Search results for: theoretical discovery.
946 Mining Frequent Patterns with Functional Programming
Authors: Nittaya Kerdprasop, Kittisak Kerdprasop
Abstract:
Frequent patterns are patterns such as sets of features or items that appear in data frequently. Finding such frequent patterns has become an important data mining task because it reveals associations, correlations, and many other interesting relationships hidden in a dataset. Most of the proposed frequent pattern mining algorithms have been implemented with imperative programming languages such as C, Cµ, Java. The imperative paradigm is significantly inefficient when itemset is large and the frequent pattern is long. We suggest a high-level declarative style of programming using a functional language. Our supposition is that the problem of frequent pattern discovery can be efficiently and concisely implemented via a functional paradigm since pattern matching is a fundamental feature supported by most functional languages. Our frequent pattern mining implementation using the Haskell language confirms our hypothesis about conciseness of the program. The performance studies on speed and memory usage support our intuition on efficiency of functional language.Keywords: Association, frequent pattern mining, functionalprogramming, pattern matching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135945 An Anonymity-Based Secure On-Demand Routing for Mobile Ad Hoc Networks
Authors: M. Gunasekaran, K. Premalatha
Abstract:
Privacy and Security have emerged as an important research issue in Mobile Ad Hoc Networks (MANET) due to its unique nature such as scarce of resources and absence of centralized authority. There are number of protocols have been proposed to provide privacy and security for data communication in an adverse environment, but those protocols are compromised in many ways by the attackers. The concept of anonymity (in terms of unlinkability and unobservability) and pseudonymity has been introduced in this paper to ensure privacy and security. In this paper, a Secure Onion Throat (SOT) protocol is proposed to provide complete anonymity in an adverse environment. The SOT protocol is designed based on the combination of group signature and onion routing with ID-based encryption for route discovery. The security analysis demonstrates the performance of SOT protocol against all categories of attacks. The simulation results ensure the necessity and importance of the proposed SOT protocol in achieving such anonymity.
Keywords: Routing, anonymity, privacy, security and MANET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2740944 Knowledge Discovery and Data Mining Techniques in Textile Industry
Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler
Abstract:
This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.Keywords: Data mining, textile production, decision trees, classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538943 Influence of Concrete Cracking in the Tensile Strength of Cast-in Headed Anchors
Authors: W. Nataniel, B. Lima, J. Manoel, M. P. Filho, H. Marcos, Oliveira Mauricio, P. Ferreira
Abstract:
Headed reinforcement bars are increasingly used for anchorage in concrete structures. Applications include connections in composite steel-concrete structures, such as beam-column joints, in several strengthening situations as well as in more traditional uses in cast-in-place and precast structural systems. This paper investigates the reduction in the ultimate tensile capacity of embedded cast-in headed anchors due to concrete cracking. A series of nine laboratory tests are carried out to evaluate the influence of cracking on the concrete breakout strength in tension. The experimental results show that cracking affects both the resistance and load-slip response of the headed bar anchors. The strengths measured in these tests are compared to theoretical resistances calculated following the recommendations presented by fib Bulletin no. 58 (2011), ETAG 001 (2010) and ACI 318 (2014). The influences of parameters such as the effective embedment depth (hef), bar diameter (ds), and the concrete compressive strength (fc) are analysed and discussed. The theoretical recommendations are shown to be over-conservative for both embedment depths and were, in general, inaccurate in comparison to the experimental trends. The ACI 318 (2014) was the design code which presented the best performance regarding to the predictions of the ultimate load, with an average of 1.42 for the ratio between the experimental and estimated strengths, standard deviation of 0.36, and coefficient of variation equal to 0.25.
Keywords: Cast-in headed anchors, concrete cone failure, uncracked concrete, cracked concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 669942 Simulation of Hydrogenated Boron Nitride Nanotube’s Mechanical Properties for Radiation Shielding Applications
Authors: Joseph E. Estevez, Mahdi Ghazizadeh, James G. Ryan, Ajit D. Kelkar
Abstract:
Radiation shielding is an obstacle in long duration space exploration. Boron Nitride Nanotubes (BNNTs) have attracted attention as an additive to radiation shielding material due to B10’s large neutron capture cross section. The B10 has an effective neutron capture cross section suitable for low energy neutrons ranging from 10-5 to 104 eV and hydrogen is effective at slowing down high energy neutrons. Hydrogenated BNNTs are potentially an ideal nanofiller for radiation shielding composites. We use Molecular Dynamics (MD) Simulation via Material Studios Accelrys 6.0 to model the Young’s Modulus of Hydrogenated BNNTs. An extrapolation technique was employed to determine the Young’s Modulus due to the deformation of the nanostructure at its theoretical density. A linear regression was used to extrapolate the data to the theoretical density of 2.62g/cm3. Simulation data shows that the hydrogenated BNNTs will experience a 11% decrease in the Young’s Modulus for (6,6) BNNTs and 8.5% decrease for (8,8) BNNTs compared to non-hydrogenated BNNT’s. Hydrogenated BNNTs are a viable option as a nanofiller for radiation shielding nanocomposite materials for long range and long duration space exploration.
Keywords: Boron Nitride Nanotube, Radiation Shielding, Young Modulus, Atomistic Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6677941 Theoretical and Experimental Analysis of Hard Material Machining
Authors: Rajaram Kr. Gupta, Bhupendra Kumar, T. V. K. Gupta, D. S. Ramteke
Abstract:
Machining of hard materials is a recent technology for direct production of work-pieces. The primary challenge in machining these materials is selection of cutting tool inserts which facilitates an extended tool life and high-precision machining of the component. These materials are widely for making precision parts for the aerospace industry. Nickel-based alloys are typically used in extreme environment applications where a combination of strength, corrosion resistance and oxidation resistance material characteristics are required. The present paper reports the theoretical and experimental investigations carried out to understand the influence of machining parameters on the response parameters. Considering the basic machining parameters (speed, feed and depth of cut) a study has been conducted to observe their influence on material removal rate, surface roughness, cutting forces and corresponding tool wear. Experiments are designed and conducted with the help of Central Composite Rotatable Design technique. The results reveals that for a given range of process parameters, material removal rate is favorable for higher depths of cut and low feed rate for cutting forces. Low feed rates and high values of rotational speeds are suitable for better finish and higher tool life.
Keywords: Speed, feed, depth of cut, roughness, cutting force, flank wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974940 Discovery of Time Series Event Patterns based on Time Constraints from Textual Data
Authors: Shigeaki Sakurai, Ken Ueno, Ryohei Orihara
Abstract:
This paper proposes a method that discovers time series event patterns from textual data with time information. The patterns are composed of sequences of events and each event is extracted from the textual data, where an event is characteristic content included in the textual data such as a company name, an action, and an impression of a customer. The method introduces 7 types of time constraints based on the analysis of the textual data. The method also evaluates these constraints when the frequency of a time series event pattern is calculated. We can flexibly define the time constraints for interesting combinations of events and can discover valid time series event patterns which satisfy these conditions. The paper applies the method to daily business reports collected by a sales force automation system and verifies its effectiveness through numerical experiments.
Keywords: Text mining, sequential mining, time constraints, daily business reports.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488939 Knowledge Mining in Web-based Learning Environments
Authors: Nittaya Kerdprasop, Kittisak Kerdprasop
Abstract:
The state of the art in instructional design for computer-assisted learning has been strongly influenced by advances in information technology, Internet and Web-based systems. The emphasis of educational systems has shifted from training to learning. The course delivered has also been changed from large inflexible content to sequential small chunks of learning objects. The concepts of learning objects together with the advanced technologies of Web and communications support the reusability, interoperability, and accessibility design criteria currently exploited by most learning systems. These concepts enable just-in-time learning. We propose to extend theses design criteria further to include the learnability concept that will help adapting content to the needs of learners. The learnability concept offers a better personalization leading to the creation and delivery of course content more appropriate to performance and interest of each learner. In this paper we present a new framework of learning environments containing knowledge discovery as a tool to automatically learn patterns of learning behavior from learners' profiles and history.Keywords: Knowledge mining, Web-based learning, Learning environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786938 Incremental Mining of Shocking Association Patterns
Authors: Eiad Yafi, Ahmed Sultan Al-Hegami, M. A. Alam, Ranjit Biswas
Abstract:
Association rules are an important problem in data mining. Massively increasing volume of data in real life databases has motivated researchers to design novel and incremental algorithms for association rules mining. In this paper, we propose an incremental association rules mining algorithm that integrates shocking interestingness criterion during the process of building the model. A new interesting measure called shocking measure is introduced. One of the main features of the proposed approach is to capture the user background knowledge, which is monotonically augmented. The incremental model that reflects the changing data and the user beliefs is attractive in order to make the over all KDD process more effective and efficient. We implemented the proposed approach and experiment it with some public datasets and found the results quite promising.Keywords: Knowledge discovery in databases (KDD), Data mining, Incremental Association rules, Domain knowledge, Interestingness, Shocking rules (SHR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867937 Groebner Bases Computation in Boolean Rings is P-SPACE
Authors: Quoc-Nam Tran
Abstract:
The theory of Groebner Bases, which has recently been honored with the ACM Paris Kanellakis Theory and Practice Award, has become a crucial building block to computer algebra, and is widely used in science, engineering, and computer science. It is wellknown that Groebner bases computation is EXP-SPACE in a general polynomial ring setting. However, for many important applications in computer science such as satisfiability and automated verification of hardware and software, computations are performed in a Boolean ring. In this paper, we give an algorithm to show that Groebner bases computation is PSPACE in Boolean rings. We also show that with this discovery, the Groebner bases method can theoretically be as efficient as other methods for automated verification of hardware and software. Additionally, many useful and interesting properties of Groebner bases including the ability to efficiently convert the bases for different orders of variables making Groebner bases a promising method in automated verification.Keywords: Algorithm, Complexity, Groebner basis, Applications of Computer Science.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960936 Trust Based Energy Aware Reliable Reactive Protocol in Mobile Ad Hoc Networks
Authors: M. Pushpalatha, Revathi Venkataraman, T. Ramarao
Abstract:
Trust and Energy consumption is the most challenging issue in routing protocol design for Mobile ad hoc networks (MANETs), since mobile nodes are battery powered and nodes behaviour are unpredictable. Furthermore replacing and recharging batteries and making nodes co-operative is often impossible in critical environments like military applications. In this paper, we propose a trust based energy aware routing model in MANET. During route discovery, node with more trust and maximum energy capacity is selected as a router based on a parameter called 'Reliability'. Route request from the source is accepted by a node only if its reliability is high. Otherwise, the route request is discarded. This approach forms a reliable route from source to destination thus increasing network life time, improving energy utilization and decreasing number of packet loss during transmission.Keywords: Mobile Ad Hoc Networks, Trust, Energy, Reliability, AODV, TEA-AODV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2618935 Clustering Protein Sequences with Tailored General Regression Model Technique
Authors: G. Lavanya Devi, Allam Appa Rao, A. Damodaram, GR Sridhar, G. Jaya Suma
Abstract:
Cluster analysis divides data into groups that are meaningful, useful, or both. Analysis of biological data is creating a new generation of epidemiologic, prognostic, diagnostic and treatment modalities. Clustering of protein sequences is one of the current research topics in the field of computer science. Linear relation is valuable in rule discovery for a given data, such as if value X goes up 1, value Y will go down 3", etc. The classical linear regression models the linear relation of two sequences perfectly. However, if we need to cluster a large repository of protein sequences into groups where sequences have strong linear relationship with each other, it is prohibitively expensive to compare sequences one by one. In this paper, we propose a new technique named General Regression Model Technique Clustering Algorithm (GRMTCA) to benignly handle the problem of linear sequences clustering. GRMT gives a measure, GR*, to tell the degree of linearity of multiple sequences without having to compare each pair of them.Keywords: Clustering, General Regression Model, Protein Sequences, Similarity Measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567934 An Evaluation Model for Semantic Enablement of Virtual Research Environments
Authors: Tristan O'Neill, Trina Myers, Jarrod Trevathan
Abstract:
The Tropical Data Hub (TDH) is a virtual research environment that provides researchers with an e-research infrastructure to congregate significant tropical data sets for data reuse, integration, searching, and correlation. However, researchers often require data and metadata synthesis across disciplines for crossdomain analyses and knowledge discovery. A triplestore offers a semantic layer to achieve a more intelligent method of search to support the synthesis requirements by automating latent linkages in the data and metadata. Presently, the benchmarks to aid the decision of which triplestore is best suited for use in an application environment like the TDH are limited to performance. This paper describes a new evaluation tool developed to analyze both features and performance. The tool comprises a weighted decision matrix to evaluate the interoperability, functionality, performance, and support availability of a range of integrated and native triplestores to rank them according to requirements of the TDH.
Keywords: Virtual research environment, Semantic Web, performance analysis, tropical data hub.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783933 Multiple-Level Sequential Pattern Discovery from Customer Transaction Databases
Abstract:
Mining sequential patterns from large customer transaction databases has been recognized as a key research topic in database systems. However, the previous works more focused on mining sequential patterns at a single concept level. In this study, we introduced concept hierarchies into this problem and present several algorithms for discovering multiple-level sequential patterns based on the hierarchies. An experiment was conducted to assess the performance of the proposed algorithms. The performances of the algorithms were measured by the relative time spent on completing the mining tasks on two different datasets. The experimental results showed that the performance depends on the characteristics of the datasets and the pre-defined threshold of minimal support for each level of the concept hierarchy. Based on the experimental results, some suggestions were also given for how to select appropriate algorithm for a certain datasets.Keywords: Data Mining, Multiple-Level Sequential Pattern, Concept Hierarchy, Customer Transaction Database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454932 Multidimensional Visualization Tools for Analysis of Expression Data
Authors: Urska Cvek, Marjan Trutschl, Randolph Stone II, Zanobia Syed, John L. Clifford, Anita L. Sabichi
Abstract:
Expression data analysis is based mostly on the statistical approaches that are indispensable for the study of biological systems. Large amounts of multidimensional data resulting from the high-throughput technologies are not completely served by biostatistical techniques and are usually complemented with visual, knowledge discovery and other computational tools. In many cases, in biological systems we only speculate on the processes that are causing the changes, and it is the visual explorative analysis of data during which a hypothesis is formed. We would like to show the usability of multidimensional visualization tools and promote their use in life sciences. We survey and show some of the multidimensional visualization tools in the process of data exploration, such as parallel coordinates and radviz and we extend them by combining them with the self-organizing map algorithm. We use a time course data set of transitional cell carcinoma of the bladder in our examples. Analysis of data with these tools has the potential to uncover additional relationships and non-trivial structures.Keywords: microarrays, visualization, parallel coordinates, radviz, self-organizing maps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508931 Improving University Operations with Data Mining: Predicting Student Performance
Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević
Abstract:
The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.
Keywords: Data mining, knowledge discovery in databases, prediction models, student success.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539930 Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material
Authors: Mouna Hamed, Ammar B. Brahim
Abstract:
The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using Matlab computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times.Keywords: Thermal energy storage, phase change material, melting, solidification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126929 Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material
Authors: Mouna Hamed, Ammar B. Brahim
Abstract:
The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using MATLAB computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times.Keywords: Thermal energy storage, phase change material, melting, solidification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265928 Design, Analysis and Modeling of Dual Band Microstrip Loop Antenna Using Defective Ground Plane
Authors: R. Bansal, A. Jain, M. Kumar, R. S. Meena
Abstract:
Present wireless communication demands compact and intelligent devices with multitasking capabilities at affordable cost. The focus in the presented paper is on a dual band antenna for wireless communication with the capability of operating at two frequency bands with same structure. Two resonance frequencies are observed with the second operation band at 4.2GHz approximately three times the first resonance frequency at 1.5GHz. Structure is simple loop of microstrip line with characteristic impedance 50 ohms. The proposed antenna is designed using defective ground structure (DGS) and shows the nearly one third reductions in size as compared to without DGS. This antenna was simulated on electromagnetic (EM) simulation software and fabricated using microwave integrated circuit technique on RT-Duroid dielectric substrate (εr= 2.22) of thickness (H=15 mils). The designed antenna was tested on automatic network analyzer and shows the good agreement with simulated results. The proposed structure is modeled into an equivalent electrical circuit and simulated on circuit simulator. Subsequently, theoretical analysis was carried out and simulated. The simulated, measured, equivalent circuit response, and theoretical results shows good resemblance. The bands of operation draw many potential applications in today’s wireless communication.
Keywords: Defective Ground plane, Dual band, Loop Antenna, Microstrip antenna, Resonance frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3770927 Parallel and Distributed Mining of Association Rule on Knowledge Grid
Authors: U. Sakthi, R. Hemalatha, R. S. Bhuvaneswaran
Abstract:
In Virtual organization, Knowledge Discovery (KD) service contains distributed data resources and computing grid nodes. Computational grid is integrated with data grid to form Knowledge Grid, which implements Apriori algorithm for mining association rule on grid network. This paper describes development of parallel and distributed version of Apriori algorithm on Globus Toolkit using Message Passing Interface extended with Grid Services (MPICHG2). The creation of Knowledge Grid on top of data and computational grid is to support decision making in real time applications. In this paper, the case study describes design and implementation of local and global mining of frequent item sets. The experiments were conducted on different configurations of grid network and computation time was recorded for each operation. We analyzed our result with various grid configurations and it shows speedup of computation time is almost superlinear.Keywords: Association rule, Grid computing, Knowledge grid, Mobility prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181926 A Decision Matrix for the Evaluation of Triplestores for Use in a Virtual Research Environment
Authors: Tristan O’Neill, Trina Myers, Jarrod Trevathan
Abstract:
The Tropical Data Hub (TDH) is a virtual research environment that provides researchers with an e-research infrastructure to congregate significant tropical data sets for data reuse, integration, searching, and correlation. However, researchers often require data and metadata synthesis across disciplines for cross-domain analyses and knowledge discovery. A triplestore offers a semantic layer to achieve a more intelligent method of search to support the synthesis requirements by automating latent linkages in the data and metadata. Presently, the benchmarks to aid the decision of which triplestore is best suited for use in an application environment like the TDH are limited to performance. This paper describes a new evaluation tool developed to analyze both features and performance. The tool comprises a weighted decision matrix to evaluate the interoperability, functionality, performance, and support availability of a range of integrated and native triplestores to rank them according to requirements of the TDH.
Keywords: Virtual research environment, Semantic Web, performance analysis, tropical data hub.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704925 Characterization of InGaAsP/InP Quantum Well Lasers
Authors: K. Melouk, M. Dellakrachai
Abstract:
Analytical formula for the optical gain based on a simple parabolic-band by introducing theoretical expressions for the quantized energy is presented. The model used in this treatment take into account the effects of intraband relaxation. It is shown, as a result, that the gain for the TE mode is larger than that for TM mode and the presence of acceptor impurity increase the peak gain.Keywords: Laser, quantum well, semiconductor, InGaAsP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148924 Social Relation between the Malays and Chinese Communities from a Civilizational Perspectives
Authors: Wan Norhasniah Wan Husin, Mohd Ridhuan Tee Abdullah
Abstract:
Towards the end of 19th century, the discovery of tin and the growing importance of rubber, had led Malaya to once again become the centre of attraction to western colonization, which later on caused the region to be influxed by cheap labour from China and India. One of the factors which attracted the alien communities was the characteristics of social relation offered by the Malays. If one analyzes the history of social relation of the Malays either among themselves or their relation with alien communities, it is apparent that the community places high regards to values such as tolerant, cooperative, respectful and helpful with each other. In fact, all these values are deeply rooted in the value of 'budi'. With the arrival of Islam, the value of 'budi' had been well assimilated with Islamic values thus giving birth to the value of 'budi-Islam'. Through 'budi- Islam', the Malay conducted their dealings with British as well the other communities during the time of peace or conflict. This value is well nurtured due to the geographical circumstances like the fertile, naturally rich land and bountiful marine life. Besides, a set of Malay customs known as 'adat' custom contributed in enhancing the values of budi.Keywords: Adat System, budi and Islam, Chinese community, Malay community
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235923 Summarizing Data Sets for Data Mining by Using Statistical Methods in Coastal Engineering
Authors: Yunus Doğan, Ahmet Durap
Abstract:
Coastal regions are the one of the most commonly used places by the natural balance and the growing population. In coastal engineering, the most valuable data is wave behaviors. The amount of this data becomes very big because of observations that take place for periods of hours, days and months. In this study, some statistical methods such as the wave spectrum analysis methods and the standard statistical methods have been used. The goal of this study is the discovery profiles of the different coast areas by using these statistical methods, and thus, obtaining an instance based data set from the big data to analysis by using data mining algorithms. In the experimental studies, the six sample data sets about the wave behaviors obtained by 20 minutes of observations from Mersin Bay in Turkey and converted to an instance based form, while different clustering techniques in data mining algorithms were used to discover similar coastal places. Moreover, this study discusses that this summarization approach can be used in other branches collecting big data such as medicine.
Keywords: Clustering algorithms, coastal engineering, data mining, data summarization, statistical methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244922 Deep Web Content Mining
Authors: Shohreh Ajoudanian, Mohammad Davarpanah Jazi
Abstract:
The rapid expansion of the web is causing the constant growth of information, leading to several problems such as increased difficulty of extracting potentially useful knowledge. Web content mining confronts this problem gathering explicit information from different web sites for its access and knowledge discovery. Query interfaces of web databases share common building blocks. After extracting information with parsing approach, we use a new data mining algorithm to match a large number of schemas in databases at a time. Using this algorithm increases the speed of information matching. In addition, instead of simple 1:1 matching, they do complex (m:n) matching between query interfaces. In this paper we present a novel correlation mining algorithm that matches correlated attributes with smaller cost. This algorithm uses Jaccard measure to distinguish positive and negative correlated attributes. After that, system matches the user query with different query interfaces in special domain and finally chooses the nearest query interface with user query to answer to it.Keywords: Content mining, complex matching, correlation mining, information extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278921 W3-Miner: Mining Weighted Frequent Subtree Patterns in a Collection of Trees
Authors: R. AliMohammadzadeh, M. Haghir Chehreghani, A. Zarnani, M. Rahgozar
Abstract:
Mining frequent tree patterns have many useful applications in XML mining, bioinformatics, network routing, etc. Most of the frequent subtree mining algorithms (i.e. FREQT, TreeMiner and CMTreeMiner) use anti-monotone property in the phase of candidate subtree generation. However, none of these algorithms have verified the correctness of this property in tree structured data. In this research it is shown that anti-monotonicity does not generally hold, when using weighed support in tree pattern discovery. As a result, tree mining algorithms that are based on this property would probably miss some of the valid frequent subtree patterns in a collection of trees. In this paper, we investigate the correctness of anti-monotone property for the problem of weighted frequent subtree mining. In addition we propose W3-Miner, a new algorithm for full extraction of frequent subtrees. The experimental results confirm that W3-Miner finds some frequent subtrees that the previously proposed algorithms are not able to discover.Keywords: Semi-Structured Data Mining, Anti-Monotone Property, Trees.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381920 Being a Lay Partner in Jesuit Higher Education in the Philippines: A Grounded Theory Application
Authors: Janet B. Badong-Badilla
Abstract:
In Jesuit universities, laypersons, who come from the same or different faith backgrounds or traditions, are considered as collaborators in mission. The Jesuits themselves support the contributions of the lay partners in realizing the mission of the Society of Jesus and recognize the important role that they play in education. This study aims to investigate and generate particular notions and understandings of lived experiences of being a lay partner in Jesuit universities in the Philippines, particularly those involved in higher education. Using the qualitative approach as introduced by grounded theorist Barney Glaser, the lay partners’ concept of being a partner, as lived in higher education, is generated systematically from the data collected in the field primarily through in-depth interviews, field notes and observations. Glaser’s constant comparative method of analysis of data is used going through the phases of open coding, theoretical coding, and selective coding from memoing to theoretical sampling to sorting and then writing. In this study, Glaser’s grounded theory as a methodology will provide a substantial insight into and articulation of the layperson’s actual experience of being a partner of the Jesuits in education. Such articulation provides a phenomenological approach or framework to an understanding of the meaning and core characteristics of Jesuit-Lay partnership in Jesuit educational institution of higher learning in the country. This study is expected to provide a framework or model for lay partnership in academic institutions that have the same practice of having lay partners in mission.Keywords: Grounded theory, Jesuit mission in higher education, lay partner, lived experience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1069919 Obfuscation Studio Executive
Authors: Siarhei Petryk, Vyacheslav Yarmolik
Abstract:
New software protection product called “Obfuscation Studio" is presented in the paper. Several obfuscating modules that are already implemented are described. Some theoretical data is presented, that shows the potency and effectiveness of described obfuscation methods. “Obfuscation Studio" is being implemented for protecting programs written for .NET platform, but the described methods can also be interesting for other applications.Keywords: Coupling, obfuscation, predicates, renaming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180918 Unsupervised Clustering Methods for Identifying Rare Events in Anomaly Detection
Authors: Witcha Chimphlee, Abdul Hanan Abdullah, Mohd Noor Md Sap, Siriporn Chimphlee, Surat Srinoy
Abstract:
It is important problems to increase the detection rates and reduce false positive rates in Intrusion Detection System (IDS). Although preventative techniques such as access control and authentication attempt to prevent intruders, these can fail, and as a second line of defence, intrusion detection has been introduced. Rare events are events that occur very infrequently, detection of rare events is a common problem in many domains. In this paper we propose an intrusion detection method that combines Rough set and Fuzzy Clustering. Rough set has to decrease the amount of data and get rid of redundancy. Fuzzy c-means clustering allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect suspicious activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining-(KDDCup 1999) Dataset show that the method is efficient and practical for intrusion detection systems.Keywords: Network and security, intrusion detection, fuzzy cmeans, rough set.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2861917 PmSPARQL: Extended SPARQL for Multi-paradigm Path Extraction
Authors: Thabet Slimani, Boutheina Ben Yaghlane, Khaled Mellouli
Abstract:
In the last few years, the Semantic Web gained scientific acceptance as a means of relationships identification in knowledge base, widely known by semantic association. Query about complex relationships between entities is a strong requirement for many applications in analytical domains. In bioinformatics for example, it is critical to extract exchanges between proteins. Currently, the widely known result of such queries is to provide paths between connected entities from data graph. However, they do not always give good results while facing the user need by the best association or a set of limited best association, because they only consider all existing paths but ignore the path evaluation. In this paper, we present an approach for supporting association discovery queries. Our proposal includes (i) a query language PmSPRQL which provides a multiparadigm query expressions for association extraction and (ii) some quantification measures making easy the process of association ranking. The originality of our proposal is demonstrated by a performance evaluation of our approach on real world datasets.
Keywords: Association extraction, query Language, relationships, knowledge base, multi-paradigm query.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1445