

Abstract—Business process automation is an important task in an
enterprise business environment software development. The
requirements of processing acceleration and automation level of
enterprises are inherently different from one organization to another.
We present a methodology and system for automation of business
process management system architecture by multi-agent collaboration
based on SOA. Design layer processes are modeled in semantic
markup language for web services application. At the core of our
system is considering certain types of human tasks to their further
automation across over multiple platform environments. An
improved abnormality processing with model for automation of
BPMS architecture by multi-agent collaboration based on SOA is
introduced. Validating system for efficiency of process automation,
an application for educational knowledge base instance would also be
described.

Keywords—Business process management system, business
process automation, multi-agent collaboration, Service Oriented
Architecture, extensible service application

I. INTRODUCTION
HERE are several requirements and changes ever
occurring in various enterprise business environment.

Those requirements and changes make business process
enterprise required to be sufficient efficiency, seamless
effectiveness and loosely coupled comprehensively.
 A SOA based BPMS, normally, is that services providers
provide satisfiable services to service requesters. BPMS
should be perfectly arranged several services with different
task for various service requesters. WS-BPEL is predominant
one for orchestration of web service implementation for
BPMS, which could automate tasks or enable integration for
required business process. For optimizing business process,
BPMS use incremental manner and reorganizes basic services.
Therefore, the BPMS would provide converting rigid and
isolated applications and data into flexible and deployable
component for interactive collaborating between business
processes and main system [1]-[2].
 Agent-Oriented Programming (AOP) is a relatively new
software paradigm that brings concepts from the theories of
artificial intelligence into the mainstream realm of distributed
systems. AOP essentially models an application as a collection
of components called agents that are characterized by, among
other things, autonomy, proactivity and ability for distributed
communication.
 JADE (Java Agent DEvelopment Framework) is a software
framework of fully implemented in Java programming
language. It simplifies the complex implementation of multi-

agent systems through a middle-ware that through a set of
graphical tools that supports the debugging and deployment
phases. The agent platform can be distributed across machines
(without sharing the same OS) and the configuration can be
controlled via a remote GUI. The configuration can be even
changed at run-time by moving agents from one machine to
another one, as and when required [4].
 We use ontology as a means of enabling human task
support and automation in model. Enabling communication
and knowledge sharing by capturing a shared understanding of
terms that can be both by humans and by programs would by
defined by ontology [8], as DAML, CGs, OIL, DAML+OIL,
and OWL [7]-[9]. Multi-attribute decision-making is also
important topic for BPMS since decades [10]. Different
human task owners are represented by agents and a multi-
agent system (MAS) is a system composed of cooperative or
competitive agents that interact with one another in order to
achieve individual or common goals [11], Implementation of
Web services with agent technology, in order to realize
complex interaction and coordination of services [12]-[13].
 Multi-agent collaborating for making enterprise business
processes more efficient and enterprise IT framework more
nimble, we focused our business process automation model by
configuring our paper with the following parts, abstract of
paper, brief introduction of technically requirements and
related works, fundamental aspect of SOA based BPMS [6],
internal infrastructure and overview of model, an application
of model in technically and process automation aspect,
conclusion for this paper and references, which we prepared
for this paper.

II. SOA BASED BPMS
Process automation, faster transition and well-behaved

environment are fundamental intension of BPMS. It does not
code itself for business process information and rules into
application directly, but separates them from application
systems and places it under the control of enterprise system
[3]. It would also a great advantageous for any environment
either familiar with technology as developer or graphical users
to create, manage, deploy and optimize process through the
back-end functions supported by SOA. There are four parts in
the model for interacting, processing, managing and exception
handling for the system.

A. Interactive Layer
The layer for interconnection of the whole system, which

Soe Winn, May Thwe Oo

Multi-Agent Model for Automation of Business
Process Management System Based on Service

Oriented Architecture

T

World Academy of Science, Engineering and Technology
International Journal of Industrial and Systems Engineering

 Vol:5, No:2, 2011

136International Scholarly and Scientific Research & Innovation 5(2) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 S

ys
te

m
s

E
ng

in
ee

ri
ng

 V
ol

:5
, N

o:
2,

 2
01

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
50

76
.p

df

describe product reviewing, resources exploring, online
shopping, business directory searching, process monitoring,
performance managing and personal information identifying,
and so on.

B. Processing Layer
Mandatory layer of the business process management

system and it implement all require processes for workflow
process management, process querying, level investigating,
transmission controlling and task assigning.

C. Data Management Layer
Database resources for require libraries are included in data

management layer. It undertakes resources managing,
exception library handling and updating unpredictable
exception after exception description.

D. Process of Abnormality Processing
To improve the exception occurrence events of system,

exception-handling mechanism based on processing abnormal
library would be integrated for the lacks of the ability of
security accuracy and reliability standard.

Fig. 1 process of abnormality processing

Most of BPMS that handle simultaneous processes and
processing failure in distribution and heterogeneous
environment have being experienced vulnerability of seamless
processing. Principle of similarity match and reusing past
experience action of multi-agent model would improve
adjusting the execution process of the system.

III. INTERNAL INFRASTRUCTURE AND OVERVIEW OF
PROPOSED MODEL

The internal infrastructure of the proposed model was
included four mandatory parts. They are:

A. Task description and managing,
B. Business process controller,
C. Rule definition and verification, and
D. Updating response and exception.
A. Task Description and Managing
Task description is for instantiating process and performing

specific tasks of the process. BPEL processor perform the
require actions for tasks and module creation, executing and
process of BPEL workflow instances. All of the task
description and managing in the proposed model are handled

in workflow engine which provide either executing
environment for workflow processes or scheduling and
allocating internal or external enterprise resources during the
operation of business process executing. Therefore the
sufficient efficiency and execution performance of BPMS are
being improved by the effective efficiency and reliability of
workflow engine.

B. Business Process Controller
Workflow models need to be in line with business process

models that capture the operational business processes [14].
Engine controller is the control center and core part of
business process model. The business process model
controller make the explanation of the definition of process,
creation process instance and controls its executing,
scheduling various types activities, adds work item into
worksheet for customer and calls application through
application programming interface and those stand for its
functions.

The procedure of business process model are receiving
request of controlling business process from external interface
and transfer different types of requests to corresponding
modules and return results by schedule centre while task
management is responsible for task creating, task state
transforming and data maintaining under the control of it.
Task management will be triggered to construct a new pended
instance for subsequent activity when a task is finished. At the
same time, other external request can also use task
management module to switch tasks' state. Task assignment
selects a group of staff who can execute the task accord to the
basis of assign principle firstly and then make sure which
individual in the group can execute the task and marked it
according to assign plan. At last the marked individual will be
recorded in the field of corresponding record. Dependence
examine module examines pre-dependence of activities.
Schedule centre will examine pre-dependence before a task
switched into ready state, and only those tasks satisfying the
examining condition can be switched. Transmit control
module works according to back-regulation, which defines
relationship between current activities and follow-up activities
defined in business process model. Start control module
control the starting of a task and monitor the tasks' state.

C. Rule Definition and Verification
Rule engine activates business rule and executes proper

operation according to the logic in business rule. The
operation of rule controller is as follow:

1. Rule Definition Process

The initial state is unverified and not tested when a new
business rule is defined and set ‘0’ rule state. Rule state set as

TABLE I
STATE OF RULE VERIFICATION

State Verification Testing Result

0 unverified no tested
1 verified no tested

2 verified tested pass

World Academy of Science, Engineering and Technology
International Journal of Industrial and Systems Engineering

 Vol:5, No:2, 2011

137International Scholarly and Scientific Research & Innovation 5(2) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 S

ys
te

m
s

E
ng

in
ee

ri
ng

 V
ol

:5
, N

o:
2,

 2
01

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
50

76
.p

df

‘1’ when rules are set verified and not tested to business rule
management system by rule analyze and verify module if
validated. Validated rules are set as ‘2’ after tested by rule test
module at rule test engine and saved into XML rule library.

2. Process of rule triggering
BPMS encapsulate requiring date of business rule into

validated format and transport it into business rule engine
through data interface. Business rule matches data and put
them into executing array of rule engine if satisfy. The rule
was activated from executing array by executing engine and
could be processed its features through the rule monitor.

3. Authority setting
Hence the security of business rule is one of the significant

components of any control system of enterprise business, the
different level of authority would be set. Users define a new
business rule or implement current business rule by using
authority of business rule defining and realizing for entering
the visualization of rule-defined platform. Authority of
triggering a business rule was examined by triggering node
respectively.

D. Updating Response and Exception
Most of BPMS at heterogeneous environment have security

vulnerability for guarantee accuracy and reliability when
operating simultaneous process or processing failure.

Therefore, an exception handling mechanism based on
processing abnormal library was presented in the model.

When the system encounters an exception, exception class
would be automatically defined by exception handling
mechanism based on processing abnormal library. Exception
class was put forward according to case-based reasoning for
exception verification. Post exception class would be defined
unless verification would support properly process execution
in accordance with the principle of similarity match by past
experience and predefined exception. Otherwise, a new rule of
the process will be defined to handle the abnormal exception
based on the exception handling mechanism by operational
way of defining similarity. Therefore, process execution
procedure according to exception library of abnormality
processing system would be preferred and exception handling
mechanism update the exception class to process abnormal
library for making further exception handling smoothness of
better intelligent BPMS.

 At business scenario, internal or external clients would
initialize the services, which are described by automatic
service description. Task execution management would
prepare the services, which are put forward by service
description for matching and ruling process in rule engine and
business process controller. The agents implement process,

Fig. 2 overview of the model

World Academy of Science, Engineering and Technology
International Journal of Industrial and Systems Engineering

 Vol:5, No:2, 2011

138International Scholarly and Scientific Research & Innovation 5(2) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 S

ys
te

m
s

E
ng

in
ee

ri
ng

 V
ol

:5
, N

o:
2,

 2
01

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
50

76
.p

df

which was verified and tested by rule definition, and make
execution of the process. The process the agents created would
be interactive layer again and human task or automation task
of decision-making is directly going to response to business
process management system. The process would define for
further process and library from database management layer
will update automatically. The new process with new rule
would be implemented by agents and described for brokers or
agents, which have more available resources or environment.
Interactive layer was responded several levels of resources by
business process controller and library of resources are
updated for references for further processing. During the
process, exception library is occasionally updated by process
of abnormality and process would be forwarded for seamless
execution.

IV. AN EXTENSIBLE DICTIONARY APPLICATION OF MODEL
We would like to consider an instance scenario. Several

dictionary applications are available around as. Most of them
are just simple dictionaries and for every day use only.
Another difficulty is we have to wait until new version release
for what we could not find in old version, but it is also not the
solution what difficulty we are facing for. Moreover, we could
rarely see perfect technical dictionary or computer dictionary
in specific language with advantageous of extensible,
updatable or so. Literally, creating dictionary thing is really
time consuming and several discussion needed work.
Extensible dictionary is one that you can extend easily without
modifying its original code base. We could enhance its
functionality with new plug-ins or modules.

 Developers, software vendors, and even customers can add
new functionality or application programming interfaces
(APIs) by simply adding new extension application onto the
application-specific extension directory. By designing an
extensible dictionary application, which allows you or others
to provide service implementations that require no
modifications to the original application, we provide an easy
way to upgrade or enhance specific parts of a dictionary

without changing the core application. Therefore, the general
purpose of the extensible dictionary is that making available
any specific dictionary of any specific language by providing
open source extensible process management framework for
every environment.

For this purpose the overall process of extensible dictionary
application process management system is show in figure 3
and the implementation program of the workflow can be
configure as follow.
<process:CompositeProcess rdf:ID="Extensible_Dictionary">
 <process:composedOf>
 <process:sequence>
 <process:components rdf:parseType="Collection">
 <process:AtomicProcess rdf:about="#Search_IF_Available"/>
 <process:AtomicProcess rdf:about="#Search_IF_NotAvailable"/>
 <process:AtomicProcess
 rdf:about="#Search_IF_NotAvailable_Ask"/>
 <process:AtomicProcess rdf:about="#Show_Definition"/>
 </process:components>
 </process:sequence>
 </process:composedOf>
</process:CompositeProcess>

<process:AtomicProcess rdf:ID="Search_IF_Available">
 <process:hasInput rdf:resource="#WordName"/>
 <process:hasInput rdf:resource="#WordType"/>
 <process:hadInput rdf:resource="#WordCategory"/>
 <process:hasInput rdf:resource="#DateOfUpdate"/>
 <process:hasInput rdf:resource="#ProcessLog"/>
</process:AtomicProcess>

<process:Input rdf:ID="#WordName">
 <process:parameterType rdf:resource="&concepts;#Name"/>
</process:Input>
<process:Input rdf:ID="#WordType">
 <process:parameterType rdf:resource="&concepts;#Type"/>
</process:Input>
<process:Input rdf:ID="#WordCategory">
 <process:parameterType rdf:resource="&concepts;#Category"/>
</process:Input>
<process:Input rdf:ID="#DateOfUpdate_In">
 <process:parameterType rdf:resource="&concepts;#Date"/>
</process:Input>
<process:UnConditionalEffect rdf:ID="#ProcessLog">
 <process:ceEffect rdf:resource="&concepts;#Log"/>
</process:UnConditionalEffect>

<process:AtomicProcess rdf:ID="Show_Definition">
 <process:hasInput rdf:resource="#setDefinition"/>
 <process:hadOutput rdf:resource="#getDefinition"/>
</process:AtomicProcess>

<process:Input rdf:ID="setDefinition">
 <process:parameterType rdf:resource="&concepts;#Definition"/>
</process:Input>
<process:Output rdf:ID="getDefinition">
 <process:parameterType rdf:resource="&concepts;#Definition"/>
</process:Output>
<process:UnConditionalEffect rdf:ID="ProcessLog">
 <process:ceEffect rdf:resource="&concepts;#Log"/>
</process:UnConditionalEffect>

The preceding program is showing process structure and a
situation for normal searching. All of the processes have their
own ID like “Search_IF_Available” for normal searching
situation, “Search_IF_NotAvailable” for retriving available
similar resources and “Search_IF_NotAvailable _Ask” for
updating by end user.

Fig. 3 process management flow layout

World Academy of Science, Engineering and Technology
International Journal of Industrial and Systems Engineering

 Vol:5, No:2, 2011

139International Scholarly and Scientific Research & Innovation 5(2) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 S

ys
te

m
s

E
ng

in
ee

ri
ng

 V
ol

:5
, N

o:
2,

 2
01

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
50

76
.p

df

Let’s assume we have a process for normal searching, all of
the service on process was instantiated and retrieved available
result from relational database. The process would be update
for further new process at the end of the process. Process Log
would be thrown if the process occurs exceptions and system
will update again.

Therefore, the process structures for another two
“NotAvailable” situation would be like the following program.
<process:CompositeProcess rdf:ID="Extensible_Dictionary">
 <process:composedOf>
 <process:Sequence>
 <process:components rdf:parseType="Collection">
 <process:AtomicProcess rdf:about="#Search_IF_Available"/>
 <process:AtomicProcess
 rdf:about="#Search_IF_NotAvailable"/>
 <process:AtomicProcess
 rdf:about="#Search_IF_NotAvailable_Ask"/>
 <process:AtomicProcess rdf:about="#Show_Definition"/>
 </process:components>
 </process:Sequence>
 </process:composedOf>
</process:CompositeProcess>

<process:AtomicProcess rdf:ID="Search_IF_NotAvailable">
 <process:hasInput rdf:resource="#WordName_Get"/>
 <process:hasInput rdf:resource="#WordType_Get"/>
 <process:hasInput rdf:resource="#WordCategory_Get"/>
 <process:hasInput rdf:resource="#DateOfUpdate"/>
 <process:hasInput rdf:resource="#ProcessLog"/>
</process:AtomicProcess>

<process:Input rdf:ID="WordName_Get">
 <process:parameterType rdf:resource="&concepts;#getName"/>
</process:Input>
<process:Input rdf:ID="WordType_Get">

 <process:parameterType rdf:resource="&concepts;#getType"/>
</process:Input>
<process:Input rdf:ID="WordCategory_Get">
 <process:parameterType rdf:resource="&concepts;#getCategory"/>
</process:Input>
<process:Input rdf:ID="DateOfUpdate_Get">
 <process:parameterType rdf:resource="&concepts;#Date"/>
</process:Input>

<process:UnConditionalEffect rdf:ID="ProcessLog">
 <process:ceEffect rdf:resource="&concepts;#Log"/>
</process:UnConditionalEffect>

<process:AtomicProcess rdf:ID="Search_IF_NotAvailable_Ask">
 <process:hasInput rdf:resource="#WordName_In"/>
 <process:hasInput rdf:resource="#WordType_In"/>
 <process:hasInput rdf:resource="#WordCategory_In"/>
 <process:hasInput rdf:resource="#DateOfUpdate"/>
 <process:hasInput rdf:resource="#ProcessLog"/>
</process:AtomicProcess>

<process:Input rdf:ID="WordName_In">
 <process:parameterType rdf:resource="&concepts;#InName"/>
</process:Input>
<process:Input rdf:ID="WordType_In">
 <process:parameterType rdf:resource="&concepts;#InType"/>
</process:Input>
<process:Input rdf:ID="WordCategory_In">
 <process:parameterType rdf:resource="&concepts;#InCategory"/>
</process:Input>
<process:Input rdf:ID="DateOfUpdate_In">
 <process:parameterType rdf:resource="&concepts;#InDate"/>
</process:Input>

<process:UnConditionalEffect rdf:ID="ProcessLog">
 <process:ceEffect rdf:resource="&concepts;#Log"/>
</process:UnConditionalEffect>

<process:AtomicProcess rdf:ID="Show_Definition">

Fig. 4.service creation module

Fig. 5 Integration of Extensible Module

World Academy of Science, Engineering and Technology
International Journal of Industrial and Systems Engineering

 Vol:5, No:2, 2011

140International Scholarly and Scientific Research & Innovation 5(2) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 S

ys
te

m
s

E
ng

in
ee

ri
ng

 V
ol

:5
, N

o:
2,

 2
01

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
50

76
.p

df

 <process:hasInput rdf:resource="#setDefinition"/>
 <process:hasOutput rdf:resource="#getDefinition"/>
</process:AtomicProcess>

<process:Input rdf:ID="setDefinition">
 <process:parameterType rdf:resource="&concepts;#Definition"/>
</process:Input>
<process:UnConditionalEffect rdf:ID="getDefinition">
 <process:ceEfect rdf:resource="&concepts;#Definition"/>

</process:UnConditionalEffect>

As the preceding programs, the new process is further
mapped at the execution level once a process has done. New
web service for “NotAvailable”, means in relation database,
would be available. Once the translation of the process is
completed the process will again be ready and available for
execution and hence serving the client requests. It is the way
of our system maintains to keep loosely coupled environment.
There are also service loader class and dictionary provider
implementation sections we had left because out of scope of
the publication. However we got strong enough flow level
description and could make extension for any specific
dictionary of any specific language without modifying original
service and application.

V. CONCLUSION
In the era of automatic business transaction and IT based

enterprise solution exploring, many educational organizations
in industry and civilian government start deploying business
process management technology and systems with expecting
the dramatic operational efficiency improvement [5] on their
business and knowledge-based administrative environments.
SOA provides a good solution for business process
management and heterogeneous distributed environments. It
describes and deploys application by standard protocol and
interfaces. It makes enterprise application based on uniform
norm which conducive to the interaction between different
applications. BPMS is an enormous system, which concerns
the whole enterprise development strategy, operations and the
IT infrastructure, and it depends on enterprise and every IT
staff to build jointly. Although we tried at a good
concentration of BPMS and enterprise solution, we also
should a good care of security level of every transaction we
make. Therefore tightly security integration would be
considered for further BPMS integration arena.

REFERENCES
[1] MOORE J., “Business Process Management”, Chemical Engineering

Process, American, 2003, pp. 22-23.
[2] Gartner, Growing IT’s Contribution: The 2006 CIO Agenda, Garther

EXP, American, 2006.
[3] Dirk Krafzig, Karl Banke, Enterprise SOA -- The Best Practices of

Orienting Service Architecture, Tsinghua University Press, Beijing,
2006.

[4] Fabio Bellifemine, Giovanni Caire and Dominic Greenwood,
"Developing multi-agent systems with JADE", John Wiley & Sons, Ltd,
2007.

[5] Haeng-Kon Kim, Roger Y. Lee, Hae-Sool Yang, “Frameworks for
secured business process management systems”, Proceedings of the
Fourth International Conference on Software Engineering Research,
Management and Applications (SERA’06)

[6] Dan Luo, Jianghua Jiang, Buyun Sheng, Mingzhong Yang, “Research
on Business Process Management System Based on Service Oriented
Architecture”, 2008 IEEE.

[7] Ana Sasa, “A Model for Business Process Automation in Service
Oriented Systems with Knowledge Management Technologies”, 2010
IEEE 6th World Congress on Services

[8] L. F. Lai, "A knowledge engineering approach to knowledge
management," Information Sciences, Vol. 177, No. 19, Oct. 2007, pp.
4072-4094.

[9] (2009) W3C, OWL 2 Web Ontology Language Structural Specification
and Functional-Style Syntax, http://www.w3.org/TR/owl2-syntax.

[10] M. Bohanec and V. Rajkovič, "Multi-Attribute Decision Modeling:
Industrial Applications of DEX," Informatica, Vol. 23, No. 4, Oct. 1999,
pp. 487-491.

[11] B. Henderson-Sellers and P. Giorgini (Eds), Agent-oriented
Methodologies, Idea Group Inc., Hershey, PA, 2005, ch. P. Giorgini and
B. Henderson-Sellers, "Agent-Oriented Methodologies: An
Introduction."

[12] Y. Li, K-M Chao, M. Younas, Y. Huang, and X. Lu, "Modeling
emarketplaces with multi-agents Web services," In Proc. 11th Int. Conf.
on Parallel and Distributed Systems, Fukuoka, Japan, 2005, pp. 175-
181.

[13] T.I. Zhang and H. Jiang, "A Framework of Incorporating Software
Agents into SOA," In Proc. Artificial Intelligence and Soft Computing
(ASC 2005), Benidorm, Spain, 2005.

[14] “Business Process Management Architecture” pp. 305-343.

World Academy of Science, Engineering and Technology
International Journal of Industrial and Systems Engineering

 Vol:5, No:2, 2011

141International Scholarly and Scientific Research & Innovation 5(2) 2011 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 I
nd

us
tr

ia
l a

nd
 S

ys
te

m
s

E
ng

in
ee

ri
ng

 V
ol

:5
, N

o:
2,

 2
01

1
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
50

76
.p

df

