Search results for: Statistical models and Timed automata.
3328 Application of RP Technology with Polycarbonate Material for Wind Tunnel Model Fabrication
Authors: A. Ahmadi Nadooshan, S. Daneshmand, C. Aghanajafi
Abstract:
Traditionally, wind tunnel models are made of metal and are very expensive. In these years, everyone is looking for ways to do more with less. Under the right test conditions, a rapid prototype part could be tested in a wind tunnel. Using rapid prototype manufacturing techniques and materials in this way significantly reduces time and cost of production of wind tunnel models. This study was done of fused deposition modeling (FDM) and their ability to make components for wind tunnel models in a timely and cost effective manner. This paper discusses the application of wind tunnel model configuration constructed using FDM for transonic wind tunnel testing. A study was undertaken comparing a rapid prototyping model constructed of FDM Technologies using polycarbonate to that of a standard machined steel model. Testing covered the Mach range of Mach 0.3 to Mach 0.75 at an angle-ofattack range of - 2° to +12°. Results from this study show relatively good agreement between the two models and rapid prototyping Method reduces time and cost of production of wind tunnel models. It can be concluded from this study that wind tunnel models constructed using rapid prototyping method and materials can be used in wind tunnel testing for initial baseline aerodynamic database development.Keywords: Polycarbonate, Fabrication, FDM, Model, RapidPrototyping, Wind Tunnel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24463327 On the Dynamic Model of Service Innovation in Manufacturing Industry
Authors: Yongyoon Suh, Chulhyun Kim, Moon-soo Kim
Abstract:
As the trend of manufacturing is being dominated depending on services, products and processes are more and more related with sophisticated services. Thus, this research starts with the discussion about integration of the product, process, and service in the innovation process. In particular, this paper sets out some foundations for a theory of service innovation in the field of manufacturing, and proposes the dynamic model of service innovation related to product and process. Two dynamic models of service innovation are suggested to investigate major tendencies and dynamic variations during the innovation cycle: co-innovation and sequential innovation. To structure dynamic models of product, process, and service innovation, the innovation stages in which two models are mainly achieved are identified. The research would encourage manufacturers to formulate strategy and planning for service development with product and process.
Keywords: dynamic model, service innovation, service innovation models, innovation cycle, manufacturing industry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20193326 Group Contribution Parameters for Nonrandom Lattice Fluid Equation of State involving COSMO-RS
Authors: Alexander Breitholz, Wolfgang Arlt, Ki-Pung Yoo
Abstract:
Group contribution based models are widely used in industrial applications for its convenience and flexibility. Although a number of group contribution models have been proposed, there were certain limitations inherent to those models. Models based on group contribution excess Gibbs free energy are limited to low pressures and models based on equation of state (EOS) cannot properly describe highly nonideal mixtures including acids without introducing additional modification such as chemical theory. In the present study new a new approach derived from quantum chemistry have been used to calculate necessary EOS group interaction parameters. The COSMO-RS method, based on quantum mechanics, provides a reliable tool for fluid phase thermodynamics. Benefits of the group contribution EOS are the consistent extension to hydrogen-bonded mixtures and the capability to predict polymer-solvent equilibria up to high pressures. The authors are confident that with a sufficient parameter matrix the performance of the lattice EOS can be improved significantly.Keywords: COSMO-RS, Equation of State, Group contribution, Lattice Fluid, Phase equilibria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19203325 Hydrological Modeling of Watersheds Using the Only Corresponding Competitor Method: The Case of M’Zab Basin, South East Algeria
Authors: Oulad Naoui Noureddine, Cherif ELAmine, Djehiche Abdelkader
Abstract:
Water resources management includes several disciplines; the modeling of rainfall-runoff relationship is the most important discipline to prevent natural risks. There are several models to study rainfall-runoff relationship in watersheds. However, the majority of these models are not applicable in all basins of the world. In this study, a new stochastic method called The Only Corresponding Competitor method (OCC) was used for the hydrological modeling of M’ZAB Watershed (South East of Algeria) to adapt a few empirical models for any hydrological regime. The results obtained allow to authorize a certain number of visions, in which it would be interesting to experiment with hydrological models that improve collectively or separately the data of a catchment by the OCC method.
Keywords: Empirical model, modeling, OCC, rainfall-runoff relationship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11563324 Estimating Regression Parameters in Linear Regression Model with a Censored Response Variable
Authors: Jesus Orbe, Vicente Nunez-Anton
Abstract:
In this work we study the effect of several covariates X on a censored response variable T with unknown probability distribution. In this context, most of the studies in the literature can be located in two possible general classes of regression models: models that study the effect the covariates have on the hazard function; and models that study the effect the covariates have on the censored response variable. Proposals in this paper are in the second class of models and, more specifically, on least squares based model approach. Thus, using the bootstrap estimate of the bias, we try to improve the estimation of the regression parameters by reducing their bias, for small sample sizes. Simulation results presented in the paper show that, for reasonable sample sizes and censoring levels, the bias is always smaller for the new proposals.
Keywords: Censored response variable, regression, bias.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14763323 Application of Adaptive Neuro-Fuzzy Inference System in the Prediction of Economic Crisis Periods in USA
Authors: Eleftherios Giovanis
Abstract:
In this paper discrete choice models, Logit and Probit are examined in order to predict the economic recession or expansion periods in USA. Additionally we propose an adaptive neuro-fuzzy inference system with triangular membership function. We examine the in-sample period 1947-2005 and we test the models in the out-of sample period 2006-2009. The forecasting results indicate that the Adaptive Neuro-fuzzy Inference System (ANFIS) model outperforms significant the Logit and Probit models in the out-of sample period. This indicates that neuro-fuzzy model provides a better and more reliable signal on whether or not a financial crisis will take place.Keywords: ANFIS, discrete choice models, financial crisis, USeconomy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16103322 Survival of Neutrino Mass Models in Nonthermal Leptogenesis
Authors: Amal Kr Sarma, H Zeen Devi, N Nimai Singh
Abstract:
The Constraints imposed by non-thermal leptogenesis on the survival of the neutrino mass models describing the presently available neutrino mass patterns, are studied numerically. We consider the Majorana CP violating phases coming from right-handed Majorana mass matrices to estimate the baryon asymmetry of the universe, for different neutrino mass models namely quasi-degenerate, inverted hierarchical and normal hierarchical models, with tribimaximal mixings. Considering two possible diagonal forms of Dirac neutrino mass matrix as either charged lepton or up-quark mass matrix, the heavy right-handed mass matrices are constructed from the light neutrino mass matrix. Only the normal hierarchical model leads to the best predictions of baryon asymmetry of the universe, consistent with observations in non-thermal leptogenesis scenario.Keywords: Thermal leptogenesis, Non-thermal leptogenesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12863321 Integrated Models of Reading Comprehension: Understanding to Impact Teaching: The Teacher’s Central Role
Authors: Sally A. Brown
Abstract:
Over the last 30 years, researchers have developed models or frameworks to provide a more structured understanding of the reading comprehension process. Cognitive information processing models and social cognitive theories both provide frameworks to inform reading comprehension instruction. The purpose of this paper is to (a) provide an overview of the historical development of reading comprehension theory, (b) review the literature framed by cognitive information processing, social cognitive, and integrated reading comprehension theories, and (c) demonstrate how these frameworks inform instruction. As integrated models of reading can guide the interpretation of various factors related to student learning, an integrated framework designed by the researcher will be presented. Results indicated that features of cognitive processing and social cognitivism theory—represented in the integrated framework—highlight the importance of the role of the teacher. This model can aide teachers in not only improving reading comprehension instruction but in identifying areas of challenge for students.
Keywords: Explicit instruction, integrated models of reading comprehension, reading comprehension, teacher’s role.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933320 Models to Customise Web Service Discovery Result using Static and Dynamic Parameters
Authors: Kee-Leong Tan, Cheng-Suan Lee, Hui-Na Chua
Abstract:
This paper presents three models which enable the customisation of Universal Description, Discovery and Integration (UDDI) query results, based on some pre-defined and/or real-time changing parameters. These proposed models detail the requirements, design and techniques which make ranking of Web service discovery results from a service registry possible. Our contribution is two fold: First, we present an extension to the UDDI inquiry capabilities. This enables a private UDDI registry owner to customise or rank the query results, based on its business requirements. Second, our proposal utilises existing technologies and standards which require minimal changes to existing UDDI interfaces or its data structures. We believe these models will serve as valuable reference for enhancing the service discovery methods within a private UDDI registry environment.Keywords: Web service, discovery, semantic, SOA, registry, UDDI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14873319 Alternative Methods to Rank the Impact of Object Oriented Metrics in Fault Prediction Modeling using Neural Networks
Authors: Kamaldeep Kaur, Arvinder Kaur, Ruchika Malhotra
Abstract:
The aim of this paper is to rank the impact of Object Oriented(OO) metrics in fault prediction modeling using Artificial Neural Networks(ANNs). Past studies on empirical validation of object oriented metrics as fault predictors using ANNs have focused on the predictive quality of neural networks versus standard statistical techniques. In this empirical study we turn our attention to the capability of ANNs in ranking the impact of these explanatory metrics on fault proneness. In ANNs data analysis approach, there is no clear method of ranking the impact of individual metrics. Five ANN based techniques are studied which rank object oriented metrics in predicting fault proneness of classes. These techniques are i) overall connection weights method ii) Garson-s method iii) The partial derivatives methods iv) The Input Perturb method v) the classical stepwise methods. We develop and evaluate different prediction models based on the ranking of the metrics by the individual techniques. The models based on overall connection weights and partial derivatives methods have been found to be most accurate.Keywords: Artificial Neural Networks (ANNS), Backpropagation, Fault Prediction Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17583318 Lumped Parameter Models for Numerical Simulation of the Dynamic Response of Hoisting Appliances
Authors: Giovanni Incerti, Luigi Solazzi, Candida Petrogalli
Abstract:
This paper describes three lumped parameters models for the study of the dynamic behavior of a boom crane. The models here proposed allows to evaluate the fluctuations of the load arising from the rope and structure elasticity and from the type of the motion command imposed by the winch. A calculation software was developed in order to determine the actual acceleration of the lifted mass and the dynamic overload during the lifting phase. Some application examples are presented, with the aim of showing the correlation between the magnitude of the stress and the type of the employed motion command.Keywords: Crane, dynamic model, overloading condition, vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19643317 A Optimal Subclass Detection Method for Credit Scoring
Authors: Luciano Nieddu, Giuseppe Manfredi, Salvatore D'Acunto, Katia La Regina
Abstract:
In this paper a non-parametric statistical pattern recognition algorithm for the problem of credit scoring will be presented. The proposed algorithm is based on a clustering k- means algorithm and allows for the determination of subclasses of homogenous elements in the data. The algorithm will be tested on two benchmark datasets and its performance compared with other well known pattern recognition algorithm for credit scoring.
Keywords: Constrained clustering, Credit scoring, Statistical pattern recognition, Supervised classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20503316 Investigation of Different Control Stratgies for UPFC Decoupled Model and the Impact of Location on Control Parameters
Authors: S.A. Alqallaf, S.A. Al-Mawsawi, A. Haider
Abstract:
In order to evaluate the performance of a unified power flow controller (UPFC), mathematical models for steady state and dynamic analysis are to be developed. The steady state model is mainly concerned with the incorporation of the UPFC in load flow studies. Several load flow models for UPFC have been introduced in literature, and one of the most reliable models is the decoupled UPFC model. In spite of UPFC decoupled load flow model simplicity, it is more robust compared to other UPFC load flow models and it contains unique capabilities. Some shortcoming such as additional set of nonlinear equations are to be solved separately after the load flow solution is obtained. The aim of this study is to investigate the different control strategies that can be realized in the decoupled load flow model (individual control and combined control), and the impact of the location of the UPFC in the network on its control parameters.
Keywords: UPFC, Decoupled model, Load flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20013315 Optimizing and Evaluating Performance Quality Control of the Production Process of Disposable Essentials Using Approach Vague Goal Programming
Authors: Hadi Gholizadeh, Ali Tajdin
Abstract:
To have effective production planning, it is necessary to control the quality of processes. This paper aims at improving the performance of the disposable essentials process using statistical quality control and goal programming in a vague environment. That is expressed uncertainty because there is always a measurement error in the real world. Therefore, in this study, the conditions are examined in a vague environment that is a distance-based environment. The disposable essentials process in Kach Company was studied. Statistical control tools were used to characterize the existing process for four factor responses including the average of disposable glasses’ weights, heights, crater diameters, and volumes. Goal programming was then utilized to find the combination of optimal factors setting in a vague environment which is measured to apply uncertainty of the initial information when some of the parameters of the models are vague; also, the fuzzy regression model is used to predict the responses of the four described factors. Optimization results show that the process capability index values for disposable glasses’ average of weights, heights, crater diameters and volumes were improved. Such increasing the quality of the products and reducing the waste, which will reduce the cost of the finished product, and ultimately will bring customer satisfaction, and this satisfaction, will mean increased sales.Keywords: Goal programming, quality control, vague environment, disposable glasses’ optimization, fuzzy regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10413314 Statistical Characteristics of Distribution of Radiation-Induced Defects under Random Generation
Authors: Pavlo Selyshchev
Abstract:
We consider fluctuations of defects density taking into account their interaction. Stochastic field of displacement generation rate gives random defect distribution. We determinate statistical characteristics (mean and dispersion) of random field of point defect distribution as function of defect generation parameters, temperature and properties of irradiated crystal.
Keywords: Irradiation, Primary Defects, Interaction, Fluctuations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18463313 A Super-Efficiency Model for Evaluating Efficiency in the Presence of Time Lag Effect
Authors: Yanshuang Zhang, Byungho Jeong
Abstract:
In many cases, there are some time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in evaluating the performance of organizations. Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. Multi-periods input(MpI) and Multi-periods output(MpO) models are integrate models to calculate simple efficiency considering time lag effect. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. That is, efficient DMUs can’t be discriminated because their efficiency scores are same. Thus, this paper suggests a super-efficiency model for efficiency evaluation under the consideration of time lag effect based on the MpO model. A case example using a long term research project is given to compare the suggested model with the MpO model.
Keywords: DEA, Super-efficiency, Time Lag.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16193312 Analysis of Synchronous Machine Excitation Systems: Comparative Study
Authors: Shewit Tsegaye, Kinde A. Fante
Abstract:
This paper presents the comparison and performance evaluation of synchronous machine excitation models. The two models, DC1A and AC4A, are among the IEEE standardized model structures for representing the wide variety of synchronous machine excitation systems. The performance evaluation of these models is done using SIMULINK simulation software. The simulation results obtained using transient analysis show that the DC1A excitation system is more reliable and stable than AC4A excitation system.Keywords: Excitation system, synchronous machines, AC and DC regulators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38833311 Validation of an Acuity Measurement Tool for Maternity Services
Authors: Cherryl Lowe
Abstract:
Background - The TrendCare Patient Dependency System is currently used by a large number of maternity Services across Australia, New Zealand and Singapore. In 2012, 2013 and 2014 validation studies were initiated in all three countries to validate the acuity tools used for women in labour, and postnatal mothers and babies. This paper will present the findings of the validation study. Aim - The aim of this study was to; identify if the care hours provided by the TrendCare acuity system was an accurate reflection of the care required by women and babies; obtain evidence of changes required to acuity indicators and/or category timings to ensure the TrendCare acuity system remains reliable and valid across a range of maternity care models in three countries. Method - A non-experimental action research methodology was used across maternity services in four District Health Boards in New Zealand, a large tertiary and a large secondary maternity service in Singapore and a large public maternity service in Australia. Standardised data collection forms and timing devices were used to collect midwife contact times, with women and babies included in the study. Rejection processes excluded samples when care was not completed/rationed, and contact timing forms were incomplete. The variances between actual timed midwife/mother/baby contact and the TrendCare acuity category times were identified and investigated. Results - Thirty two (88.9%) of the 36 TrendCare acuity category timings, fell within the variance tolerance levels when compared to the actual timings recorded for midwifery care. Four (11.1%) TrendCare categories provided less minutes of care than the actual timings and exceeded the variance tolerance level. These were all night shift category timings. Nine postnatal categories were not able to be compared as the sample size for these categories was statistically insignificant. 100% of labour ward TrendCare categories matched actual timings for midwifery care, all falling within the variance tolerance levels. The actual time provided by core midwifery staff to assist lead maternity carer (LMC) midwives in New Zealand labour wards showed a significant deviation to previous studies. The findings of the study demonstrated the need for additional time allocations in TrendCare to accommodate an increased level of assistance given to LMC midwives. Conclusion - The results demonstrated the importance of regularly validating the TrendCare category timings with actual timings of the care hours provided. It was evident from the findings that variances to models of care and length of stay in maternity units have increased midwifery workloads on the night shift. The level of assistance provided by the core labour ward staff to the LMC midwife has increased substantially. Outcomes - As a consequence of this study, changes were made to the night duty TrendCare maternity categories, additional acuity indicators were developed and times for assisting LMC midwives in labour ward increased. The updated TrendCare version was delivered to maternity services in 2014.
Keywords: Maternity, acuity, midwifery research, midwifery workloads.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33263310 Predominance of Teaching Models Used by Math Teachers in Secondary Education
Authors: Verónica Diaz Quezada
Abstract:
This research examines the teaching models used by secondary math teachers when teaching logarithmic, quadratic and exponential functions. For this, descriptive case studies have been carried out on 5 secondary teachers. These teachers have been chosen from 3 scientific-humanistic and technical schools, in Chile. Data have been obtained through non-participant class observation and the application of a questionnaire and a rubric to teachers. According to the results, the didactic model that prevails is the one that starts with an interactive strategy, moves to a more content-based structure, and ends with a reinforcement stage. Nonetheless, there is always influence from teachers, their methods, and the group of students.Keywords: Teaching models, math teachers, functions, secondary education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8063309 Credit Spread Changes and Volatility Spillover Effects
Authors: Thomas I. Kounitis
Abstract:
The purpose of this paper is to investigate the influence of a number of variables on the conditional mean and conditional variance of credit spread changes. The empirical analysis in this paper is conducted within the context of bivariate GARCH-in- Mean models, using the so-called BEKK parameterization. We show that credit spread changes are determined by interest-rate and equityreturn variables, which is in line with theory as provided by the structural models of default. We also identify the credit spread change volatility as an important determinant of credit spread changes, and provide evidence on the transmission of volatility between the variables under study.Keywords: Credit spread changes, GARCH-in-Mean models, structural framework, volatility transmission.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16553308 Models of State Organization and Influence over Collective Identity and Nationalism in Spain
Authors: Muñoz-Sanchez, Victor Manuel, Perez-Flores, Antonio Manuel
Abstract:
The main objective of this paper is to establish the relationship between models of state organization and the various types of collective identity expressed by the Spanish. The question of nationalism and identity ascription in Spain has always been a topic of special importance due to the presence in that country of territories where the population emits very different opinions of nationalist sentiment than the rest of Spain. The current situation of sovereignty challenge of Catalonia to the central government exemplifies the importance of the subject matter. In order to analyze this process of interrelation, we use a secondary data mining by applying the multiple correspondence analysis technique (MCA). As a main result a typology of four types of expression of collective identity based on models of State organization are shown, which are connected with the party position on this issue.Keywords: Models of organization of the state, nationalism, collective identity, Spain, political parties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16893307 Judges System for Classifiers Specialization
Authors: Abdel Rodríguez, Isis Bonet, Ricardo Grau, María M. García
Abstract:
In this paper we designed and implemented a new ensemble of classifiers based on a sequence of classifiers which were specialized in regions of the training dataset where errors of its trained homologous are concentrated. In order to separate this regions, and to determine the aptitude of each classifier to properly respond to a new case, it was used another set of classifiers built hierarchically. We explored a selection based variant to combine the base classifiers. We validated this model with different base classifiers using 37 training datasets. It was carried out a statistical comparison of these models with the well known Bagging and Boosting, obtaining significantly superior results with the hierarchical ensemble using Multilayer Perceptron as base classifier. Therefore, we demonstrated the efficacy of the proposed ensemble, as well as its applicability to general problems.Keywords: classifiers, delegation, ensemble
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13063306 Models and Metamodels for Computer-Assisted Natural Language Grammar Learning
Authors: Evgeny Pyshkin, Maxim Mozgovoy, Vladislav Volkov
Abstract:
The paper follows a discourse on computer-assisted language learning. We examine problems of foreign language teaching and learning and introduce a metamodel that can be used to define learning models of language grammar structures in order to support teacher/student interaction. Special attention is paid to the concept of a virtual language lab. Our approach to language education assumes to encourage learners to experiment with a language and to learn by discovering patterns of grammatically correct structures created and managed by a language expert.
Keywords: Computer-assisted instruction, Language learning, Natural language grammar models, HCI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21953305 GIS-based Approach for Land-Use Analysis: A Case Study
Authors: M. Giannopoulou, I. Roukounis, A. Roukouni.
Abstract:
Geographical Information Systems are an integral part of planning in modern technical systems. Nowadays referred to as Spatial Decision Support Systems, as they allow synergy database management systems and models within a single user interface machine and they are important tools in spatial design for evaluating policies and programs at all levels of administration. This work refers to the creation of a Geographical Information System in the context of a broader research in the area of influence of an under construction station of the new metro in the Greek city of Thessaloniki, which included statistical and multivariate data analysis and diagrammatic representation, mapping and interpretation of the results.Keywords: Databases, Geographical information systems (GIS), Land-use planning, Metro stations
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16043304 Word Recognition and Learning based on Associative Memories and Hidden Markov Models
Authors: Zöhre Kara Kayikci, Günther Palm
Abstract:
A word recognition architecture based on a network of neural associative memories and hidden Markov models has been developed. The input stream, composed of subword-units like wordinternal triphones consisting of diphones and triphones, is provided to the network of neural associative memories by hidden Markov models. The word recognition network derives words from this input stream. The architecture has the ability to handle ambiguities on subword-unit level and is also able to add new words to the vocabulary during performance. The architecture is implemented to perform the word recognition task in a language processing system for understanding simple command sentences like “bot show apple".Keywords: Hebbian learning, hidden Markov models, neuralassociative memories, word recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15253303 A New Brazilian Friction-Resistant Low Alloy High Strength Steel – A Life Testing Approach
Authors: D. I. De Souza, G. P. Azevedo, R. Rocha
Abstract:
In this paper we will develop a sequential life test approach applied to a modified low alloy-high strength steel part used in highway overpasses in Brazil.We will consider two possible underlying sampling distributions: the Normal and theInverse Weibull models. The minimum life will be considered equal to zero. We will use the two underlying models to analyze a fatigue life test situation, comparing the results obtained from both.Since a major chemical component of this low alloy-high strength steel part has been changed, there is little information available about the possible values that the parameters of the corresponding Normal and Inverse Weibull underlying sampling distributions could have. To estimate the shape and the scale parameters of these two sampling models we will use a maximum likelihood approach for censored failure data. We will also develop a truncation mechanism for the Inverse Weibull and Normal models. We will provide rules to truncate a sequential life testing situation making one of the two possible decisions at the moment of truncation; that is, accept or reject the null hypothesis H0. An example will develop the proposed truncated sequential life testing approach for the Inverse Weibull and Normal models.
Keywords: Sequential life testing, normal and inverse Weibull models, maximum likelihood approach, truncation mechanism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14303302 Investigation of Layer Thickness and Surface Roughness on Aerodynamic Coefficients of Wind Tunnel RP Models
Authors: S. Daneshmand, A. Ahmadi Nadooshan, C. Aghanajafi
Abstract:
Traditional wind tunnel models are meticulously machined from metal in a process that can take several months. While very precise, the manufacturing process is too slow to assess a new design's feasibility quickly. Rapid prototyping technology makes this concurrent study of air vehicle concepts via computer simulation and in the wind tunnel possible. This paper described the Affects layer thickness models product with rapid prototyping on Aerodynamic Coefficients for Constructed wind tunnel testing models. Three models were evaluated. The first model was a 0.05mm layer thickness and Horizontal plane 0.1μm (Ra) second model was a 0.125mm layer thickness and Horizontal plane 0.22μm (Ra) third model was a 0.15mm layer thickness and Horizontal plane 4.6μm (Ra). These models were fabricated from somos 18420 by a stereolithography (SLA). A wing-body-tail configuration was chosen for the actual study. Testing covered the Mach range of Mach 0.3 to Mach 0.9 at an angle-of-attack range of -2° to +12° at zero sideslip. Coefficients of normal force, axial force, pitching moment, and lift over drag are shown at each of these Mach numbers. Results from this study show that layer thickness does have an effect on the aerodynamic characteristics in general; the data differ between the three models by fewer than 5%. The layer thickness does have more effect on the aerodynamic characteristics when Mach number is decreased and had most effect on the aerodynamic characteristics of axial force and its derivative coefficients.
Keywords: Aerodynamic characteristics, stereolithography, layer thickness, Rapid prototyping, surface finish.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29323301 Continuum-Based Modelling Approaches for Cell Mechanics
Authors: Yogesh D. Bansod, Jiri Bursa
Abstract:
The quantitative study of cell mechanics is of paramount interest, since it regulates the behaviour of the living cells in response to the myriad of extracellular and intracellular mechanical stimuli. The novel experimental techniques together with robust computational approaches have given rise to new theories and models, which describe cell mechanics as combination of biomechanical and biochemical processes. This review paper encapsulates the existing continuum-based computational approaches that have been developed for interpreting the mechanical responses of living cells under different loading and boundary conditions. The salient features and drawbacks of each model are discussed from both structural and biological points of view. This discussion can contribute to the development of even more precise and realistic computational models of cell mechanics based on continuum approaches or on their combination with microstructural approaches, which in turn may provide a better understanding of mechanotransduction in living cells.Keywords: Cell mechanics, computational models, continuum approach, mechanical models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29573300 Estimation of Missing or Incomplete Data in Road Performance Measurement Systems
Authors: Kristjan Kuhi, Kati K. Kaare, Ott Koppel
Abstract:
Modern management in most fields is performance based; both planning and implementation of maintenance and operational activities are driven by appropriately defined performance indicators. Continuous real-time data collection for management is becoming feasible due to technological advancements. Outdated and insufficient input data may result in incorrect decisions. When using deterministic models the uncertainty of the object state is not visible thus applying the deterministic models are more likely to give false diagnosis. Constructing structured probabilistic models of the performance indicators taking into consideration the surrounding indicator environment enables to estimate the trustworthiness of the indicator values. It also assists to fill gaps in data to improve the quality of the performance analysis and management decisions. In this paper authors discuss the application of probabilistic graphical models in the road performance measurement and propose a high-level conceptual model that enables analyzing and predicting more precisely future pavement deterioration based on road utilization.
Keywords: Probabilistic graphical models, performance indicators, road performance management, data collection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18353299 Visual-Graphical Methods for Exploring Longitudinal Data
Authors: H. W. Ker
Abstract:
Longitudinal data typically have the characteristics of changes over time, nonlinear growth patterns, between-subjects variability, and the within errors exhibiting heteroscedasticity and dependence. The data exploration is more complicated than that of cross-sectional data. The purpose of this paper is to organize/integrate of various visual-graphical techniques to explore longitudinal data. From the application of the proposed methods, investigators can answer the research questions include characterizing or describing the growth patterns at both group and individual level, identifying the time points where important changes occur and unusual subjects, selecting suitable statistical models, and suggesting possible within-error variance.Keywords: Data exploration, exploratory analysis, HLMs/LMEs, longitudinal data, visual-graphical methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095