Search results for: performance prediction.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6569

Search results for: performance prediction.

6569 River Flow Prediction Using Nonlinear Prediction Method

Authors: N. H. Adenan, M. S. M. Noorani

Abstract:

River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to develop an efficient water management system to optimize the allocation water resources.

Keywords: River flow, nonlinear prediction method, phase space, local linear approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363
6568 Performance Prediction of Multi-Agent Based Simulation Applications on the Grid

Authors: Dawit Mengistu, Lars Lundberg, Paul Davidsson

Abstract:

A major requirement for Grid application developers is ensuring performance and scalability of their applications. Predicting the performance of an application demands understanding its specific features. This paper discusses performance modeling and prediction of multi-agent based simulation (MABS) applications on the Grid. An experiment conducted using a synthetic MABS workload explains the key features to be included in the performance model. The results obtained from the experiment show that the prediction model developed for the synthetic workload can be used as a guideline to understand to estimate the performance characteristics of real world simulation applications.

Keywords: Grid computing, Performance modeling, Performance prediction, Multi-agent simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
6567 Monthly River Flow Prediction Using a Nonlinear Prediction Method

Authors: N. H. Adenan, M. S. M. Noorani

Abstract:

River flow prediction is an essential tool to ensure proper management of water resources and the optimal distribution of water to consumers. This study presents an analysis and prediction by using nonlinear prediction method with monthly river flow data for Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The reconstruction of phase space involves the reconstruction of one-dimension (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. The revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) was employed to compare prediction performance for the nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show that the prediction results using the nonlinear prediction method are better than ARIMA and SVM. Therefore, the results of this study could be used to develop an efficient water management system to optimize the allocation of water resources.

Keywords: River flow, nonlinear prediction method, phase space, local linear approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961
6566 Development of Neural Network Prediction Model of Energy Consumption

Authors: Maryam Jamela Ismail, Rosdiazli Ibrahim, Idris Ismail

Abstract:

In the oil and gas industry, energy prediction can help the distributor and customer to forecast the outgoing and incoming gas through the pipeline. It will also help to eliminate any uncertainties in gas metering for billing purposes. The objective of this paper is to develop Neural Network Model for energy consumption and analyze the performance model. This paper provides a comprehensive review on published research on the energy consumption prediction which focuses on structures and the parameters used in developing Neural Network models. This paper is then focused on the parameter selection of the neural network prediction model development for energy consumption and analysis on the result. The most reliable model that gives the most accurate result is proposed for the prediction. The result shows that the proposed neural network energy prediction model is able to demonstrate an adequate performance with least Root Mean Square Error.

Keywords: Energy Prediction, Multilayer Feedforward, Levenberg-Marquardt, Root Mean Square Error (RMSE)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2642
6565 Using High Performance Computing for Online Flood Monitoring and Prediction

Authors: Stepan Kuchar, Martin Golasowski, Radim Vavrik, Michal Podhoranyi, Boris Sir, Jan Martinovic

Abstract:

The main goal of this article is to describe the online flood monitoring and prediction system Floreon+ primarily developed for the Moravian-Silesian region in the Czech Republic and the basic process it uses for running automatic rainfall-runoff and hydrodynamic simulations along with their calibration and uncertainty modeling. It takes a long time to execute such process sequentially, which is not acceptable in the online scenario, so the use of a high performance computing environment is proposed for all parts of the process to shorten their duration. Finally, a case study on the Ostravice River catchment is presented that shows actual durations and their gain from the parallel implementation.

Keywords: Flood prediction process, High performance computing, Online flood prediction system, Parallelization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
6564 Performance and Emission Prediction in a Biodiesel Engine Fuelled with Honge Methyl Ester Using RBF Neural Networks

Authors: Shivakumar, G. S. Vijay, P. Srinivas Pai, B. R. Shrinivasa Rao

Abstract:

In the present study, RBF neural networks were used for predicting the performance and emission parameters of a biodiesel engine. Engine experiments were carried out in a 4 stroke diesel engine using blends of diesel and Honge methyl ester as the fuel. Performance parameters like BTE, BSEC, Tex and emissions from the engine were measured. These experimental results were used for ANN modeling. RBF center initialization was done by random selection and by using Clustered techniques. Network was trained by using fixed and varying widths for the RBF units. It was observed that RBF results were having a good agreement with the experimental results. Networks trained by using clustering technique gave better results than using random selection of centers in terms of reduced MRE and increased prediction accuracy. The average MRE for the performance parameters was 3.25% with the prediction accuracy of 98% and for emissions it was 10.4% with a prediction accuracy of 80%.

Keywords: Radial Basis Function networks, emissions, Performance parameters, Fuzzy c means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
6563 A Proposed Performance Prediction Approach for Manufacturing Processes using ANNs

Authors: M. S. Abdelwahed, M. A. El-Baz, T. T. El-Midany

Abstract:

this paper aims to provide an approach to predict the performance of the product produced after multi-stages of manufacturing processes, as well as the assembly. Such approach aims to control and subsequently identify the relationship between the process inputs and outputs so that a process engineer can more accurately predict how the process output shall perform based on the system inputs. The approach is guided by a six-sigma methodology to obtain improved performance. In this paper a case study of the manufacture of a hermetic reciprocating compressor is presented. The application of artificial neural networks (ANNs) technique is introduced to improve performance prediction within this manufacturing environment. The results demonstrate that the approach predicts accurately and effectively.

Keywords: Artificial neural networks, Reciprocating compressor manufacturing, Performance prediction, Quality improvement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
6562 Selective Intra Prediction Mode Decision for H.264/AVC Encoders

Authors: Jun Sung Park, Hyo Jung Song

Abstract:

H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standards such as MPEG-2, but computational complexity is increased significantly. In this paper, we propose selective mode decision schemes for fast intra prediction mode selection. The objective is to reduce the computational complexity of the H.264/AVC encoder without significant rate-distortion performance degradation. In our proposed schemes, the intra prediction complexity is reduced by limiting the luma and chroma prediction modes using the directional information of the 16×16 prediction mode. Experimental results are presented to show that the proposed schemes reduce the complexity by up to 78% maintaining the similar PSNR quality with about 1.46% bit rate increase in average.

Keywords: Video encoding, H.264, Intra prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3466
6561 Protein Residue Contact Prediction using Support Vector Machine

Authors: Chan Weng Howe, Mohd Saberi Mohamad

Abstract:

Protein residue contact map is a compact representation of secondary structure of protein. Due to the information hold in the contact map, attentions from researchers in related field were drawn and plenty of works have been done throughout the past decade. Artificial intelligence approaches have been widely adapted in related works such as neural networks, genetic programming, and Hidden Markov model as well as support vector machine. However, the performance of the prediction was not generalized which probably depends on the data used to train and generate the prediction model. This situation shown the importance of the features or information used in affecting the prediction performance. In this research, support vector machine was used to predict protein residue contact map on different combination of features in order to show and analyze the effectiveness of the features.

Keywords: contact map, protein residue contact, support vector machine, protein structure prediction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
6560 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction

Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic

Abstract:

Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.

Keywords: Bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2856
6559 Recurrent Radial Basis Function Network for Failure Time Series Prediction

Authors: Ryad Zemouri, Paul Ciprian Patic

Abstract:

An adaptive software reliability prediction model using evolutionary connectionist approach based on Recurrent Radial Basis Function architecture is proposed. Based on the currently available software failure time data, Fuzzy Min-Max algorithm is used to globally optimize the number of the k Gaussian nodes. The corresponding optimized neural network architecture is iteratively and dynamically reconfigured in real-time as new actual failure time data arrives. The performance of our proposed approach has been tested using sixteen real-time software failure data. Numerical results show that our proposed approach is robust across different software projects, and has a better performance with respect to next-steppredictability compared to existing neural network model for failure time prediction.

Keywords: Neural network, Prediction error, Recurrent RadialBasis Function Network, Reliability prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1817
6558 Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data

Authors: Hyun-Woo Cho

Abstract:

Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.

Keywords: Prediction, operation monitoring, on-line data, nonlinear statistical methods, empirical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
6557 Design Based Performance Prediction of Component Based Software Products

Authors: K. S. Jasmine, R. Vasantha

Abstract:

Component-Based software engineering provides an opportunity for better quality and increased productivity in software development by using reusable software components [10]. One of the most critical aspects of the quality of a software system is its performance. The systematic application of software performance engineering techniques throughout the development process can help to identify design alternatives that preserve desirable qualities such as extensibility and reusability while meeting performance objectives [1]. In the present scenario, software engineering methodologies strongly focus on the functionality of the system, while applying a “fix- it-later" approach to software performance aspects [3]. As a result, lengthy fine-tunings, expensive extra hard ware, or even redesigns are necessary for the system to meet the performance requirements. In this paper, we propose design based, implementation independent, performance prediction approach to reduce the overhead associated in the later phases while developing a performance guaranteed software product with the help of Unified Modeling Language (UML).

Keywords: Software Reuse, Component-based development, Unified Modeling Language, Software performance, Software components, Performance engineering, Software engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
6556 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting

Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu

Abstract:

Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.

Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
6555 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance

Authors: Sokkhey Phauk, Takeo Okazaki

Abstract:

The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.

Keywords: Academic performance prediction system, prediction model, educational data mining, dominant factors, feature selection methods, student performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
6554 Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region

Authors: B. Sir, M. Podhoranyi, S. Kuchar, T. Kocyan

Abstract:

Rainfall runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15 – May 18 2014). Prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice.

Keywords: Flood, HEC-HMS, Prediction, Rainfall – Runoff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2223
6553 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements

Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva

Abstract:

The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% @ 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes that have been designed, three were conventional concretes for three grades under discussion and fifteen were HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days, and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave-One-Out Validation (LOOV) methods.

Keywords: ANN, concrete mixes, compressive strength, fly ash, high performance concrete, linear regression, strength prediction models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
6552 Equity Risk Premiums and Risk Free Rates in Modelling and Prediction of Financial Markets

Authors: Mohammad Ghavami, Reza S. Dilmaghani

Abstract:

This paper presents an adaptive framework for modelling financial markets using equity risk premiums, risk free rates and volatilities. The recorded economic factors are initially used to train four adaptive filters for a certain limited period of time in the past. Once the systems are trained, the adjusted coefficients are used for modelling and prediction of an important financial market index. Two different approaches based on least mean squares (LMS) and recursive least squares (RLS) algorithms are investigated. Performance analysis of each method in terms of the mean squared error (MSE) is presented and the results are discussed. Computer simulations carried out using recorded data show MSEs of 4% and 3.4% for the next month prediction using LMS and RLS adaptive algorithms, respectively. In terms of twelve months prediction, RLS method shows a better tendency estimation compared to the LMS algorithm.

Keywords: Prediction of financial markets, Adaptive methods, MSE, LSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1019
6551 A Study on Performance Prediction in Early Design Stage of Apartment Housing Using Machine Learning

Authors: Seongjun Kim, Sanghoon Shim, Jinwooung Kim, Jaehwan Jung, Sung-Ah Kim

Abstract:

As the development of information and communication technology, the convergence of machine learning of the ICT area and design is attempted. In this way, it is possible to grasp the correlation between various design elements, which was difficult to grasp, and to reflect this in the design result. In architecture, there is an attempt to predict the performance, which is difficult to grasp in the past, by finding the correlation among multiple factors mainly through machine learning. In architectural design area, some attempts to predict the performance affected by various factors have been tried. With machine learning, it is possible to quickly predict performance. The aim of this study is to propose a model that predicts performance according to the block arrangement of apartment housing through machine learning and the design alternative which satisfies the performance such as the daylight hours in the most similar form to the alternative proposed by the designer. Through this study, a designer can proceed with the design considering various design alternatives and accurate performances quickly from the early design stage.

Keywords: Apartment housing, machine learning, multi-objective optimization, performance prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127
6550 Optimum Neural Network Architecture for Precipitation Prediction of Myanmar

Authors: Khaing Win Mar, Thinn Thu Naing

Abstract:

Nowadays, precipitation prediction is required for proper planning and management of water resources. Prediction with neural network models has received increasing interest in various research and application domains. However, it is difficult to determine the best neural network architecture for prediction since it is not immediately obvious how many input or hidden nodes are used in the model. In this paper, neural network model is used as a forecasting tool. The major aim is to evaluate a suitable neural network model for monthly precipitation mapping of Myanmar. Using 3-layerd neural network models, 100 cases are tested by changing the number of input and hidden nodes from 1 to 10 nodes, respectively, and only one outputnode used. The optimum model with the suitable number of nodes is selected in accordance with the minimum forecast error. In measuring network performance using Root Mean Square Error (RMSE), experimental results significantly show that 3 inputs-10 hiddens-1 output architecture model gives the best prediction result for monthly precipitation in Myanmar.

Keywords: Precipitation prediction, monthly precipitation, neural network models, Myanmar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
6549 Fast Intra Prediction Algorithm for H.264/AVC Based on Quadratic and Gradient Model

Authors: A. Elyousfi, A. Tamtaoui, E. Bouyakhf

Abstract:

The H.264/AVC standard uses an intra prediction, 9 directional modes for 4x4 luma blocks and 8x8 luma blocks, 4 directional modes for 16x16 macroblock and 8x8 chroma blocks, respectively. It means that, for a macroblock, it has to perform 736 different RDO calculation before a best RDO modes is determined. With this Multiple intra-mode prediction, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standards, but computational complexity is increased significantly. This paper presents a fast intra prediction algorithm for H.264/AVC intra prediction based a characteristic of homogeneity information. In this study, the gradient prediction method used to predict the homogeneous area and the quadratic prediction function used to predict the nonhomogeneous area. Based on the correlation between the homogeneity and block size, the smaller block is predicted by gradient prediction and quadratic prediction, so the bigger block is predicted by gradient prediction. Experimental results are presented to show that the proposed method reduce the complexity by up to 76.07% maintaining the similar PSNR quality with about 1.94%bit rate increase in average.

Keywords: Intra prediction, H.264/AVC, video coding, encodercomplexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
6548 On Improving Breast Cancer Prediction Using GRNN-CP

Authors: Kefaya Qaddoum

Abstract:

The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.

Keywords: Neural network, conformal prediction, cancer classification, regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836
6547 A Network Traffic Prediction Algorithm Based On Data Mining Technique

Authors: D. Prangchumpol

Abstract:

This paper is a description approach to predict incoming and outgoing data rate in network system by using association rule discover, which is one of the data mining techniques. Information of incoming and outgoing data in each times and network bandwidth are network performance parameters, which needed to solve in the traffic problem. Since congestion and data loss are important network problems. The result of this technique can predicted future network traffic. In addition, this research is useful for network routing selection and network performance improvement.

Keywords: Traffic prediction, association rule, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3668
6546 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction

Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju

Abstract:

The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.

Keywords: Comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1538
6545 Yield Prediction Using Support Vectors Based Under-Sampling in Semiconductor Process

Authors: Sae-Rom Pak, Seung Hwan Park, Jeong Ho Cho, Daewoong An, Cheong-Sool Park, Jun Seok Kim, Jun-Geol Baek

Abstract:

It is important to predict yield in semiconductor test process in order to increase yield. In this study, yield prediction means finding out defective die, wafer or lot effectively. Semiconductor test process consists of some test steps and each test includes various test items. In other world, test data has a big and complicated characteristic. It also is disproportionably distributed as the number of data belonging to FAIL class is extremely low. For yield prediction, general data mining techniques have a limitation without any data preprocessing due to eigen properties of test data. Therefore, this study proposes an under-sampling method using support vector machine (SVM) to eliminate an imbalanced characteristic. For evaluating a performance, randomly under-sampling method is compared with the proposed method using actual semiconductor test data. As a result, sampling method using SVM is effective in generating robust model for yield prediction.

Keywords: Yield Prediction, Semiconductor Test Process, Support Vector Machine, Under Sampling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2396
6544 Representing Data without Lost Compression Properties in Time Series: A Review

Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.

Keywords: Compression properties, uncertainty, uncertain time series, mining technique, weather prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
6543 Diesel Fault Prediction Based on Optimized Gray Neural Network

Authors: Han Bing, Yin Zhenjie

Abstract:

In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.

Keywords: Fault prediction, Neural network, GM (1.5), Genetic algorithm, GBPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1301
6542 Using Support Vector Machine for Prediction Dynamic Voltage Collapse in an Actual Power System

Authors: Muhammad Nizam, Azah Mohamed, Majid Al-Dabbagh, Aini Hussain

Abstract:

This paper presents dynamic voltage collapse prediction on an actual power system using support vector machines. Dynamic voltage collapse prediction is first determined based on the PTSI calculated from information in dynamic simulation output. Simulations were carried out on a practical 87 bus test system by considering load increase as the contingency. The data collected from the time domain simulation is then used as input to the SVM in which support vector regression is used as a predictor to determine the dynamic voltage collapse indices of the power system. To reduce training time and improve accuracy of the SVM, the Kernel function type and Kernel parameter are considered. To verify the effectiveness of the proposed SVM method, its performance is compared with the multi layer perceptron neural network (MLPNN). Studies show that the SVM gives faster and more accurate results for dynamic voltage collapse prediction compared with the MLPNN.

Keywords: Dynamic voltage collapse, prediction, artificial neural network, support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
6541 Investigation of Improved Chaotic Signal Tracking by Echo State Neural Networks and Multilayer Perceptron via Training of Extended Kalman Filter Approach

Authors: Farhad Asadi, S. Hossein Sadati

Abstract:

This paper presents a prediction performance of feedforward Multilayer Perceptron (MLP) and Echo State Networks (ESN) trained with extended Kalman filter. Feedforward neural networks and ESN are powerful neural networks which can track and predict nonlinear signals. However, their tracking performance depends on the specific signals or data sets, having the risk of instability accompanied by large error. In this study we explore this process by applying different network size and leaking rate for prediction of nonlinear or chaotic signals in MLP neural networks. Major problems of ESN training such as the problem of initialization of the network and improvement in the prediction performance are tackled. The influence of coefficient of activation function in the hidden layer and other key parameters are investigated by simulation results. Extended Kalman filter is employed in order to improve the sequential and regulation learning rate of the feedforward neural networks. This training approach has vital features in the training of the network when signals have chaotic or non-stationary sequential pattern. Minimization of the variance in each step of the computation and hence smoothing of tracking were obtained by examining the results, indicating satisfactory tracking characteristics for certain conditions. In addition, simulation results confirmed satisfactory performance of both of the two neural networks with modified parameterization in tracking of the nonlinear signals.

Keywords: Feedforward neural networks, nonlinear signal prediction, echo state neural networks approach, leaking rates, capacity of neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 756
6540 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus

Authors: J. K. Alhassan, B. Attah, S. Misra

Abstract:

Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. Medical dataset is a vital ingredient used in predicting patient’s health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. WEKA software was used for the implementation of the algorithms. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. From the results obtained, DTA performed better than ANN. The Root Mean Squared Error (RMSE) of MLP is 0.3913 that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.

Keywords: Artificial neural network, classification, decision tree, diabetes mellitus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415