the superior performance of our algorithm.Keywords: Watermarking, copyright protection, singular value decomposition, entropy masking, texture segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17699472 An Anonymity-Based Secure On-Demand Routing for Mobile Ad Hoc Networks
Authors: M. Gunasekaran, K. Premalatha
Abstract:
Privacy and Security have emerged as an important research issue in Mobile Ad Hoc Networks (MANET) due to its unique nature such as scarce of resources and absence of centralized authority. There are number of protocols have been proposed to provide privacy and security for data communication in an adverse environment, but those protocols are compromised in many ways by the attackers. The concept of anonymity (in terms of unlinkability and unobservability) and pseudonymity has been introduced in this paper to ensure privacy and security. In this paper, a Secure Onion Throat (SOT) protocol is proposed to provide complete anonymity in an adverse environment. The SOT protocol is designed based on the combination of group signature and onion routing with ID-based encryption for route discovery. The security analysis demonstrates the performance of SOT protocol against all categories of attacks. The simulation results ensure the necessity and importance of the proposed SOT protocol in achieving such anonymity.
Keywords: Routing, anonymity, privacy, security and MANET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27499471 Examining of Tool Wear in Cryogenic Machining of Cobalt-Based Haynes 25 Superalloy
Authors: Murat Sarıkaya, Abdulkadir Güllü
Abstract:
Haynes 25 alloy (also known as L-605 alloy) is cobalt based super alloy which has widely applications such as aerospace industry, turbine and furnace parts, power generators and heat exchangers and petroleum refining components due to its excellent characteristics. However, the workability of this alloy is more difficult compared to normal steels or even stainless. In present work, an experimental investigation was performed under cryogenic cooling to determine cutting tool wear patterns and obtain optimal cutting parameters in turning of cobalt based superalloy Haynes 25. In experiments, uncoated carbide tool was used and cutting speed (V) and feed rate (f) were considered as test parameters. Tool wear (VBmax) were measured for process performance indicators. Analysis of variance (ANOVA) was performed to determine the importance of machining parameters.Keywords: Cryogenic machining, difficult-to-cut alloy, tool wear, turning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27669470 Software Maintenance Severity Prediction with Soft Computing Approach
Authors: E. Ardil, Erdem Uçar, Parvinder S. Sandhu
Abstract:
As the majority of faults are found in a few of its modules so there is a need to investigate the modules that are affected severely as compared to other modules and proper maintenance need to be done on time especially for the critical applications. In this paper, we have explored the different predictor models to NASA-s public domain defect dataset coded in Perl programming language. Different machine learning algorithms belonging to the different learner categories of the WEKA project including Mamdani Based Fuzzy Inference System and Neuro-fuzzy based system have been evaluated for the modeling of maintenance severity or impact of fault severity. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The results show that Neuro-fuzzy based model provides relatively better prediction accuracy as compared to other models and hence, can be used for the maintenance severity prediction of the software.Keywords: Software Metrics, Fuzzy, Neuro-Fuzzy, SoftwareFaults, Accuracy, MAE, RMSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15909469 Texture Characterization Based on a Chandrasekhar Fast Adaptive Filter
Authors: Mounir Sayadi, Farhat Fnaiech
Abstract:
In the framework of adaptive parametric modelling of images, we propose in this paper a new technique based on the Chandrasekhar fast adaptive filter for texture characterization. An Auto-Regressive (AR) linear model of texture is obtained by scanning the image row by row and modelling this data with an adaptive Chandrasekhar linear filter. The characterization efficiency of the obtained model is compared with the model adapted with the Least Mean Square (LMS) 2-D adaptive algorithm and with the cooccurrence method features. The comparison criteria is based on the computation of a characterization degree using the ratio of "betweenclass" variances with respect to "within-class" variances of the estimated coefficients. Extensive experiments show that the coefficients estimated by the use of Chandrasekhar adaptive filter give better results in texture discrimination than those estimated by other algorithms, even in a noisy context.
Keywords: Texture analysis, statistical features, adaptive filters, Chandrasekhar algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16229468 Dual Construction of Stern-based Signature Scheme
Authors: Pierre-Louis Cayrel, Sidi Mohamed El Yousfi Alaoui
Abstract:
In this paper, we propose a dual version of the first threshold ring signature scheme based on error-correcting code proposed by Aguilar et. al in [1]. Our scheme uses an improvement of Véron zero-knowledge identification scheme, which provide smaller public and private key sizes and better computation complexity than the Stern one. This scheme is secure in the random oracle model.Keywords: Stern algorithm, Véron algorithm, threshold ring signature, post-quantum cryptography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18119467 Weight Functions for Signal Reconstruction Based On Level Crossings
Authors: Nagesha, G. Hemantha Kumar
Abstract:
Although the level crossing concept has been the subject of intensive investigation over the last few years, certain problems of great interest remain unsolved. One of these concern is distribution of threshold levels. This paper presents a new threshold level allocation schemes for level crossing based on nonuniform sampling. Intuitively, it is more reasonable if the information rich regions of the signal are sampled finer and those with sparse information are sampled coarser. To achieve this objective, we propose non-linear quantization functions which dynamically assign the number of quantization levels depending on the importance of the given amplitude range. Two new approaches to determine the importance of the given amplitude segment are presented. The proposed methods are based on exponential and logarithmic functions. Various aspects of proposed techniques are discussed and experimentally validated. Its efficacy is investigated by comparison with uniform sampling.
Keywords: speech signals, sampling, signal reconstruction, asynchronousdelta modulation, non-linear quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16569466 Fracture Pressure Predict Based on Well Logs of Depleted Reservoir in Southern Iraqi Oilfield
Authors: Raed H. Allawi
Abstract:
Fracture pressure is the main parameter applied in wells design and used to avoid drilling problems like lost circulation. Thus, this study aims to predict the fracture pressure of oil reservoirs in the southern Iraq Oilfield. The data required to implement this study included bulk density, compression wave velocity, gamma-ray, and leak-off test. In addition, this model is based on the pore pressure which is measured based on the Modular Formation Dynamics Tester (MDT). Many measured values of pore pressure were used to validate the accurate model. Using sonic velocity approaches, the mean absolute percentage error (MAPE) was about 4%. The fracture pressure results were consistent with the measurement data, actual drilling report, and events. The model's results will be a guide for successful drilling in future wells in the same oilfield.
Keywords: Pore pressure, fracture pressure, overburden pressure, effective stress, drilling events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039465 An Empirical Mode Decomposition Based Method for Action Potential Detection in Neural Raw Data
Authors: Sajjad Farashi, Mohammadjavad Abolhassani, Mostafa Taghavi Kani
Abstract:
Information in the nervous system is coded as firing patterns of electrical signals called action potential or spike so an essential step in analysis of neural mechanism is detection of action potentials embedded in the neural data. There are several methods proposed in the literature for such a purpose. In this paper a novel method based on empirical mode decomposition (EMD) has been developed. EMD is a decomposition method that extracts oscillations with different frequency range in a waveform. The method is adaptive and no a-priori knowledge about data or parameter adjusting is needed in it. The results for simulated data indicate that proposed method is comparable with wavelet based methods for spike detection. For neural signals with signal-to-noise ratio near 3 proposed methods is capable to detect more than 95% of action potentials accurately.
Keywords: EMD, neural data processing, spike detection, wavelet decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23819464 The Influence of Project-Based Learning and Outcome-Based Education: Interior Design Tertiary Students in Focus
Authors: Omneya Messallam
Abstract:
Technology has been developed dramatically in most of the educational disciplines. For instance, digital rendering subject, which is being taught in both Interior and Architecture fields, is witnessing almost annually updated software versions. A lot of students and educators argued that there will be no need for manual rendering techniques to be learned. Therefore, the Interior Design Visual Presentation 1 course (ID133) has been chosen from the first level of the Interior Design (ID) undergraduate program, as it has been taught for six years continually. This time frame will facilitate sound observation and critical analysis of the use of appropriate teaching methodologies. Furthermore, the researcher believes in the high value of the manual rendering techniques. The course objectives are: to define the basic visual rendering principles, to recall theories and uses of various types of colours and hatches, to raise the learners’ awareness of the value of studying manual render techniques, and to prepare them to present their work professionally. The students are female Arab learners aged between 17 and 20. At the outset of the course, the majority of them demonstrated negative attitude, lacking both motivation and confidence in manual rendering skills. This paper is a reflective appraisal of deploying two student-centred teaching pedagogies which are: Project-based learning (PBL) and Outcome-based education (OBE) on ID133 students. This research aims of developing some teaching strategies to enhance the quality of teaching in this given course over an academic semester. The outcome of this research emphasized the positive influence of applying such educational methods on improving the quality of students’ manual rendering skills in terms of: materials, textiles, textures, lighting, and shade and shadow. Furthermore, it greatly motivated the students and raised the awareness of the importance of learning the manual rendering techniques.
Keywords: Manual renders, outcome-based education, project-based learning, personal competences, and visual presentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855