Search results for: wearable sensing system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18003

Search results for: wearable sensing system

17793 Analyzing Impacts of Road Network on Vegetation Using Geographic Information System and Remote Sensing Techniques

Authors: Elizabeth Malebogo Mosepele

Abstract:

Road transport has become increasingly common in the world; people rely on road networks for transportation purpose on a daily basis. However, environmental impact of roads on surrounding landscapes extends their potential effects even further. This study investigates the impact of road network on natural vegetation. The study will provide baseline knowledge regarding roadside vegetation and would be helpful in future for conservation of biodiversity along the road verges and improvements of road verges. The general hypothesis of this study is that the amount and condition of road side vegetation could be explained by road network conditions. Remote sensing techniques were used to analyze vegetation conditions. Landsat 8 OLI image was used to assess vegetation cover condition. NDVI image was generated and used as a base from which land cover classes were extracted, comprising four categories viz. healthy vegetation, degraded vegetation, bare surface, and water. The classification of the image was achieved using the supervised classification technique. Road networks were digitized from Google Earth. For observed data, transect based quadrats of 50*50 m were conducted next to road segments for vegetation assessment. Vegetation condition was related to road network, with the multinomial logistic regression confirming a significant relationship between vegetation condition and road network. The null hypothesis formulated was that 'there is no variation in vegetation condition as we move away from the road.' Analysis of vegetation condition revealed degraded vegetation within close proximity of a road segment and healthy vegetation as the distance increase away from the road. The Chi Squared value was compared with critical value of 3.84, at the significance level of 0.05 to determine the significance of relationship. Given that the Chi squared value was 395, 5004, the null hypothesis was therefore rejected; there is significant variation in vegetation the distance increases away from the road. The conclusion is that the road network plays an important role in the condition of vegetation.

Keywords: Chi squared, geographic information system, multinomial logistic regression, remote sensing, road side vegetation

Procedia PDF Downloads 399
17792 Image Reconstruction Method Based on L0 Norm

Authors: Jianhong Xiang, Hao Xiang, Linyu Wang

Abstract:

Compressed sensing (CS) has a wide range of applications in sparse signal reconstruction. Aiming at the problems of low recovery accuracy and long reconstruction time of existing reconstruction algorithms in medical imaging, this paper proposes a corrected smoothing L0 algorithm based on compressed sensing (CSL0). First, an approximate hyperbolic tangent function (AHTF) that is more similar to the L0 norm is proposed to approximate the L0 norm. Secondly, in view of the "sawtooth phenomenon" in the steepest descent method and the problem of sensitivity to the initial value selection in the modified Newton method, the use of the steepest descent method and the modified Newton method are jointly optimized to improve the reconstruction accuracy. Finally, the CSL0 algorithm is simulated on various images. The results show that the algorithm proposed in this paper improves the reconstruction accuracy of the test image by 0-0. 98dB.

Keywords: smoothed L0, compressed sensing, image processing, sparse reconstruction

Procedia PDF Downloads 90
17791 Strain Sensing Seams for Monitoring Body Movement

Authors: Sheilla Atieno Odhiambo, Simona Vasile, Alexandra De Raeve, Ann Schwarz

Abstract:

Strain sensing seams have been developed by integrating conductive sewing threads in different types of seams design on a fabric typical for sports clothing using sewing technology. The aim is to have a simple integrated textile strain sensor that can be applied to sports clothing to monitor the movements of the upper body parts of the user during sports. Different types of commercially available sewing threads were used as the bobbin thread in the production of different architectural seam sensors. These conductive sewing threads have been integrated into seams in particular designs using specific seam types. Some of the threads are delicate and needed to be laid into the seam with as little friction as possible and less tension; thus, they could only be sewn in as the bobbin thread and not the needle thread. Stitch type 304; 406; 506; 601;602; 605. were produced. The seams were made on a fabric of 80% polyamide 6.6 and 20% elastane. The seams were cycled(stretch-release-stretch) for five cycles and up to 44 cycles following EN ISO 14704-1: 2005 (modified), using a tensile instrument and the changes in the resistance of the seams with time were recorded using Agilent meter U1273A. Both experiments were conducted simultaneously on the same seam sample. Sensing functionality, among which is sensor gauge and reliability, were evaluated on the promising sensor seams. The results show that the sensor seams made from HC Madeira 40 conductive yarns performed better inseam stitch 304 and 602 compared to the other combination of stitch type and conductive sewing threads. These sensing seams 304, 406 and 602 will further be interconnected to our developed processing and communicating unit and further integrated into a sports clothing prototype that can track body posture. This research is done within the framework of the project SmartSeam.

Keywords: conductive sewing thread, sensing seams, smart seam, sewing technology

Procedia PDF Downloads 161
17790 Detection of Nanotoxic Material Using DNA Based QCM

Authors: Juneseok You, Chanho Park, Kuehwan Jang, Sungsoo Na

Abstract:

Sensing of nanotoxic materials is strongly important, as their engineering applications are growing recently and results in that nanotoxic material can harmfully influence human health and environment. In current study we report the quartz crystal microbalance (QCM)-based, in situ and real-time sensing of nanotoxic-material by frequency shift. We propose the in situ detection of nanotoxic material of zinc oxice by using QCM functionalized with a taget-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz electrode is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated the in-situ and fast detection of zinc oxide using the quartz crystal microbalance (QCM). The detection was derived from the DNA hybridization between the DNA on the quartz electrode. The results suggest that QCM-based detection opens a new avenue for the development of a practical water-testing sensor.

Keywords: nanotoxic material, qcm, frequency, in situ sensing

Procedia PDF Downloads 395
17789 Simulation and Fabrication of Plasmonic Lens for Bacteria Detection

Authors: Sangwoo Oh, Jaewoo Kim, Dongmin Seo, Jaewon Park, Yongha Hwang, Sungkyu Seo

Abstract:

Plasmonics has been regarded one of the most powerful bio-sensing modalities to evaluate bio-molecular interactions in real-time. However, most of the plasmonic sensing methods are based on labeling metallic nanoparticles, e.g. gold or silver, as optical modulation markers, which are non-recyclable and expensive. This plasmonic modulation can be usually achieved through various nano structures, e.g., nano-hole arrays. Among those structures, plasmonic lens has been regarded as a unique plasmonic structure due to its light focusing characteristics. In this study, we introduce a custom designed plasmonic lens array for bio-sensing, which was simulated by finite-difference-time-domain (FDTD) approach and fabricated by top-down approach. In our work, we performed the FDTD simulations of various plasmonic lens designs for bacteria sensor, i.e., Samonella and Hominis. We optimized the design parameters, i.e., radius, shape, and material, of the plasmonic lens. The simulation results showed the change in the peak intensity value with the introduction of each bacteria and antigen i.e., peak intensity 1.8711 a.u. with the introduction of antibody layer of thickness of 15nm. For Salmonella, the peak intensity changed from 1.8711 a.u. to 2.3654 a.u. and for Hominis, the peak intensity changed from 1.8711 a.u. to 3.2355 a.u. This significant shift in the intensity due to the interaction between bacteria and antigen showed a promising sensing capability of the plasmonic lens. With the batch processing and bulk production of this nano scale design, the cost of biological sensing can be significantly reduced, holding great promise in the fields of clinical diagnostics and bio-defense.

Keywords: plasmonic lens, FDTD, fabrication, bacteria sensor, salmonella, hominis

Procedia PDF Downloads 249
17788 Study of Human Upper Arm Girth during Elbow Isokinetic Contractions Based on a Smart Circumferential Measuring System

Authors: Xi Wang, Xiaoming Tao, Raymond C. H. So

Abstract:

As one of the convenient and noninvasive sensing approaches, the automatic limb girth measurement has been applied to detect intention behind human motion from muscle deformation. The sensing validity has been elaborated by preliminary researches but still need more fundamental study, especially on kinetic contraction modes. Based on the novel fabric strain sensors, a soft and smart limb girth measurement system was developed by the authors’ group, which can measure the limb girth in-motion. Experiments were carried out on elbow isometric flexion and elbow isokinetic flexion (biceps’ isokinetic contractions) of 90°/s, 60°/s, and 120°/s for 10 subjects (2 canoeists and 8 ordinary people). After removal of natural circumferential increments due to elbow position, the joint torque is found not uniformly sensitive to the limb circumferential strains, but declining as elbow joint angle rises, regardless of the angular speed. Moreover, the maximum joint torque was found as an exponential function of the joint’s angular speed. This research highly contributes to the application of the automatic limb girth measuring during kinetic contractions, and it is useful to predict the contraction level of voluntary skeletal muscles.

Keywords: fabric strain sensor, muscle deformation, isokinetic contraction, joint torque, limb girth strain

Procedia PDF Downloads 302
17787 HR MRI CS Based Image Reconstruction

Authors: Krzysztof Malczewski

Abstract:

Magnetic Resonance Imaging (MRI) reconstruction algorithm using compressed sensing is presented in this paper. It is exhibited that the offered approach improves MR images spatial resolution in circumstances when highly undersampled k-space trajectories are applied. Compressed Sensing (CS) aims at signal and images reconstructing from significantly fewer measurements than were conventionally assumed necessary. Magnetic Resonance Imaging (MRI) is a fundamental medical imaging method struggles with an inherently slow data acquisition process. The use of CS to MRI has the potential for significant scan time reductions, with visible benefits for patients and health care economics. In this study the objective is to combine super-resolution image enhancement algorithm with CS framework benefits to achieve high resolution MR output image. Both methods emphasize on maximizing image sparsity on known sparse transform domain and minimizing fidelity. The presented algorithm considers the cardiac and respiratory movements.

Keywords: super-resolution, MRI, compressed sensing, sparse-sense, image enhancement

Procedia PDF Downloads 397
17786 Assesing Spatio-Temporal Growth of Kochi City Using Remote Sensing Data

Authors: Navya Saira George, Patroba Achola Odera

Abstract:

This study aims to determine spatio-temporal expansion of Kochi City, situated on the west coast of Kerala State in India. Remote sensing and GIS techniques have been used to determine land use/cover and urban expansion of the City. Classification of Landsat images of the years 1973, 1988, 2002 and 2018 have been used to reproduce a visual story of the growth of the City over a period of 45 years. Accuracy range of 0.79 ~ 0.86 is achieved with kappa coefficient range of 0.69 ~ 0.80. Results show that the areas covered by vegetation and water bodies decreased progressively from 53.0 ~ 30.1% and 34.1 ~ 26.2% respectively, while built-up areas increased steadily from 12.5 to 42.2% over the entire study period (1973 ~ 2018). The shift in land use from agriculture to non-agriculture may be attributed to the land reforms since 1980s.

Keywords: Geographical Information Systems, Kochi City, Land use/cover, Remote Sensing, Urban Sprawl

Procedia PDF Downloads 104
17785 Sub-Pixel Level Classification Using Remote Sensing For Arecanut Crop

Authors: S. Athiralakshmi, B.E. Bhojaraja, U. Pruthviraj

Abstract:

In agriculture, remote sensing is applied for monitoring of plant development, evaluating of physiological processes and growth conditions. Especially valuable are the spatio-temporal aspects of the remotely sensed data in detecting crop state differences and stress situations. In this study, hyperion imagery is used for classifying arecanut crops based on their age so that these maps can be used in yield estimation of crops, irrigation purposes, applying fertilizers etc. Traditional hard classifiers assigns the mixed pixels to the dominant classes. The proposed method uses a sub pixel level classifier called linear spectral unmixing available in ENVI software. It provides the relative abundance of surface materials and the context within a pixel that may be a potential solution to effectively identifying the land-cover distribution. Validation is done referring to field spectra collected using spectroradiometer and the ground control points obtained from GPS.

Keywords: FLAASH, Hyperspectral remote sensing, Linear Spectral Unmixing, Spectral Angle Mapper Classifier.

Procedia PDF Downloads 486
17784 Preparation and Characterization of Hybrid Perovskite Enhanced with PVDF for Pressure Sensing

Authors: Mohamed E. Harb, Enas Moustafa, Shaker Ebrahim, Moataz Soliman

Abstract:

In this paper pressure detectors were synthesized and characterized using hybrid perovskite/PVDF composites as an active layer. Methylammonium lead iodide (MAPbI₃) was synthesized from methylammonium iodide (MAI) (CH₃NH₃I) and lead iodide (PbI₂). Composites of perovskite/PVDF using different weight ratio were prepared as the active material. PVDF with weights percentages of 6%, 8%, and 10% was used. All prepared materials were investigated by x-ray diffraction (XRD), Fourier transforms infrared spectrum (FTIR) and scanning electron microscopy (SEM). A Versastat 4 Potentiostat Galvanostat instrument was used to perform the current-voltage characteristics of the fabricated sensors. The pressure sensors exhibited a voltage increase with applying different forces. Also, the current-voltage characteristics (CV) showed different effects with applying forces. So, the results showed a good pressure sensing performance.

Keywords: perovskite semiconductor, hybrid perovskite, PVDF, Pressure sensing

Procedia PDF Downloads 173
17783 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification

Authors: Samiah Alammari, Nassim Ammour

Abstract:

When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on HSI dataset Indian Pines. The results confirm the capability of the proposed method.

Keywords: continual learning, data reconstruction, remote sensing, hyperspectral image segmentation

Procedia PDF Downloads 216
17782 Textile-Based Sensing System for Sleep Apnea Detection

Authors: Mary S. Ruppert-Stroescu, Minh Pham, Bruce Benjamin

Abstract:

Sleep apnea is a condition where a person stops breathing and can lead to cardiovascular disease, hypertension, and stroke. In the United States, approximately forty percent of overnight sleep apnea detection tests are cancelled. The purpose of this study was to develop a textile-based sensing system that acquires biometric signals relevant to cardiovascular health, to transmit them wirelessly to a computer, and to quantitatively assess the signals for sleep apnea detection. Patient interviews, literature review and market analysis defined a need for a device that ubiquitously integrated into the patient’s lifestyle. A multi-disciplinary research team of biomedical scientists, apparel designers, and computer engineers collaborated to design a textile-based sensing system that gathers EKG, Sp02, and respiration, then wirelessly transmits the signals to a computer in real time. The electronic components were assembled from existing hardware, the Health Kit which came pre-set with EKG and Sp02 sensors. The respiration belt was purchased separately and its electronics were built and integrated into the Health Kit mother board. Analog ECG signals were amplified and transmitted to the Arduino™ board where the signal was converted from analog into digital. By using textile electrodes, ECG lead-II was collected, and it reflected the electrical activity of the heart. Signals were collected when the subject was in sitting position and at sampling rate of 250 Hz. Because sleep apnea most often occurs in people with obese body types, prototypes were developed for a man’s size medium, XL, and XXL. To test user acceptance and comfort, wear tests were performed on 12 subjects. Results of the wear tests indicate that the knit fabric and t-shirt-like design were acceptable from both lifestyle and comfort perspectives. The airflow signal and respiration signal sensors return good signals regardless of movement intensity. Future study includes reconfiguring the hardware to a smaller size, developing the same type of garment for the female body, and further enhancing the signal quality.

Keywords: sleep apnea, sensors, electronic textiles, wearables

Procedia PDF Downloads 241
17781 Quorum-Sensing Driven Inhibitors for Mitigating Microbial Influenced Corrosion

Authors: Asma Lamin, Anna H. Kaksonen, Ivan Cole, Paul White, Xiao-Bo Chen

Abstract:

Microbiologically influenced corrosion (MIC) is a process in which microorganisms initiate, facilitate, or accelerate the electrochemical corrosion reactions of metallic components. Several reports documented that MIC accounts for about 20 to 40 % of the total cost of corrosion. Biofilm formation due to the presence of microorganisms on the surface of metal components is known to play a vital role in MIC, which can lead to severe consequences in various environmental and industrial settings. Quorum sensing (QS) system plays a major role in regulating biofilm formation and control the expression of some microbial enzymes. QS is a communication mechanism between microorganisms that involves the regulation of gene expression as a response to the microbial cell density within an environment. This process is employed by both Gram-positive and Gram-negative bacteria to regulate different physiological functions. QS involves production, detection, and responses to signalling chemicals, known as auto-inducers. QS controls specific processes important for the microbial community, such as biofilm formation, virulence factor expression, production of secondary metabolites and stress adaptation mechanisms. The use of QS inhibitors (QSIs) has been proposed as a possible solution to biofilm related challenges in many different applications. Although QSIs have demonstrated some strength in tackling biofouling, QSI-based strategies to control microbially influenced corrosion have not been thoroughly investigated. As such, our research aims to target the QS mechanisms as a strategy for mitigating MIC on metal surfaces in engineered systems.

Keywords: quorum sensing, quorum quenching, biofilm, biocorrosion

Procedia PDF Downloads 62
17780 Non-Contact Digital Music Instrument Using Light Sensing Technology

Authors: Aishwarya Ravichandra, Kirtana Kirtivasan, Adithi Mahesh, Ashwini S.Savanth

Abstract:

A Non-Contact Digital Music System has been conceptualized and implemented to create a new era of digital music. This system replaces the strings of a traditional stringed instrument with laser beams to avoid bruising of the user’s hand. The system consists of seven laser modules, detector modules and distance sensors that form the basic hardware blocks of this instrument. Arduino ATmega2560 microcontroller is used as the primary interface between the hardware and the software. MIDI (Musical Instrument Digital Interface) is used as the protocol to establish communication between the instrument and the virtual synthesizer software.

Keywords: Arduino, detector, laser, MIDI, note on, note off, pitch bend, Sharp IR distance sensor

Procedia PDF Downloads 378
17779 Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area

Authors: Hemant Kumar, R. N. K. Sharma, A. P. Krishna

Abstract:

The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining.

Keywords: Hyperion, hyperspectral, sensor, Landsat-8

Procedia PDF Downloads 93
17778 Sparsity Order Selection and Denoising in Compressed Sensing Framework

Authors: Mahdi Shamsi, Tohid Yousefi Rezaii, Siavash Eftekharifar

Abstract:

Compressed sensing (CS) is a new powerful mathematical theory concentrating on sparse signals which is widely used in signal processing. The main idea is to sense sparse signals by far fewer measurements than the Nyquist sampling rate, but the reconstruction process becomes nonlinear and more complicated. Common dilemma in sparse signal recovery in CS is the lack of knowledge about sparsity order of the signal, which can be viewed as model order selection procedure. In this paper, we address the problem of sparsity order estimation in sparse signal recovery. This is of main interest in situations where the signal sparsity is unknown or the signal to be recovered is approximately sparse. It is shown that the proposed method also leads to some kind of signal denoising, where the observations are contaminated with noise. Finally, the performance of the proposed approach is evaluated in different scenarios and compared to an existing method, which shows the effectiveness of the proposed method in terms of order selection as well as denoising.

Keywords: compressed sensing, data denoising, model order selection, sparse representation

Procedia PDF Downloads 456
17777 A Combined Fiber-Optic Surface Plasmon Resonance and Ta2O5: rGO Nanocomposite Synergistic Scheme for Trace Detection of Insecticide Fenitrothion

Authors: Ravi Kant, Banshi D. Gupta

Abstract:

The unbridled application of insecticides to enhance agricultural yield has become a matter of grave concern to both the environment and the human health and, thus pose a potential threat to sustainable development. Fenitrothion is an extensively used organophosphate insecticide whose residues are reported to be extremely toxic for birds, humans and aquatic life. A sensitive, swift and accurate detection protocol for fenitrothion is, thus, highly demanded. In this work, we report an SPR based fiber optic sensor for the detection of fenitrothion, where a nanocomposite arrangement of Ta2O5 and reduced graphene oxide (rGO) (Ta₂O₅: rGO) decorated on silver coated unclad core region of an optical fiber forms the sensing channel. A nanocomposite arrangement synergistically integrates the properties of involved components and consequently furnishes a conducive framework for sensing applications. The modification of the dielectric function of the sensing layer on exposure to fenitrothion solutions of diverse concentration forms the sensing mechanism. This modification is reflected in terms of the shift in resonance wavelength. Experimental variables such as the concentration of rGO in the nanocomposite configuration, dip time of silver coated fiber optic probe for deposition of sensing layer and influence of pH on the performance of the sensor have been optimized to extract the best performance of the sensor. SPR studies on the optimized sensing probe reveal the high sensitivity, wide operating range and good reproducibility of the fabricated sensor, which unveil the promising utility of Ta₂O₅: rGO nanocomposite framework for developing an efficient detection methodology for fenitrothion. FOSPR approach in cooperation with nanomaterials projects the present work as a beneficial approach for fenitrothion detection by imparting numerous useful advantages such as sensitivity, selectivity, compactness and cost-effectiveness.

Keywords: surface plasmon resonance, optical fiber, sensor, fenitrothion

Procedia PDF Downloads 180
17776 Gold-Bearing Alteration Zones in South Eastern Desert of Egypt: Geology and Remote Sensing Analysis

Authors: Mohamed F. Sadek, Safaa M. Hassan, Safwat S. Gabr

Abstract:

Several alteration zones hosting gold mineralization are wide spreading in the South Eastern Desert of Egypt where gold has been mined from many localities since the time of the Pharaohs. The Sukkari is the only mine currently producing gold in the Eastern Desert of Egypt. Therefore, it is necessary to conduct more detailed studies on these locations using modern exploratory methods. The remote sensing plays an important role in lithological mapping and detection of associated hydrothermal mineralization particularly the exploration of gold mineralization. This study is focused on three localities in South Eastern Desert of Egypt, namely Beida, Defiet and Hoteib-Eiqat aiming to detect the gold-bearing hydrothermal alteration zones using the integrated data of remote sensing, field study and mineralogical investigation. Generally, these areas are dominated by Precambrian basement rocks including metamorphic and magmatic assemblages. They comprise ophiolitic serpentinite-talc carbonate, island-arc metavolcanics which were intruded by syn to late orogenic mafic and felsic intrusions mainly gabbro, granodiorite and monzogranite. The processed data of Advanced Spaceborne Thermal Emission and Reflection (ASTER) and Landsat-8 images are used in the present study to map the gold bearing-hydrothermal alteration zones. Band rationing and principal component analysis techniques are used to discriminate the different lithologic units exposed in the studied three areas. Field study and mineralogical investigation have been used to verify the remote sensing data. This study concluded that, the integrated remote sensing data with geological, field and mineralogical investigations are very effective in lithological discrimination, detailed geological mapping and detection of the gold-bearing hydrothermal alteration zones. More detailed exploration for gold mineralization with the help of remote sensing techniques is recommended to evaluate its potentiality in the study areas.

Keywords: pan-african, Egypt, landsat-8; ASTER, gold, alteration zones

Procedia PDF Downloads 97
17775 Internet of Things Applications on Supply Chain Management

Authors: Beatriz Cortés, Andrés Boza, David Pérez, Llanos Cuenca

Abstract:

The Internet of Things (IoT) field is been applied in industries with different purposes. Sensing Enterprise (SE) is an attribute of an enterprise or a network that allows it to react to business stimuli originating on the internet. These fields have come into focus recently on the enterprises and there is some evidence of the use and implications in supply chain management while finding it as an interesting aspect to work on. This paper presents a revision and proposals of IoT applications in supply chain management.

Keywords: industrial, internet of things, production systems, sensing enterprises, sensor, supply chain management

Procedia PDF Downloads 387
17774 Suspended Nickel Oxide Nano-Beam and Its Heterostructure Device for Gas Sensing

Authors: Kusuma Urs M. B., Navakant Bhat, Vinayak B. Kamble

Abstract:

Metal oxide semiconductors (MOS) are known to be excellent candidates for solid-state gas sensor devices. However, in spite of high sensitivities, their high operating temperatures and lack of selectivity is a big concern limiting their practical applications. A lot of research has been devoted so far to enhance their sensitivity and selectivity, often empirically. Some of the promising routes to achieve the same are reducing dimensionality and formation of heterostructures. These heterostructures offer improved sensitivity, selectivity even at relatively low operating temperatures compared to bare metal oxides. Thus, a combination of n-type and p-type metal oxides leads to the formation of p-n junction at the interface resulting in the diffusion of the carriers across the barrier along with the surface adsorption. In order to achieve this and to study their sensing mechanism, we have designed and lithographically fabricated a suspended nanobeam of NiO, which is a p-type semiconductor. The response of the same has been studied for various gases and is found to exhibit selective response towards hydrogen gas at room temperature. Further, the same has been radially coated with TiO₂ shell of varying thicknesses, in order to study the effect of radial p-n junction thus formed. Subsequently, efforts have been made to study the effect of shell thickness on the space charge region and to shed some light on the basic mechanism involved in gas sensing of MOS sensors.

Keywords: gas sensing, heterostructure, metal oxide semiconductor, space charge region

Procedia PDF Downloads 103
17773 System Response of a Variable-Rate Aerial Application System

Authors: Daniel E. Martin, Chenghai Yang

Abstract:

Variable-rate aerial application systems are becoming more readily available; however, aerial applicators typically only use the systems for constant-rate application of materials, allowing the systems to compensate for upwind and downwind ground speed variations. Much of the resistance to variable-rate aerial application system adoption in the U.S. pertains to applicator’s trust in the systems to turn on and off automatically as desired. The objectives of this study were to evaluate a commercially available variable-rate aerial application system under field conditions to demonstrate both the response and accuracy of the system to desired application rate inputs. This study involved planting oats in a 35-acre fallow field during the winter months to establish a uniform green backdrop in early spring. A binary (on/off) prescription application map was generated and a variable-rate aerial application of glyphosate was made to the field. Airborne multispectral imagery taken before and two weeks after the application documented actual field deposition and efficacy of the glyphosate. When compared to the prescription application map, these data provided application system response and accuracy information. The results of this study will be useful for quantifying and documenting the response and accuracy of a commercially available variable-rate aerial application system so that aerial applicators can be more confident in their capabilities and the use of these systems can increase, taking advantage of all that aerial variable-rate technologies have to offer.

Keywords: variable-rate, aerial application, remote sensing, precision application

Procedia PDF Downloads 442
17772 Enframing the Smart City: Utilizing Heidegger's 'The Question Concerning Technology' as a Framework to Interpret Smart Urbanism

Authors: Will Brown

Abstract:

Martin Heidegger is considered to be one of the leading philosophical lights of the 20th century with his lecture/essay 'The Question Concerning Technology' proving to be an invaluable text in the study of technology and the understanding of how technology influences the world it is set upon. However, this text has not as of yet been applied to the rapid rise and proliferation of ‘smart’ cities. This article is premised upon the application of the aforementioned text and the smart city in order to provide a fresh, if not critical analysis and interpretation of this phenomena. The first section below provides a brief literature review of smart urbanism in order to lay the groundwork necessary to apply Heidegger’s work to the smart city, from which a framework is developed to interpret the infusion of digital sensing technologies and the urban milieu. This framework is comprised of four concepts put forward in Heidegger’s text: circumscribing, bringing-forth, challenging, and standing-reserve. A concluding chapter is based upon the notion of enframement, arguing that once the rubric of data collection is placed within the urban system, future systems will require the capability to harvest data, resulting in an ever-renewing smart city.

Keywords: air quality sensing, big data, Martin Heidegger, smart city

Procedia PDF Downloads 176
17771 The Review of Permanent Downhole Monitoring System

Authors: Jing Hu, Dong Yang

Abstract:

With the increasingly difficult development and operating environment of exploration, there are many new challenges and difficulties in developing and exploiting oil and gas resources. These include the ability to dynamically monitor wells and provide data and assurance for the completion and production of high-cost and complex wells. A key technology in providing these assurances and maximizing oilfield profitability is real-time permanent reservoir monitoring. The emergence of optical fiber sensing systems has gradually begun to replace traditional electronic systems. Traditional temperature sensors can only achieve single-point temperature monitoring, but fiber optic sensing systems based on the Bragg grating principle have a high level of reliability, accuracy, stability, and resolution, enabling cost-effective monitoring, which can be done in real-time, anytime, and without well intervention. Continuous data acquisition is performed along the entire wellbore. The integrated package with the downhole pressure gauge, packer, and surface system can also realize real-time dynamic monitoring of the pressure in some sections of the downhole, avoiding oil well intervention and eliminating the production delay and operational risks of conventional surveys. Real-time information obtained through permanent optical fibers can also provide critical reservoir monitoring data for production and recovery optimization.

Keywords: PDHM, optical fiber, coiled tubing, photoelectric composite cable, digital-oilfield

Procedia PDF Downloads 53
17770 Close-Range Remote Sensing Techniques for Analyzing Rock Discontinuity Properties

Authors: Sina Fatolahzadeh, Sergio A. Sepúlveda

Abstract:

This paper presents advanced developments in close-range, terrestrial remote sensing techniques to enhance the characterization of rock masses. The study integrates two state-of-the-art laser-scanning technologies, the HandySCAN and GeoSLAM laser scanners, to extract high-resolution geospatial data for rock mass analysis. These instruments offer high accuracy, precision, low acquisition time, and high efficiency in capturing intricate geological features in small to medium size outcrops and slope cuts. Using the HandySCAN and GeoSLAM laser scanners facilitates real-time, three-dimensional mapping of rock surfaces, enabling comprehensive assessments of rock mass characteristics. The collected data provide valuable insights into structural complexities, surface roughness, and discontinuity patterns, which are essential for geological and geotechnical analyses. The synergy of these advanced remote sensing technologies contributes to a more precise and straightforward understanding of rock mass behavior. In this case, the main parameters of RQD, joint spacing, persistence, aperture, roughness, infill, weathering, water condition, and joint orientation in a slope cut along the Sea-to-Sky Highway, BC, were remotely analyzed to calculate and evaluate the Rock Mass Rating (RMR) and Geological Strength Index (GSI) classification systems. Automatic and manual analyses of the acquired data are then compared with field measurements. The results show the usefulness of the proposed remote sensing methods and their appropriate conformity with the actual field data.

Keywords: remote sensing, rock mechanics, rock engineering, slope stability, discontinuity properties

Procedia PDF Downloads 23
17769 Finite Element Simulation for Preliminary Study on Microorganism Detection System

Authors: Muhammad Rosli Abdullah, Noor Hasmiza Harun

Abstract:

A microorganism detection system has a potential to be used with the advancement in a biosensor development. The detection system requires an optical sensing system, microfluidic device and biological reagent. Although, the biosensors are available in the market, a label free and a lab-on-chip approach will promote a flexible solution. As a preliminary study of microorganism detection, three mechanisms such as Total Internal Reflection (TIR), Micro Fluidic Channel (MFC) and magnetic-electric field propagation were study and simulated. The objective are to identify the TIR angle, MFC parabolic flow and the wavelength for the microorganism detection. The simulation result indicates that evanescent wave is achieved when TIR angle > 42°, the corner and centre of a parabolic velocity are 0.02 m/s and 0.06 m/s respectively, and a higher energy distribution of a perfect electromagnetic scattering with dipole resonance radiation occurs at 500 nm. This simulation is beneficial to determine the components of the microorganism detection system that does not rely on classical microbiological, immunological and genetic methods which are laborious, time-consuming procedures and confined to specialized laboratories with expensive instrumentation equipment.

Keywords: microorganism, microfluidic, total internal reflection, lab on chip

Procedia PDF Downloads 241
17768 A Web Service Based Sensor Data Management System

Authors: Rose A. Yemson, Ping Jiang, Oyedeji L. Inumoh

Abstract:

The deployment of wireless sensor network has rapidly increased, however with the increased capacity and diversity of sensors, and applications ranging from biological, environmental, military etc. generates tremendous volume of data’s where more attention is placed on the distributed sensing and little on how to manage, analyze, retrieve and understand the data generated. This makes it more quite difficult to process live sensor data, run concurrent control and update because sensor data are either heavyweight, complex, and slow. This work will focus on developing a web service platform for automatic detection of sensors, acquisition of sensor data, storage of sensor data into a database, processing of sensor data using reconfigurable software components. This work will also create a web service based sensor data management system to monitor physical movement of an individual wearing wireless network sensor technology (SunSPOT). The sensor will detect movement of that individual by sensing the acceleration in the direction of X, Y and Z axes accordingly and then send the sensed reading to a database that will be interfaced with an internet platform. The collected sensed data will determine the posture of the person such as standing, sitting and lying down. The system is designed using the Unified Modeling Language (UML) and implemented using Java, JavaScript, html and MySQL. This system allows real time monitoring an individual closely and obtain their physical activity details without been physically presence for in-situ measurement which enables you to work remotely instead of the time consuming check of an individual. These details can help in evaluating an individual’s physical activity and generate feedback on medication. It can also help in keeping track of any mandatory physical activities required to be done by the individuals. These evaluations and feedback can help in maintaining a better health status of the individual and providing improved health care.

Keywords: HTML, java, javascript, MySQL, sunspot, UML, web-based, wireless network sensor

Procedia PDF Downloads 188
17767 LAMOS - Layered Amorphous Metal Oxide Gas Sensors: New Interfaces for Gas Sensing Applications

Authors: Valentina Paolucci, Jessica De Santis, Vittorio Ricci, Giacomo Giorgi, Carlo Cantalini

Abstract:

Despite their potential in gas sensing applications, the major drawback of 2D exfoliated metal dichalcogenides (MDs) is that they suffer from spontaneous oxidation in air, showing poor chemical stability under dry/wet conditions even at room temperature, limiting their practical exploitation. The aim of this work is to validate a synthesis strategy allowing microstructural and electrical stabilization of the oxides that inevitably form on the surface of 2D dichalcogenides. Taking advantage of spontaneous oxidation of MDs in air, we report on liquid phase exfoliated 2D-SnSe2 flakes annealed in static air at a temperature below the crystallization temperature of the native a-SnO2 oxide. This process yields a new class of 2D Layered Amorphous Metal Oxides Sensors (LAMOS), specifically few-layered amorphous a-SnO2, showing excellent gas sensing properties. Sensing tests were carried out at low operating temperature (i.e. 100°C) by exposing a-SnO2 to both oxidizing and reducing gases (i.e. NO2, H2S and H2) and different relative humidities ranging from 40% to 80% RH. The formation of stable nanosheets of amorphous a-SnO2 guarantees excellent reproducibility and stability of the response over one year. These results pave the way to new interesting research perspectives out considering the opportunity to synthesize homogeneous amorphous textures with no grain boundaries, no grains, no crystalline planes with different orientations, etc., following gas sensing mechanisms that likely differ from that of traditional crystalline metal oxide sensors. Moreover, the controlled annealing process could likely be extended to a large variety of Transition Metal Dichalcogenides (TMDs) and Metal Chalcogenides (MCs), where sulfur, selenium, or tellurium atoms can be easily displaced by O2 atoms (ΔG < 0), enabling the synthesis of a new family of amorphous interfaces.

Keywords: layered 2D materials, exfoliation, lamos, amorphous metal oxide sensors

Procedia PDF Downloads 92
17766 3D Remote Sensing Images Parallax Refining Based On HTML5

Authors: Qian Pei, Hengjian Tong, Weitao Chen, Hai Wang, Yanrong Feng

Abstract:

Horizontal parallax is the foundation of stereoscopic viewing. However, the human eye will feel uncomfortable and it will occur diplopia if horizontal parallax is larger than eye separation. Therefore, we need to do parallax refining before conducting stereoscopic observation. Although some scholars have been devoted to online remote sensing refining, the main work of image refining is completed on the server side. There will be a significant delay when multiple users access the server at the same time. The emergence of HTML5 technology in recent years makes it possible to develop rich browser web application. Authors complete the image parallax refining on the browser side based on HTML5, while server side only need to transfer image data and parallax file to browser side according to the browser’s request. In this way, we can greatly reduce the server CPU load and allow a large number of users to access server in parallel and respond the user’s request quickly.

Keywords: 3D remote sensing images, parallax, online refining, rich browser web application, HTML5

Procedia PDF Downloads 434
17765 Use of Data of the Remote Sensing for Spatiotemporal Analysis Land Use Changes in the Eastern Aurès (Algeria)

Authors: A. Bouzekri, H. Benmassaud

Abstract:

Aurès region is one of the arid and semi-arid areas that have suffered climate crises and overexploitation of natural resources they have led to significant land degradation. The use of remote sensing data allowed us to analyze the land and its spatiotemporal changes in the Aurès between 1987 and 2013, for this work, we adopted a method of analysis based on the exploitation of the images satellite Landsat TM 1987 and Landsat OLI 2013, from the supervised classification likelihood coupled with field surveys of the mission of May and September of 2013. Using ENVI EX software by the superposition of the ground cover maps from 1987 and 2013, one can extract a spatial map change of different land cover units. The results show that between 1987 and 2013 vegetation has suffered negative changes are the significant degradation of forests and steppe rangelands, and sandy soils and bare land recorded a considerable increase. The spatial change map land cover units between 1987 and 2013 allows us to understand the extensive or regressive orientation of vegetation and soil, this map shows that dense forests give his place to clear forests and steppe vegetation develops from a degraded forest vegetation and bare, sandy soils earn big steppe surfaces that explain its remarkable extension. The analysis of remote sensing data highlights the profound changes in our environment over time and quantitative monitoring of the risk of desertification.

Keywords: remote sensing, spatiotemporal, land use, Aurès

Procedia PDF Downloads 297
17764 Monitoring Prospective Sites for Water Harvesting Structures Using Remote Sensing and Geographic Information Systems-Based Modeling in Egypt

Authors: Shereif. H. Mahmoud

Abstract:

Egypt has limited water resources, and it will be under water stress by the year 2030. Therefore, Egypt should consider natural and non-conventional water resources to overcome such a problem. Rain harvesting is one solution. This Paper presents a geographic information system (GIS) methodology - based on decision support system (DSS) that uses remote sensing data, filed survey, and GIS to identify potential RWH areas. The input into the DSS includes a map of rainfall surplus, slope, potential runoff coefficient (PRC), land cover/use, soil texture. In addition, the outputs are map showing potential sites for RWH. Identifying suitable RWH sites implemented in the ArcGIS model environment using the model builder of ArcGIS 10.1. Based on Analytical hierarchy process (AHP) analysis taking into account five layers, the spatial extents of RWH suitability areas identified using Multi-Criteria Evaluation (MCE). The suitability model generated a suitability map for RWH with four suitability classes, i.e. Excellent, Moderate, Poor, and unsuitable. The spatial distribution of the suitability map showed that the excellent suitable areas for RWH concentrated in the northern part of Egypt. According to their averages, 3.24% of the total area have excellent and good suitability for RWH, while 45.04 % and 51.48 % of the total area are moderate and unsuitable suitability, respectively. The majority of the areas with excellent suitability have slopes between 2 and 8% and with an intensively cultivated area. The major soil type in the excellent suitable area is loam and the rainfall range from 100 up to 200 mm. Validation of the used technique depends on comparing existing RWH structures locations with the generated suitability map using proximity analysis tool of ArcGIS 10.1. The result shows that most of exiting RWH structures categorized as successful.

Keywords: rainwater harvesting (RWH), geographic information system (GIS), analytical hierarchy process (AHP), multi-criteria evaluation (MCE), decision support system (DSS)

Procedia PDF Downloads 334