Search results for: wood cell walls
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4664

Search results for: wood cell walls

4574 A Comparative Study of k-NN and MLP-NN Classifiers Using GA-kNN Based Feature Selection Method for Wood Recognition System

Authors: Uswah Khairuddin, Rubiyah Yusof, Nenny Ruthfalydia Rosli

Abstract:

This paper presents a comparative study between k-Nearest Neighbour (k-NN) and Multi-Layer Perceptron Neural Network (MLP-NN) classifier using Genetic Algorithm (GA) as feature selector for wood recognition system. The features have been extracted from the images using Grey Level Co-Occurrence Matrix (GLCM). The use of GA based feature selection is mainly to ensure that the database used for training the features for the wood species pattern classifier consists of only optimized features. The feature selection process is aimed at selecting only the most discriminating features of the wood species to reduce the confusion for the pattern classifier. This feature selection approach maintains the ‘good’ features that minimizes the inter-class distance and maximizes the intra-class distance. Wrapper GA is used with k-NN classifier as fitness evaluator (GA-kNN). The results shows that k-NN is the best choice of classifier because it uses a very simple distance calculation algorithm and classification tasks can be done in a short time with good classification accuracy.

Keywords: feature selection, genetic algorithm, optimization, wood recognition system

Procedia PDF Downloads 510
4573 Wood Energy, Trees outside Forests and Agroforestry Wood Harvesting and Conversion Residues Preparing and Storing

Authors: Adeiza Matthew, Oluwadamilola Abubakar

Abstract:

Wood energy, also known as wood fuel, is a renewable energy source that is derived from woody biomass, which is organic matter that is harvested from forests, woodlands, and other lands. Woody biomass includes trees, branches, twigs, and other woody debris that can be used as fuel. Wood energy can be classified based on its sources, such as trees outside forests, residues from wood harvesting and conversion, and energy plantations. There are several policy frameworks that support the use of wood energy, including participatory forest management and agroforestry. These policies aim to promote the sustainable use of woody biomass as a source of energy while also protecting forests and wildlife habitats. There are several options for using wood as a fuel, including central heating systems, pellet-based systems, wood chip-based systems, log boilers, fireplaces, and stoves. Each of these options has its own benefits and drawbacks, and the most appropriate option will depend on factors such as the availability of woody biomass, the heating needs of the household or facility, and the local climate. In order to use wood as a fuel, it must be harvested and stored properly. Hardwood or softwood can be used as fuel, and the heating value of firewood depends on the species of tree and the degree of moisture content. Proper harvesting and storage of wood can help to minimize environmental impacts and improve wildlife habitats. The use of wood energy has several environmental impacts, including the release of greenhouse gases during combustion and the potential for air pollution from combustion by-products. However, wood energy can also have positive environmental impacts, such as the sequestration of carbon in trees and the reduction of reliance on fossil fuels. The regulation and legislation of wood energy vary by country and region, and there is an ongoing debate about the potential use of wood energy in renewable energy technologies. Wood energy is a renewable energy source that can be used to generate electricity, heat, and transportation fuels. Woody biomass is abundant and widely available, making it a potentially significant source of energy for many countries. The use of wood energy can create local economic and employment opportunities, particularly in rural areas. Wood energy can be used to reduce reliance on fossil fuels and reduce greenhouse gas emissions. Properly managed forests can provide a sustained supply of woody biomass for energy, helping to reduce the risk of deforestation and habitat loss. Wood energy can be produced using a variety of technologies, including direct combustion, co-firing with fossil fuels, and the production of biofuels. The environmental impacts of wood energy can be minimized through the use of best practices in harvesting, transportation, and processing. Wood energy is regulated and legislated at the national and international levels, and there are various standards and certification systems in place to promote sustainable practices. Wood energy has the potential to play a significant role in the transition to a low-carbon economy and the achievement of climate change mitigation goals.

Keywords: biomass, timber, charcoal, firewood

Procedia PDF Downloads 68
4572 Automating 2D CAD to 3D Model Generation Process: Wall pop-ups

Authors: Mohit Gupta, Chialing Wei, Thomas Czerniawski

Abstract:

In this paper, we have built a neural network that can detect walls on 2D sheets and subsequently create a 3D model in Revit using Dynamo. The training set includes 3500 labeled images, and the detection algorithm used is YOLO. Typically, engineers/designers make concentrated efforts to convert 2D cad drawings to 3D models. This costs a considerable amount of time and human effort. This paper makes a contribution in automating the task of 3D walls modeling. 1. Detecting Walls in 2D cad and generating 3D pop-ups in Revit. 2. Saving designer his/her modeling time in drafting elements like walls from 2D cad to 3D representation. An object detection algorithm YOLO is used for wall detection and localization. The neural network is trained over 3500 labeled images of size 256x256x3. Then, Dynamo is interfaced with the output of the neural network to pop-up 3D walls in Revit. The research uses modern technological tools like deep learning and artificial intelligence to automate the process of generating 3D walls without needing humans to manually model them. Thus, contributes to saving time, human effort, and money.

Keywords: neural networks, Yolo, 2D to 3D transformation, CAD object detection

Procedia PDF Downloads 110
4571 Impact of Insect-Feeding and Fire-Heating Wounding on Wood Properties of Lodgepole Pine

Authors: Estelle Arbellay, Lori D. Daniels, Shawn D. Mansfield, Alice S. Chang

Abstract:

Mountain pine beetle (MPB) outbreaks are currently devastating lodgepole pine forests in western North America, which are also widely disturbed by frequent wildfires. Both MPB and fire can leave scars on lodgepole pine trees, thereby diminishing their commercial value and possibly compromising their utilization in solid wood products. In order to fully exploit the affected resource, it is crucial to understand how wounding from these two disturbance agents impact wood properties. Moreover, previous research on lodgepole pine has focused solely on sound wood and stained wood resulting from the MPB-transmitted blue fungi. By means of a quantitative multi-proxy approach, we tested the hypotheses that (i) wounding (of either MPB or fire origin) caused significant changes in wood properties of lodgepole pine and that (ii) MPB-induced wound effects could differ from those induced by fire in type and magnitude. Pith-to-bark strips were extracted from 30 MPB scars and 30 fire scars. Strips were cut immediately adjacent to the wound margin and encompassed 12 rings from normal wood formed prior to wounding and 12 rings from wound wood formed after wounding. Wood properties evaluated within this 24-year window included ring width, relative wood density, cellulose crystallinity, fibre dimensions, and carbon and nitrogen concentrations. Methods used to measure these proxies at a (sub-)annual resolution included X-ray densitometry, X-ray diffraction, fibre quality analysis, and elemental analysis. Results showed a substantial growth release in wound wood compared to normal wood, as both earlywood and latewood width increased over a decade following wounding. Wound wood was also shown to have a significantly different latewood density than normal wood 4 years after wounding. Latewood density decreased in MPB scars while the opposite was true in fire scars. By contrast, earlywood density was presented only minor variations following wounding. Cellulose crystallinity decreased in wound wood compared to normal wood, being especially diminished in MPB scars the first year after wounding. Fibre dimensions also decreased following wounding. However, carbon and nitrogen concentrations did not substantially differ between wound wood and normal wood. Nevertheless, insect-feeding and fire-heating wounding were shown to significantly alter most wood properties of lodgepole pine, as demonstrated by the existence of several morphological anomalies in wound wood. MPB and fire generally elicited similar anomalies, with the major exception of latewood density. In addition to providing quantitative criteria for differentiating between biotic (MPB) and abiotic (fire) disturbances, this study provides the wood industry with fundamental information on the physiological response of lodgepole pine to wounding in order to evaluate the utilization of scarred trees in solid wood products.

Keywords: elemental analysis, fibre quality analysis, lodgepole pine, wood properties, wounding, X-ray densitometry, X-ray diffraction

Procedia PDF Downloads 295
4570 Utilizing Fiber-Based Modeling to Explore the Presence of a Soft Storey in Masonry-Infilled Reinforced Concrete Structures

Authors: Akram Khelaifia, Salah Guettala, Nesreddine Djafar Henni, Rachid Chebili

Abstract:

Recent seismic events have underscored the significant influence of masonry infill walls on the resilience of structures. The irregular positioning of these walls exacerbates their adverse effects, resulting in substantial material and human losses. Research and post-earthquake evaluations emphasize the necessity of considering infill walls in both the design and assessment phases. This study delves into the presence of soft stories in reinforced concrete structures with infill walls. Employing an approximate method relying on pushover analysis results, fiber-section-based macro-modeling is utilized to simulate the behavior of infill walls. The findings shed light on the presence of soft first stories, revealing a notable 240% enhancement in resistance for weak column—strong beam-designed frames due to infill walls. Conversely, the effect is more moderate at 38% for strong column—weak beam-designed frames. Interestingly, the uniform distribution of infill walls throughout the structure's height does not influence soft-story emergence in the same seismic zone, irrespective of column-beam strength. In regions with low seismic intensity, infill walls dissipate energy, resulting in consistent seismic behavior regardless of column configuration. Despite column strength, structures with open-ground stories remain vulnerable to soft first-story emergence, underscoring the crucial role of infill walls in reinforced concrete structural design.

Keywords: masonry infill walls, soft Storey, pushover analysis, fiber section, macro-modeling

Procedia PDF Downloads 27
4569 Algae Biomass as Alternatives to Wood Pulp in Handmade Paper Technology

Authors: Piyali Mukherjee, Jai Prakash Keshri

Abstract:

Anticipated shortages of raw materials for paper industry have forged the entry of algae as alternatives to wood pulp. Five algal species: Pithophora sp., Lyngbya sp., Hydrodictyon sp., Cladophora sp. and Rhizoclonium sp. were collected from different parts of Burdwan town, West Bengal, India. Their biomass compositional values were determined with respect to eucalyptus wood pulp. Paper characteristics were studied in terms of breaking length, tensile strength, CI index, pH, brightness, recyclability, and durability. Hydrodictyon sp., besides Rhizoclonium sp. and Cladophora sp. were established as the most suitable candidates for paper pulp formulation in terms of high cellulose, hemicelluloses contents and low lignin and silica contents. Paper from pure Hydrodictyon sp. pulp was found to have statistically significant (p < 0.05) improved breaking-length and tensile strength properties compared to that obtained from Lyngbya sp.

Keywords: algae, biomass, paper, pulp, wood

Procedia PDF Downloads 175
4568 Acoustic Behavior of Polymer Foam Composite of Shorea leprosula after UV-Irradiation Exposure

Authors: Anika Zafiah M. Rus, S. Shafizah

Abstract:

This study was developed to compare the behavior and the ability of polymer foam composites towards sound absorption test of Shorea leprosula wood (SL) of acid hydrolysis treatment with particle size < 355µm. Three different weight ratio of polyol to wood particle has been selected which are 10wt%, 15wt%, and 20wt%. The acid hydrolysis treatment is to optimize the surface interaction of a wood particle with polymer foam matrix. In addition, the acoustic characteristic of sound absorption coefficient (Į) was determined. Further treatment is to expose the polymer composite in UV irradiation by using UV-Weatherometer. Polymer foam composite of untreated shorea leprosula particle (SL-B) with respective percentage loading shows uniform pore structure as compared with treated wood particle (SL-A). As the filler percentage loading in polymer foam increases, the Į value approaching 1 for both samples. Furthermore, SL-A shows better Į value at 3500-4500 frequency absorption level(Hz), meanwhile Į value for SL-B is maximum at 4000-5000 Hz. The frequencies absorption level for both SL-B and SL-A after UV exposure was increased with the increasing of exposure time from 0-1000 hours. It is, therefore, concluded that the Į for each sound absorbing material, with or without acid hydrolysis treatment of wood particles and it’s percentages loading in polymer matrix effect the sound absorption behavior.

Keywords: polymer foam composite, sound absorption coefficient, UV-irradiation, wood

Procedia PDF Downloads 436
4567 Thermo-Mechanical Behavior of Steel-Wood Connections of Wooden Structures Under the Effect of a Fire

Authors: Ahmed Alagha, Belkacem Lamri, Abdelhak Kada.

Abstract:

Steel-wood assemblies often have complex geometric configurations whose overall behavior under the effect of a fire is conditioned by the thermal response, by combining the two materials steel and wood, whose thermal characteristics are greatly influenced by high temperatures. The objective of this work is to study the thermal behavior of a steel-wood connection, with or without insulating material, subjected to an ISO834 standard fire model. The analysis is developed by the analytical approach using the Eurocode, and numerically, by the finite element method, through the ANSYS calculation code. The design of the connections is evaluated at room temperature taking the cases of single shear and double shear. The thermal behavior of the connections is simulated in transient state while taking into account the modes of heat transfer by convection and by radiation. The variation of temperature as a function of time is evaluated in different positions of the connections while talking about the heat produced and the formation of the carbon layer. The results relate to the temperature distributions in the connection elements as a function of the duration of the fire. The results of the thermal analysis show that the temperature increases rapidly and reaches more than 260 °C in the steel material for an hour of exposure to fire. The temperature development in wood material is different from that in steel because of its thermal properties. Wood heats up on the outside and burns, its surface can reach very high temperatures in points on the surface.

Keywords: Eurocode 5, finite elements, ISO834, simple shear, thermal behaviour, wood-steel connection

Procedia PDF Downloads 55
4566 Design and Optimization of Soil Nailing Construction

Authors: Fereshteh Akbari, Farrokh Jalali Mosalam, Ali Hedayatifar, Amirreza Aminjavaheri

Abstract:

The soil nailing is an effective method to stabilize slopes and retaining structures. Consequently, the lateral and vertical displacement of retaining walls are important criteria to evaluate the safety risks of adjacent structures. This paper is devoted to the optimization problems of retaining walls based on ABAQOUS Software. The various parameters such as nail length, orientation, arrangement, horizontal spacing, and bond skin friction, on lateral and vertical displacement of retaining walls are investigated. In order to ensure accuracy, the mobilized shear stress acting around the perimeter of the nail-soil interface is also modeled in ABAQOUS software. The observed trend of results is compared to the previous researches.

Keywords: retaining walls, soil nailing, ABAQOUS software, lateral displacement, vertical displacement

Procedia PDF Downloads 92
4565 Solving Extended Linear Complementarity Problems (XLCP) - Wood and Environment

Authors: Liberto Pombal, Christian Dieter Jaekel

Abstract:

The objective of this work is to establish theoretical and numerical conditions for Solving Extended Linear Complementarity Problems (XLCP), with emphasis on the Horizontal Linear Complementarity Problem (HLCP). Two new strategies for solving complementarity problems are presented, using differentiable and penalized functions, which resulted in a natural formalization for the Linear Horizontal case. The computational results of all suggested strategies are also discussed in depth in this paper. The implication in practice allows solving and optimizing, in an innovative way, the (forestry) problems of the value chain of the industrial wood sector in Angola.

Keywords: complementarity, box constrained, optimality conditions, wood and environment

Procedia PDF Downloads 24
4564 Global Analysis of HIV Virus Models with Cell-to-Cell

Authors: Hossein Pourbashash

Abstract:

Recent experimental studies have shown that HIV can be transmitted directly from cell to cell when structures called virological synapses form during interactions between T cells. In this article, we describe a new within-host model of HIV infection that incorporates two mechanisms: infection by free virions and the direct cell-to-cell transmission. We conduct the local and global stability analysis of the model. We show that if the basic reproduction number R0 1, the virus is cleared and the disease dies out; if R0 > 1, the virus persists in the host. We also prove that the unique positive equilibrium attracts all positive solutions under additional assumptions on the parameters.

Keywords: HIV virus model, cell-to-cell transmission, global stability, Lyapunov function, second compound matrices

Procedia PDF Downloads 490
4563 Crooked Wood: Finding Potential in Local Hardwood

Authors: Livia Herle

Abstract:

A large part of the Principality of Liechtenstein is covered by forest. Three-quarters of this forest is defined as protective due to the alpine landscape of the country, which is deteriorating the quality of the wood. Nevertheless, the forest is one of the most important sources of raw material. However, out of the wood harvested annually in Liechtenstein, about two-thirds are used directly as an energy source, drastically shortening up the carbon storage cycle of wood. Furthermore, due to climate change, forest structures are changing. Predictions for the forest in Liechtenstein have stated that the spruce will mostly vanish in low altitudes, only being able to survive in the higher regions. In contrast, hardwood species will experience a rise, resulting in a more mixed forest. Thus, the main research focus will be put upon the potential of hardwood as well as prolonging the lifespan of a timber log before ending up as an energy source. An analysis of the local occurrence of hardwood species and their quality will serve as a tool to implement this knowledge upon constructional solutions. As a system that works with short spam timber and thus qualifies for the regional conditions of hardwood, reciprocal frame systems will be further investigated. These can be defined as load-bearing structures with only two beams connecting at a time, avoiding complex joining situations. Furthermore, every beam is mutually supporting. This allows the usage of short pieces of preferably massive wood. As a result, the system permits for an easy assembly but also disassembly. To promote a more circular application of wood, possible cascading scenarios of the structural solutions will be added. In a workshop at the School of Architecture of the University of Liechtenstein in the Sommer Semester 2024, prototypes in 1:1 of reciprocal frame systems using only local hardwood will help as a tool to further test the theoretical analyses.

Keywords: hardwood, cascading wood, reciprocal frames, crooked wood, forest structures, climate change

Procedia PDF Downloads 49
4562 Investigation on the Behavior of Conventional Reinforced Coupling Beams

Authors: Akash K. Walunj, Dipendu Bhunia, Samarth Gupta, Prabhat Gupta

Abstract:

Coupled shear walls consist of two shear walls connected intermittently by beams along the height. The behavior of coupled shear walls is mainly governed by the coupling beams. The coupling beams are designed for ductile inelastic behavior in order to dissipate energy. The base of the shear walls may be designed for elastic or ductile inelastic behavior. The amount of energy dissipation depends on the yield moment capacity and plastic rotation capacity of the coupling beams. In this paper, an analytical model of coupling beam was developed to calculate the rotations and moment capacities of coupling beam with conventional reinforcement.

Keywords: design studies, computational model(s), case study/studies, modelling, coupling beam

Procedia PDF Downloads 442
4561 Marketing Practices of the Urban and Recycled Wood Industry in the United States

Authors: Robert Smith, Omar Espinoza, Anna Pitta

Abstract:

In the United States, trees felled in urban areas and wood generated through construction and demolition are primarily disposed of as low-value resources, such as biomass for energy, landscaping mulch, composting, or landfilled. An emerging industry makes use of these underutilized resources to produce high value-added products, with associated benefits for the environment, the local economy, and consumers. For the circular economy to be successful, markets must be created for sustainable, reusable natural materials. Research was carried out to increase the understanding of the marketing practices of urban and reclaimed wood industries. This paper presents the results of a nationwide survey of these companies. The results indicate that a majority of companies in this industry are small firms, operating for less than 10 years, which produce mostly to order and sell their products at comparatively higher prices than competing products made from virgin natural resources. Promotional messages included quality, aesthetics, and customization, conveyed through company webpages, word of mouth, and social media. Distribution channels used include direct sales, online sales, and retail sales. Partnerships are critical for effective raw material procurement. Respondents indicated optimistic growth expectations, despite barriers associated with urban and reclaimed wood materials and production.

Keywords: urban and reclaimed wood, circular economy, marketing, wood products

Procedia PDF Downloads 91
4560 The Effects of Placement and Cross-Section Shape of Shear Walls in Multi-Story RC Buildings with Plan Irregularity on Their Seismic Behavior by Using Nonlinear Time History Analyses

Authors: Mohammad Aminnia, Mahmood Hosseini

Abstract:

Environmental and functional conditions sometimes necessitate the architectural plan of the building to be asymmetric, and this result in an asymmetric structure. In such cases, finding an optimal pattern for locating the components of the lateral load bearing system, including shear walls, in the building’s plan is desired. In case of shear walls, in addition to the location, the shape of the wall cross-section is also an effective factor. Various types of shear wall and their proper layout might come effective in better stiffness distribution and more appropriate seismic response of the building. Several studies have been conducted in the context of analysis and design of shear walls; however, few studies have been performed on making decisions for the location and form of shear walls in multi-story buildings, especially those with irregular plan. In this study, an attempt has been made to obtain the most reliable seismic behavior of multi-story reinforced concrete vertically chamfered buildings by using more appropriate shear walls form and arrangement in 7-, 10-, 12-, and 15-story buildings. The considered forms and arrangements include common rectangular walls and L-, T-, U- and Z-shaped plan, located as the core or in the outer frames of the building structure. Comparison of seismic behaviors of the buildings, including maximum roof displacement, and particularly the formation of plastic hinges and their distribution in the buildings’ structures, have been done based on the results of a series of nonlinear time history analyses by using a set of selected earthquake records. Results show that shear walls with U-shaped cross-section, placed as the building central core, and also walls with Z-shaped cross-section, placed at the corners give the building more reliable seismic behavior.

Keywords: vertically chamfered buildings, non-linear time history analyses, l-, t-, u- and z-shaped plan walls

Procedia PDF Downloads 231
4559 Historiography of Wood Construction in Portugal

Authors: João Gago dos Santos, Paulo Pereira Almeida

Abstract:

The present study intends to deepen and understand the reasons that led to the decline and disappearance of wooden construction systems in Portugal, for that reason, its use in history must be analyzed. It is observed that this material was an integral part of the construction systems in Europe and Portugal for centuries, and it is possible to conclude that its decline happens with the appearance of hybrid construction and later with the emergence and development of reinforced concrete technology. It is also verified that wood as a constructive element, and for that reason, an element of development had great importance in national construction, with its peak being the Pombaline period, after the 1755 earthquake. In this period, the great scarcity of materials in the metropolis led to the import wood from Brazil for the reconstruction of Lisbon. This period is linked to an accentuated exploitation of forests, resulting in laws and royal decrees aimed at protecting them, guaranteeing the continued existence of profitable forests, crucial to the reconstruction effort. The following period, with the gradual loss of memory of the catastrophe, resulted in a construction that was weakened structurally as a response to a time of real estate speculation and great urban expansion. This was the moment that precluded the inexistence of the use of wood in construction. At the beginning of the 20th century and in the 30s and 40s, with the appearance and development of reinforced concrete, it became part of the great structures of the state, and it is considered a versatile material capable of resolving issues throughout the national territory. It is at this point that the wood falls into disuse and practically disappears from the new works produced.

Keywords: construction history, construction in portugal, construction systems, wood construction

Procedia PDF Downloads 97
4558 Synthesis and Properties of Oxidized Corn Starch Based Wood Adhesive

Authors: Salise Oktay, Nilgun Kizilcan, Basak Bengu

Abstract:

At present, formaldehyde-based adhesives such as urea-formaldehyde (UF), melamine-formaldehyde (MF), melamine – urea-formaldehyde (MUF), etc. are mostly used in wood-based panel industry because of their high reactivity, chemical versatility, and economic competitiveness. However, formaldehyde-based wood adhesives are produced from non- renewable resources and also formaldehyde is classified as a probable human carcinogen (Group B1) by the U.S. Environmental Protection Agency (EPA). Therefore, there has been a growing interest in the development of environment-friendly, economically competitive, bio-based wood adhesives to meet wood-based panel industry requirements. In this study, like a formaldehyde-free adhesive, oxidized starch – urea wood adhesives was synthesized. In this scope, firstly, acid hydrolysis of corn starch was conducted and then acid thinned corn starch was oxidized by using hydrogen peroxide and CuSO₄ as an oxidizer and catalyst, respectively. Secondly, the polycondensation reaction between oxidized starch and urea conducted. Finally, nano – TiO₂ was added to the reaction system to strengthen the adhesive network. Solid content, viscosity, and gel time analyses of the prepared adhesive were performed to evaluate the adhesive processability. FTIR, DSC, TGA, SEM characterization techniques were used to investigate chemical structures, thermal, and morphological properties of the adhesive, respectively. Rheological analysis of the adhesive was also performed. In order to evaluate the quality of oxidized corn starch – urea adhesives, particleboards were produced in laboratory scale and mechanical and physical properties of the boards were investigated such as an internal bond, modulus of rupture, modulus of elasticity, formaldehyde emission, etc. The obtained results revealed that oxidized starch – urea adhesives were synthesized successfully and it can be a good potential candidate to use the wood-based panel industry with some developments.

Keywords: nano-TiO₂, corn starch, formaldehyde emission, wood adhesives

Procedia PDF Downloads 119
4557 Thermodynamic Performance Tests for 3D Printed Steel Slag Powder Concrete Walls

Authors: Li Guoyou, Zhang Tao, Ji Wenzhan, Huo Liang, Lin Xiqiang, Zhang Nan

Abstract:

The three dimensional (3D) printing technology has undergone rapid development in the last few years and it is possible to print engineering structures. 3D printing buildings use wastes from constructions, industries and mine tailings as “ink”, and mix it with property improved materials, such as cement, fiber etc. This paper presents a study of the Thermodynamic performance of 3D printed walls using cement and steel slag powder. Analyses the thermal simulation regarding 3D printed walls and solid brick wall by the way of the hot-box methods and the infrared technology, and the results were contrasted with theoretical calculation. The results show that the excellent thermodynamic performance of 3D printed concrete wall made it suitable as the partial materials for self-thermal insulation walls in residential buildings. The thermodynamic performance of 3D printed concrete walls depended on the density of materials, distribution of holes, and the filling materials. Decreasing the density of materials, increasing the number of holes or replacing the filling materials with foamed concrete could improve its thermodynamic performance significantly. The average of heat transfer coefficient and thermal inertia index of 3D printed steel slag powder concrete wall all better than the traditional solid brick wall with a thickness of 240mm.

Keywords: concrete, 3D printed walls, thermodynamic performance, steel slag powder

Procedia PDF Downloads 159
4556 Settlement Analysis of Back-To-Back Mechanically Stabilized Earth Walls

Authors: Akhila Palat, B. Umashankar

Abstract:

Back-to-back Mechanically Stabilized Earth (MSE) walls are cost-effective soil-retaining structures that can tolerate large settlements compared to conventional gravity retaining walls. They are also an economical way to meet everyday earth retention needs for highway and bridge grade separations, railroads, commercial and residential developments. But, existing design guidelines (FHWA/BS/ IS codes) do not provide a mechanistic approach for the design of back-to-back reinforced retaining walls. The settlement analysis of such structures is limited in the literature. A better understanding of the deformations of this wall system requires an analytical tool that incorporates the properties of backfill material, foundation soil, and geosynthetic reinforcement, and account for the soil–structure interactions in a realistic manner. This study was conducted to investigate the effect of reinforced back-to-back MSE walls on wall settlements and facing deformations. Back-to-back reinforced retaining walls were modeled and compared using commercially available finite difference package FLAC 2D. Parametric studies were carried out for various angles of shearing resistance of backfill material and foundation soil, and the axial stiffness of the reinforcement. A 6m-high wall was modeled, and the facing panels were taken as full-length panels with nominal thickness. Reinforcement was modeled as cable elements (two-dimensional structural elements). Interfaces were considered between soil and wall, and soil and reinforcement.

Keywords: back-to-back walls, numerical modeling, reinforced wall, settlement

Procedia PDF Downloads 271
4555 Effects of Directivity and Fling Step on Buildings Equipped with J-Hook Sandwich Composite Walls and Reinforced Concrete Shear Walls

Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar

Abstract:

The structural systems with the sandwich composite wall (SCSSC) are of very popular due to their ductileness and competency to swallow more energy and power than standard reinforced concrete shear walls. The purpose of this enhanced system is in high-rise building, Nuclear power plant facilities, and bridge slabs are much more. SCSSCs showed acceptable seismic performance under experimental tests and cyclic loading from the points of view of in-plane and out-of-plane shear and flexural interaction, in-plane punching shear, and compressive behavior. The use of sandwich composite walls with J-hook connectors has a significant effect on energy dissipation and reduction of dynamic responses of mid-rise and high-rise structural models. By changing the systems of the building from SW to SCWJ, the maximum inter-story drift values of ten- and fifteen-story models are reduced by up to 25% and 35%, respectively.

Keywords: J-Hook sandwich composite walls, fling step, directivity, IDA analyses, fractile curves

Procedia PDF Downloads 114
4554 Fuelwood Rsources Utilisation and Its Impact on Sustainable Environment: A Rural Perception

Authors: Abubakar Abdullahi

Abstract:

Large amount of human energy are spent gathering and collecting fuel wood in many parts of the world, most especially in rural areas. In Nigeria fuel wood serves million houses in both rural and urban centers for various energy needs. It’s a common scene in many places while passing by roads to see bunch of woods being sold by the road sides. Even though the resource serves millions of peoples energy needs it has serious consequences on our environment, thus sustainable environment. Majority of the rural areas who rely heavily on the firewood as a means of energy are not aware of the dangers associated with the uses of the products. The aim of this work is to look into the utilization of fuel wood among rural dwellers and their perception about the dangers associated with it and how to sustain our environment. The methodology used involves a structured questionnaire designed with the question about the utilization and perception. The questionnaire is administered to the people of Kashere, a rural area in Gombe state. The result clearly shows there is a high level of ignorance among rural dwellers on the dangers of using fuel wood and how it constitute the depletion of the immediate environment. However, what is surprising in the research is the people’s readiness for alternative energy sources. The research recommend that proper orientation and sensitization is required to create education and awareness to the rural dwellers as well as provide alternative energy that is available, environment friendly and accessible to address the problems.

Keywords: energy, rural dwellers, environment, fuel wood, resources

Procedia PDF Downloads 465
4553 Single-Cell Visualization with Minimum Volume Embedding

Authors: Zhenqiu Liu

Abstract:

Visualizing the heterogeneity within cell-populations for single-cell RNA-seq data is crucial for studying the functional diversity of a cell. However, because of the high level of noises, outlier, and dropouts, it is very challenging to measure the cell-to-cell similarity (distance), visualize and cluster the data in a low-dimension. Minimum volume embedding (MVE) projects the data into a lower-dimensional space and is a promising tool for data visualization. However, it is computationally inefficient to solve a semi-definite programming (SDP) when the sample size is large. Therefore, it is not applicable to single-cell RNA-seq data with thousands of samples. In this paper, we develop an efficient algorithm with an accelerated proximal gradient method and visualize the single-cell RNA-seq data efficiently. We demonstrate that the proposed approach separates known subpopulations more accurately in single-cell data sets than other existing dimension reduction methods.

Keywords: single-cell RNA-seq, minimum volume embedding, visualization, accelerated proximal gradient method

Procedia PDF Downloads 198
4552 Ranking of Optimal Materials for Building Walls from the Perspective of Cost and Waste of Electricity and Gas Energy Using AHP-TOPSIS 1 Technique: Study Example: Sari City

Authors: Seyedomid Fatemi

Abstract:

The walls of the building, as the main intermediary between the outside and the inside of the building, play an important role in controlling the environmental conditions and ensuring the comfort of the residents, thus reducing the heating and cooling loads. Therefore, the use of suitable materials is considered one of the simplest and most effective ways to reduce the heating and cooling loads of the building, which will also save energy. Therefore, in order to achieve the goal of the research "Ranking of optimal materials for building walls," optimal materials for building walls in a temperate and humid climate (case example: Sari city) from the perspective of embodied energy, waste of electricity and gas energy, cost and reuse been investigated to achieve sustainable architecture. In this regard, using information obtained from Sari Municipality, design components have been presented by experts using the Delphi method. Considering the criteria of experts' opinions (cost and reuse), the amount of embodied energy of the materials, as well as the amount of waste of electricity and gas of different materials of the walls, with the help of the AHP weighting technique and finally with the TOPSIS technique, the best type of materials in the order of 1- 3-D Panel 2-ICF-, 3-Cement block with pumice, 4-Wallcrete block, 5-Clay block, 6-Autoclaved Aerated Concrete (AAC), 7-Foam cement block, 8-Aquapanel and 9-Reinforced concrete wall for use in The walls of the buildings were proposed in Sari city.

Keywords: optimum materials, building walls, moderate and humid climate, sustainable architecture, AHP-TOPSIS technique

Procedia PDF Downloads 44
4551 The Effects of Spatial Dimensions and Relocation and Dimensions of Sound Absorbers in a Space on the Objective Parameters of Sound

Authors: Mustafa Kavraz

Abstract:

This study investigated the differences in the objective parameters of sound depending on the changes in the lengths of the lateral surfaces of a space and on the replacement of the sound absorbers that are placed on these surfaces. To this end, three models of room were chosen. The widths and heights of these rooms were the same but the lengths of the rooms were changed. The smallest room was 8 m. wide and 10 m. long. The lengths of the other two rooms were 15 m. and 20 m. For each model, the differences in the objective parameters of sound were determined by keeping all the material in the space intact and by changing only the positions of the sound absorbers that were placed on the walls. The sound absorbers that were used on the walls were of two different sizes. The sound absorbers that were placed on the walls were 4 m and 8 m. long and story-height (3 m.). In all model room types, the sound absorbers were placed on the long walls in three different ways: at the end of the long walls where the long walls meet the front wall; at the end of the long walls where the long walls meet the back wall; and in the middle part of the long walls. Except for the specially placed sound absorbers, the ground, wall and ceiling surfaces were covered with three different materials. There were no constructional elements such as doors and windows on the walls. On the surfaces, the materials specified in the Odeon 10 material library were used as coating material. Linoleum was used as flooring material, painted plaster as wall coating material and gypsum boards as ceiling covering (2 layers with a total of 32 mm. thickness). These were preferred due to the fact that they are the commonly used materials for these purposes. This study investigated the differences in the objective parameters of sound depending on the changes in the lengths of the lateral surfaces of a space and on the replacement of the sound absorbers that are placed on these surfaces. To this end, three models of room were chosen. The widths and heights of these rooms were the same but the lengths of the rooms were changed. The smallest room was 8 m. wide and 10 m. long. The lengths of the other two rooms were 15 m. and 20 m. For each model, the differences in the objective parameters of sound were determined by keeping all the material in the space intact and by changing only the positions of the sound absorbers that were placed on the walls. The sound absorbers that were used on the walls were of two different sizes. The sound absorbers that were placed on the walls were 4 m and 8 m. long and story-height (3 m.). In all model room types, the sound absorbers were placed on the long walls in three different ways: at the end of the long walls where the long walls meet the front wall; at the end of the long walls where the long walls meet the back wall; and in the middle part of the long walls. Except for the specially placed sound absorbers, the ground, wall and ceiling surfaces were covered with three different materials. There were no constructional elements such as doors and windows on the walls. On the surfaces, the materials specified in the Odeon 10 material library were used as coating material. Linoleum was used as flooring material, painted plaster as wall coating material and gypsum boards as ceiling covering (2 layers with a total of 32 mm. thickness). These were preferred due to the fact that they are the commonly used materials for these purposes.

Keywords: sound absorber, room model, objective parameters of sound, jnd

Procedia PDF Downloads 354
4550 The Effects of T-Walls on Urban Landscape and Quality of Life and Anti-Terror Design Concept in Kabul, Afghanistan

Authors: Fakhrullah Sarwari, Hiroko Ono

Abstract:

Kabul city has suffered a lot in 40 years of conflict of civil war and “The war on terror”. After the invasion of Afghanistan by the United States of America and its allies in 2001, the Taliban was removed from operational power, but The Taliban and other terrorist groups remained in remote areas of the country, they started suicide attacks and bombings. Hence to protect from these attacks officials surrounded their office buildings and houses with concrete blast walls. It gives a bad landscape to the city and creates traffic congestions. Our research contains; questionnaire, reviewing Kabul Municipality documents and literature review. Questionnaires were distributed to Kabul citizens to find out how people feel by seeing the T-Walls on Kabul streets? And what problems they face with T-Walls. “The T-Walls pull down commission” of Kabul Municipality documents were reviewed to find out what caused the failure of this commission. A literature review has been done to compare Kabul with Washington D.C on how they designed the city against terrorism threat without turning the cities into lock down. Bogota city of Columbia urban happiness movement is reviewed and compared with Kabul. The finding of research revealed that citizens of Kabul want security but not at the expense of public realm and creating the architecture of fear. It also indicates that increasing the T-walls do not give secure feeling but instead; it increases terror, hatred and affect people’s optimism. At the end, a series of recommendation is suggested on the issue.

Keywords: anti-terror design, Kabul, T-Walls, urban happiness

Procedia PDF Downloads 130
4549 Finite Element Analysis of RC Frames with Retrofitted Infill Walls

Authors: M. Ömer Timurağaoğlu, Adem Doğangün, Ramazan Livaoğlu

Abstract:

The evaluation of performance of infilled reinforced concrete (RC) frames has been a significant challenge for engineers. The strengthening of infill walls has been an important concern to enhance the behavior of RC infilled frames. The aim of this study is to investigate the behaviour of retrofitted infill walls of RC frames using finite element analysis. For this purpose, a one storey, one bay infilled and strengthened infilled RC frame which have the same geometry and material properties with the frames tested in laboratory are modelled using different analytical approaches. A fibrous material is used to strengthen infill walls and frame. As a consequence, the results of the finite element analysis were evaluated of whether these analytical approaches estimate the behavior or not. To model the infilled and strengthened infilled RC frames, a finite element program ABAQUS is used. Finally, data obtained from the nonlinear finite element analysis is compared with the experimental results.

Keywords: finite element analysis, infilled RC frames, infill wall, strengthening

Procedia PDF Downloads 492
4548 Effect of Fire Retardant Painting Product on Smoke Optical Density of Burning Natural Wood Samples

Authors: Abdullah N. Olimat, Ahmad S. Awad, Faisal M. AL-Ghathian

Abstract:

Natural wood is used in many applications in Jordan such as furniture, partitions constructions, and cupboards. Experimental work for smoke produced by the combustion of certain wood samples was studied. Smoke generated from burning of natural wood, is considered as a major cause of death in furniture fires. The critical parameter for life safety in fires is the available time for escape, so the visual obscuration due to smoke release during fire is taken into consideration. The effect of smoke, produced by burning of wood, depends on the amount of smoke released in case of fire. The amount of smoke production, apparently, affects the time available for the occupants to escape. To achieve the protection of life of building occupants during fire growth, fire retardant painting products are tested. The tested samples of natural wood include Beech, Ash, Beech Pine, and white Beech Pine. A smoke density chamber manufactured by fire testing technology has been used to perform measurement of smoke properties. The procedure of test was carried out according to the ISO-5659. A nonflammable vertical radiant heat flux of 25 kW/m2 is exposed to the wood samples in a horizontal orientation. The main objective of the current study is to carry out the experimental tests for samples of natural woods to evaluate the capability to escape in case of fire and the fire safety requirements. Specific optical density, transmittance, thermal conductivity, and mass loss are main measured parameters. Also, comparisons between samples with paint and with no paint are carried out between the selected samples of woods.

Keywords: extinction coefficient, optical density, transmittance, visibility

Procedia PDF Downloads 206
4547 Elastic Constants of Fir Wood Using Ultrasound and Compression Tests

Authors: Ergun Guntekin

Abstract:

Elastic constants of Fir wood (Abies cilicica) have been investigated by means of ultrasound and compression tests. Three modulus of elasticity in principal directions (EL, ER, ET), six Poisson’s ratios (ʋLR, ʋLT, ʋRT, ʋTR, ʋRL, ʋTL) and three shear modules (GLR, GRT, GLT) were determined. 20 x 20 x 60 mm samples were conditioned at 65 % relative humidity and 20ºC before testing. Three longitudinal and six shear wave velocities propagating along the principal axes of anisotropy, and additionally, three quasi-shear wave velocities at 45° angle with respect to the principal axes of anisotropy were measured. 2.27 MHz longitudinal and 1 MHz shear sensors were used for obtaining sound velocities. Stress-strain curves of the samples in compression tests were obtained using bi-axial extensometer in order to calculate elastic constants. Test results indicated that most of the elastic constants determined in the study are within the acceptable range. Although elastic constants determined from ultrasound are usually higher than those determined from compression tests, the values of EL and GLR determined from compression tests were higher in the study. The results of this study can be used in the numerical modeling of elements or systems under load using Fir wood.

Keywords: compression tests, elastic constants, fir wood, ultrasound

Procedia PDF Downloads 189
4546 Life Cycle Assessment as a Decision Making for Window Performance Comparison in Green Building Design

Authors: Ghada Elshafei, Abdelazim Negm

Abstract:

Life cycle assessment is a technique to assess the environmental aspects and potential impacts associated with a product, process, or service, by compiling an inventory of relevant energy and material inputs and environmental releases; evaluating the potential environmental impacts associated with identified inputs and releases; and interpreting the results to help you make a more informed decision. In this paper, the life cycle assessment of aluminum and beech wood as two commonly used materials in Egypt for window frames are heading, highlighting their benefits and weaknesses. Window frames of the two materials have been assessed on the basis of their production, energy consumption and environmental impacts. It has been found that the climate change of the windows made of aluminum and beech wood window, for a reference window (1.2m × 1.2m), are 81.7 mPt and - 52.5 mPt impacts respectively. Among the most important results are: fossil fuel consumption, potential contributions to the green building effect and quantities of solid waste tend to be minor for wood products compared to aluminum products; incineration of wood products can cause higher impacts of acidification and eutrophication than aluminum, whereas thermal energy can be recovered.

Keywords: aluminum window, beech wood window, green building, life cycle assessment, life cycle analysis, SimaPro software, window frame

Procedia PDF Downloads 419
4545 Failure Simulation of Small-scale Walls with Chases Using the Lattic Discrete Element Method

Authors: Karina C. Azzolin, Luis E. Kosteski, Alisson S. Milani, Raquel C. Zydeck

Abstract:

This work aims to represent Numerically tests experimentally developed in reduced scale walls with horizontal and inclined cuts by using the Lattice Discrete Element Method (LDEM) implemented On de Abaqus/explicit environment. The cuts were performed with depths of 20%, 30%, and 50% On the walls subjected to centered and eccentric loading. The parameters used to evaluate the numerical model are its strength, the failure mode, and the in-plane and out-of-plane displacements.

Keywords: structural masonry, wall chases, small scale, numerical model, lattice discrete element method

Procedia PDF Downloads 150