Search results for: volumetric properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8867

Search results for: volumetric properties

8537 Towards the Design of Gripper Independent of Substrate Surface Structures

Authors: Annika Schmidt, Ausama Hadi Ahmed, Carlo Menon

Abstract:

End effectors for robotic systems are becoming more and more advanced, resulting in a growing variety of gripping tasks. However, most grippers are application specific. This paper presents a gripper that interacts with an object’s surface rather than being dependent on a defined shape or size. For this purpose, ingressive and astrictive features are combined to achieve the desired gripping capabilities. The developed prototype is tested on a variety of surfaces with different hardness and roughness properties. The results show that the gripping mechanism works on all of the tested surfaces. The influence of the material properties on the amount of the supported load is also studied and the efficiency is discussed.

Keywords: claw, dry adhesion, insects, material properties

Procedia PDF Downloads 329
8536 Mechanical Properties of Kenaf Fibre Reinforced Epoxy Composites

Authors: C. Tezara, H. Y. Lim, M. H. Yazdi, J. W. Lim, J. P. Siregar

Abstract:

Natural fibre has become an element in human lives. A lot of researchers have conducted research about natural fibre reinforced polymer. Malaysian government has spent a lot of money on the research funding for researchers and academician especially research on kenaf fibre due to exclusion of tobacco from AFTA (Asean Free Trade Area) list. This work is to investigate the mechanical properties of kenaf fiber reinforced epoxy composite where short kenaf fibre was applied and the mechanical properties of 5%, 10% and 15% wt. of kenaf fibre were added into the mixture of epoxy resin. Hand lay-up process was selected in the fabrication of the specimen for testing. The tensile, flexural and impact test were conducted following ASTM D3039, ASTM D790 and ASTM D256 accordingly. From the experiment result, the effect of different fiber loading of the specimen on its mechanical properties would be analyzed and compared in the result and discussion.

Keywords: Kenaf fibre, epoxy, composite, fibre

Procedia PDF Downloads 259
8535 The Effect of Addition of Dioctyl Terephthalate and Calcite on the Tensile Properties of Organoclay/Linear Low Density Polyethylene Nanocomposites

Authors: A. Gürses, Z. Eroğlu, E. Şahin, K. Güneş, Ç. Doğar

Abstract:

In recent years, polymer/clay nanocomposites have generated great interest in the polymer industry as a new type of composite material because of their superior properties, which includes high heat deflection temperature, gas barrier performance, dimensional stability, enhanced mechanical properties, optical clarity and flame retardancy when compared with the pure polymer or conventional composites. The investigation of change of the tensile properties of organoclay/linear low density polyethylene (LLDPE) nanocomposites with the use of Dioctyl terephthalate (DOTP) (as plasticizer) and calcite (as filler) has been aimed. The composites and organoclay synthesized were characterized using the techniques such as XRD, HRTEM and FTIR techniques. The spectroscopic results indicate that platelets of organoclay were well dispersed within the polymeric matrix. The tensile properties of the composites were compared considering the stress-strain curve drawn for each composite and pure polymer. It was observed that the composites prepared by adding the plasticizer at different ratios and a certain amount of calcite exhibited different tensile behaviors compared to pure polymer.

Keywords: linear low density polyethylene, nanocomposite, organoclay, plasticizer

Procedia PDF Downloads 261
8534 A Molecular Dynamic Simulation Study to Explore Role of Chain Length in Predicting Useful Characteristic Properties of Commodity and Engineering Polymers

Authors: Lokesh Soni, Sushanta Kumar Sethi, Gaurav Manik

Abstract:

This work attempts to use molecular simulations to create equilibrated structures of a range of commercially used polymers. Generated equilibrated structures for polyvinyl acetate (isotactic), polyvinyl alcohol (atactic), polystyrene, polyethylene, polyamide 66, poly dimethyl siloxane, poly carbonate, poly ethylene oxide, poly amide 12, natural rubber, poly urethane, and polycarbonate (bisphenol-A) and poly ethylene terephthalate are employed to estimate the correct chain length that will correctly predict the chain parameters and properties. Further, the equilibrated structures are used to predict some properties like density, solubility parameter, cohesive energy density, surface energy, and Flory-Huggins interaction parameter. The simulated densities for polyvinyl acetate, polyvinyl alcohol, polystyrene, polypropylene, and polycarbonate are 1.15 g/cm3, 1.125 g/cm3, 1.02 g/cm3, 0.84 g/cm3 and 1.223 g/cm3 respectively are found to be in good agreement with the available literature estimates. However, the critical repeating units or the degree of polymerization after which the solubility parameter showed saturation were 15, 20, 25, 10 and 20 respectively. This also indicates that such properties that dictate the miscibility of two or more polymers in their blends are strongly dependent on the chosen polymer or its characteristic properties. An attempt has been made to correlate such properties with polymer properties like Kuhn length, free volume and the energy term which plays a vital role in predicting the mentioned properties. These results help us to screen and propose a useful library which may be used by the research groups in estimating the polymer properties using the molecular simulations of chains with the predicted critical lengths. The library shall help to obviate the need for researchers to spend efforts in finding the critical chain length needed for simulating the mentioned polymer properties.

Keywords: Kuhn length, Flory Huggins interaction parameter, cohesive energy density, free volume

Procedia PDF Downloads 171
8533 Representation Data without Lost Compression Properties in Time Series: A Review

Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.

Keywords: compression properties, uncertainty, uncertain time series, mining technique, weather prediction

Procedia PDF Downloads 396
8532 Production and Characterization of Al-BN Composite Materials by Using Powder Metallurgy

Authors: Ahmet Yonetken, Ayhan Erol

Abstract:

Aluminum matrix composites containing 3, 6, 9, 12 and 15% BN has been fabricated by conventional microwave sintering at 550°C temperature. Compounds formation between Al and BN powders is observed after sintering under Ar shroud. XRD, SEM (Scanning Electron Microscope), mechanical testing and measurements were employed to characterize the properties of Al + BN composite. Experimental results suggest that the best properties as hardness 42,62 HV were obtained for Al+12% BN composite. In this study, the powder metallurgy method was used. It is aimed to produce a light composite with Al matrix BN powders. It has been increased in strength and hardness besides its lightness. Ceramic powders are added to improve mechanical properties.

Keywords: ceramic-metal composites, proporties, powder metallurgy, sintering

Procedia PDF Downloads 172
8531 Influence of La³⁺ on Structural, Magnetic, Optical and Dielectric Properties in CoFe₂O₄ Nanoparticles Synthesized by Starch-Assisted Sol-Gel Combustion Method

Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Pavel Urbánek, Michal Machovsky, Milan Masař, Martin Holek

Abstract:

Herein, we reported the influence of La³⁺ substitution on structural, magnetic and dielectric properties of CoFe₂O₄ nanoparticles synthesized by starch-assisted sol-gel combustion method. X-ray diffraction pattern confirmed the formation of cubic spinel structure of La³⁺ ions doped CoFe₂O₄ nanoparticles. Raman and Fourier Transform Infrared spectroscopy study also confirmed cubic spinel structure of La³⁺ substituted CoFe₂O₄ nanoparticles. The field emission scanning electron microscopy study revealed that La³⁺ substituted CoFe2O4 nanoparticles were in the range of 10-40 nm. The magnetic properties of La³⁺ substituted CoFe₂O₄ nanoparticles were investigated by using vibrating sample magnetometer. The variation in saturation magnetization, coercivity and remanent magnetization with La³⁺ concentration in CoFe2O4 nanoparticles was observed. The variation of real and imaginary part of dielectric constant, tan δ, and AC conductivity were studied with change of concentration of La³⁺ ions in CoFe₂O₄ nanoparticles. The variation in optical properties was studied via UV-Vis absorption spectroscopy. Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: starch, sol-gel combustion method, nanoparticles, magnetic properties, dielectric properties

Procedia PDF Downloads 289
8530 Molecular Dynamics Studies of Homogeneous Condensation and Thermophysical Properties of HFC-1336mzz(Z)

Authors: Misbah Khan, Jian Wen, Muhammad Asif Shakoori

Abstract:

The Organic Rankine Cycle (ORC) plays an important role in converting low-temperature heat sources into electrical power by using refrigerants as working fluids. The thermophysical properties of working fluids are essential for designing ORC. HFO-1336mzz(Z) (cis-1,1,1,4,4,4-hexafluoro-2-butene) considered as working fluid and have almost 99% low GWP and relatively same thermophysical properties used as a replacement of HFC-245fa (1,1,1,3,3-pentafluoro-propane). The environmental, safety, healthy and thermophysical properties of HFO-1336mzz(Z) are needed to use it in a practical system. In this paper, Molecular dynamics simulations were used to investigate the Homogeneous condensation, thermophysical and structural properties of HFO-1336mzz(Z) and HFC-245fa. The effect of various temperatures and pressures on thermophysical properties and condensation was extensively investigated. The liquid densities and isobaric heat capacities of this refrigerant was simulated at 273.15K to 353.15K temperatures and pressure0.5-4.0MPa. The simulation outcomes were compared with experimental data to validate our simulation method. The mean square displacement for different temperatures was investigated for dynamical analysis. The variations in potential energies and condensation rate were simulated to get insight into the condensation process. The radial distribution function was simulated at the micro level for structural analysis and revealed that the phase transition of HFO-1336mzz(Z) did not affect the intramolecular structure.

Keywords: homogenous condensation, refrigerants, molecular dynamics simulations, organic rankine cycle

Procedia PDF Downloads 120
8529 Molecular Dynamics Simulations of the Structural, Elastic and Thermodynamic Properties of Cubic GaBi

Authors: M. Zemouli, K. Amara, M. Elkeurti, Y. Benallou

Abstract:

We present the molecular dynamic simulations results of the structural and dynamical properties of the zinc-blende GaBi over a wide range of temperature (300-1000) K. Our simulation where performed in the framework of the three-body Tersoff potential, which accurately reproduces the lattice constants and elastic constants of the GaBi. A good agreement was found between our calculated results and the available theoretical data of the lattice constant, the bulk modulus and the cohesive energy. Our study allows us to predict the thermodynamic properties such as the specific heat and the lattice thermal expansion. In addition, this method allows us to check its ability to predict the phase transition of this compound. In particular, the transition pressure to the rock-salt phase is calculated and the results are compared with other available works.

Keywords: Gallium compounds, molecular dynamics simulations, interatomic potential thermodynamic properties, structural phase transition

Procedia PDF Downloads 413
8528 Effect of Welding Parameters on Mechanical and Microstructural Properties of Aluminum Alloys Produced by Friction Stir Welding

Authors: Khalil Aghapouramin

Abstract:

The aim of the present work is to investigate the mechanical and microstructural properties of dissimilar and similar aluminum alloys welded by Friction Stir Welding (FSW). The specimens investigated by applying different welding speed and rotary speed. Typically, mechanical properties of the joints performed through tensile test fatigue test and microhardness (HV) at room temperature. Fatigue test investigated by using electromechanical testing machine under constant loading control with similar since wave loading. The Maximum stress versus minimum got the range between 0.1 to 0.3 in the research. Based upon welding parameters by optical observation and scanning electron microscopy microstructural properties fulfilled with a cross section of welds, in addition, SEM observations were made of the fracture surfaces

Keywords: friction stir welding, fatigue and tensile test, Al alloys, microstructural behavior

Procedia PDF Downloads 312
8527 Rheological Properties of Polysulfone-Sepiolite Nanocomposites

Authors: Nilay Tanrıver, Birgül Benli, Nilgün Kızılcan

Abstract:

Polysulfone (PSU) is a specialty engineering polymer having various industrial applications. PSU is especially used in waste water treatment membranes due to its good mechanical properties, structural and chemical stability. But it is a hydrophobic material and therefore its surface aim to pollute easily. In order to resolve this problem and extend the properties of membrane, PSU surface is rendered hydrophilic by addition of the sepiolite nanofibers. Sepiolite is one of the natural clays, which is a hydrate magnesium silicate fiber, also one of the well known layered clays of the montmorillonites where has several unique channels and pores within. It has also moisture durability, strength and low price. Sepiolite channels give great capacity of absorption and good surface properties. In this study, nanocomposites of commercial PSU and Sepiolite were prepared by solvent mixing method. Different organic solvents and their mixtures were used. Rheological characteristics of PSU-Sepiolite solvent mixtures were analyzed, the solubility of nanocomposite content in those mixtures were studied.

Keywords: nanocomposite, polysulfone, rheology, sepiolite, solution mixing

Procedia PDF Downloads 391
8526 Predictions of Values in a Causticizing Process

Authors: R. Andreola, O. A. A. Santos, L. M. M. Jorge

Abstract:

An industrial system for the production of white liquor of a paper industry, Klabin Paraná Papé is, formed by ten reactors was modeled, simulated, and analyzed. The developed model considered possible water losses by evaporation and reaction, in addition to variations in volumetric flow of lime mud across the reactors due to composition variations. The model predictions agreed well with the process measurements at the plant and the results showed that the slaking reaction is nearly complete at the third causticizing reactor, while causticizing ends by the seventh reactor. Water loss due to slaking reaction and evaporation occurs more pronouncedly in the slaking reaction than in the final causticizing reactors; nevertheless, the lime mud flow remains nearly constant across the reactors.

Keywords: causticizing, lime, prediction, process

Procedia PDF Downloads 326
8525 Spin Resolved Electronic Behavior of Zno Nanoribbons

Authors: Serkan Caliskan

Abstract:

The aim of this study is to understand the spin-resolved properties of ZnO armchair and zigzag nanoribbons. The spin polarization can be induced by either geometry of the nanoribbons or ferromagnetic electrodes. Hence, spin-dependent behavior is revealed in these nanostructures in the absence of external magnetic field. Both electronic structure and magnetic properties of the nanoribbons are analyzed, employing first-principles calculations through Density Functional Theory. The relevant properties using the spin-dependent band structure, conductance, transmission, density of states and magnetic moment are elucidated. These results can be utilized to describe the nanoscale structures and stimulate the experimental works.

Keywords: first principles, spin polarized transport, ZnO device, ZnO nanoribbons

Procedia PDF Downloads 161
8524 Densities and Volumetric Properties of {Difurylmethane + [(C5 – C8) N-Alkane or an Amide]} Binary Systems at 293.15, 298.15 and 303.15 K: Modelling Excess Molar Volumes by Prigogine-Flory-Patterson Theory

Authors: Belcher Fulele, W. A. A. Ddamba

Abstract:

Study of solvent systems contributes to the understanding of intermolecular interactions that occur in binary mixtures. These interactions involves among others strong dipole-dipole interactions and weak van de Waals interactions which are of significant application in pharmaceuticals, solvent extractions, design of reactors and solvent handling and storage processes. Binary mixtures of solvents can thus be used as a model to interpret thermodynamic behavior that occur in a real solution mixture. Densities of pure DFM, n-alkanes (n-pentane, n-hexane, n-heptane and n-octane) and amides (N-methylformamide, N-ethylformamide, N,N-dimethylformamide and N,N-dimethylacetamide) as well as their [DFM + ((C5-C8) n-alkane or amide)] binary mixtures over the entire composition range, have been reported at temperature 293.15, 298.15 and 303.15 K and atmospheric pressure. These data has been used to derive the thermodynamic properties: the excess molar volume of solution, apparent molar volumes, excess partial molar volumes, limiting excess partial molar volumes, limiting partial molar volumes of each component of a binary mixture. The results are discussed in terms of possible intermolecular interactions and structural effects that occur in the binary mixtures. The variation of excess molar volume with DFM composition for the [DFM + (C5-C7) n-alkane] binary mixture exhibit a sigmoidal behavior while for the [DFM + n-octane] binary system, positive deviation of excess molar volume function was observed over the entire composition range. For each of the [DFM + (C5-C8) n-alkane] binary mixture, the excess molar volume exhibited a fall with increase in temperature. The excess molar volume for each of [DFM + (NMF or NEF or DMF or DMA)] binary system was negative over the entire DFM composition at each of the three temperatures investigated. The negative deviations in excess molar volume values follow the order: DMA > DMF > NEF > NMF. Increase in temperature has a greater effect on component self-association than it has on complex formation between molecules of components in [DFM + (NMF or NEF or DMF or DMA)] binary mixture which shifts complex formation equilibrium towards complex to give a drop in excess molar volume with increase in temperature. The Prigogine-Flory-Patterson model has been applied at 298.15 K and reveals that the free volume is the most important contributing term to the excess experimental molar volume data for [DFM + (n-pentane or n-octane)] binary system. For [DFM + (NMF or DMF or DMA)] binary mixture, the interactional term and characteristic pressure term contributions are the most important contributing terms in describing the sign of experimental excess molar volume. The mixture systems contributed to the understanding of interactions of polar solvents with proteins (amides) with non-polar solvents (alkanes) in biological systems.

Keywords: alkanes, amides, excess thermodynamic parameters, Prigogine-Flory-Patterson model

Procedia PDF Downloads 326
8523 Effect of Temperature on the Binary Mixture of Imidazolium Ionic Liquid with Pyrrolidin-2-One: Volumetric and Ultrasonic Study

Authors: T. Srinivasa Krishna, K. Narendra, K. Thomas, S. S. Raju, B. Munibhadrayya

Abstract:

The densities, speeds of sound and refractive index of the binary mixture of ionic liquid (IL) 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Imide]) and Pyrrolidin-2-one(PY) was measured at atmospheric pressure, and over the range of temperatures T= (298.15 -323.15)K. The excess molar volume, excess isentropic compressibility, excess speed of sound, partial molar volumes, and isentropic partial molar compressibility were calculated from the values of the experimental density and speed of sound. From the experimental data excess thermal expansion coefficients and isothermal pressure coefficient of excess molar enthalpy at 298.15K were calculated. The results were analyzed and were discussed from the point of view of structural changes. Excess properties were calculated and correlated by the Redlich–Kister and the Legendre polynomial equation and binary coefficients were obtained. Values of excess partial volumes at infinite dilution for the binary system at different temperatures were calculated from the adjustable parameters obtained from Legendre polynomial and Redlich–Kister smoothing equation. Deviation in refractive indices ΔnD and deviation in molar refraction, ΔRm were calculated from the measured refractive index values. Equations of state and several mixing rules were used to predict refractive indices of the binary mixtures and compared with the experimental values by means of the standard deviation and found to be in excellent agreement. By using Prigogine–Flory–Patterson (PFP) theory, the above thermodynamic mixing functions have been calculated and the results obtained from this theory were compared with experimental results.

Keywords: density, refractive index, speeds of sound, Prigogine-Flory-Patterson theory

Procedia PDF Downloads 378
8522 Accelerated Ageing of Unidirectional Flax Fibers Reinforced Recycled Polypropylene Composites

Authors: Lara Alam, Laetitia Van-Schoors, Olivier Sicot, Benoit Piezel, Shahram Aivazzadeh

Abstract:

Over the last decades, worldwide environmental awareness has grown due to the depletion of raw material resources and global warming. This awareness has prompted the development of new products more environmentally friendly. Among these products are biocomposite materials reinforced with natural fibers. The main challenge in developing the use of biocomposites in exterior applications is the lack of knowledge about their durability and the evolution of their mechanical and physico-chemical properties in the long term. Few studies have been carried out on the photooxidation of unidirectional (UD) composites based on recycled matrix, which is the aim of this work. For this purpose, UD flax fiber composites based on recycled polypropylene were prepared by thermocompression. An accelerated aging test was carried out using a xenon arc WeatherOmeter. The consequences of UV exposure on the chemical composition and morphology of the surface of composites as well as on their tensile mechanical properties have been reported. The results showed that accelerated aging had a significant effect on the surface of these composites while it had little impact on their mechanical properties.

Keywords: flax fiber, photooxidation, physico-chemical properties, recycled polypropylene, tensile properties

Procedia PDF Downloads 174
8521 Physical Properties of Alkali Resistant-Glass Fibers in Continuous Fiber Spinning Conditions

Authors: Ji-Sun Lee, Soong-Keun Hyun, Jin-Ho Kim

Abstract:

In this study, a glass fiber is fabricated using a continuous spinning process from alkali resistant (AR) glass with 4 wt% zirconia. In order to confirm the melting properties of the marble glass, the raw material is placed into a Pt crucible and melted at 1650 ℃ for 2 h, and then annealed. In order to confirm the transparency of the clear marble glass, the visible transmittance is measured, and the fiber spinning condition is investigated by using high temperature viscosity measurements. A change in the diameter is observed according to the winding speed in the range of 100–900 rpm; it is also verified as a function of the fiberizing temperature in the range of 1200–1260 ℃. The optimum winding speed and spinning temperature are 500 rpm and 1240 ℃, respectively. The properties of the prepared spinning fiber are confirmed using optical microscope, tensile strength, modulus, and alkali-resistant tests.

Keywords: glass composition, fiber diameter, continuous filament fiber, continuous spinning, physical properties

Procedia PDF Downloads 287
8520 Gamma Irradiation Effects on the Crystal Structural and Transport Properties of Bi₂Te₃ Thin Films Grown by Thermal Evaporation

Authors: Shoroog Alraddadi

Abstract:

In this study, the effect of gamma irradiation on the structural and transport properties of Bismuth Telluride (Bi₂Te₃) thin films was investigated. Bi₂Te₃ thin films with thicknesses varying from 100 nm to 500 nm were grown using thermal evaporation in vacuum 10⁻⁵ Torr. The films were irradiated by Gamma radiation with different doses (50, 200, and 500 kGy). The crystal structure of Bi₂Te₃ thin films was studied by XRD diffraction. It was showed that the degree of crystallinity of films increases as the doses increase. Furthermore, it was found that the electrical conductivity of Bi₂Te₃ increase as the doses increase. From these results, it can be concluding that the effect of radiation on the structural and transport properties was positive at the levels of irradiation used.

Keywords: bismuth telluride, gamma irradiation, thin film, transport properties

Procedia PDF Downloads 123
8519 Utilization of Discarded PET and Concrete Aggregates in Construction Causes: A Green Approach

Authors: Arjun, A. D. Singh

Abstract:

The purpose of this study is to resolve the solid waste problems caused by plastics and concrete demolition as well. In order to that mechanical properties of polymer concrete; in particular, polymer concrete made of unsaturated polyester resins from recycled polyethylene terephthalate (PET) plastic waste and recycled concrete aggregates is carried out. Properly formulated unsaturated polyester based on recycled PET is mixed with inorganic aggregates to produce polymer concrete. Apart from low manufacturing cost, polymer concrete blend has acceptable properties, to go through it. The prior objectives of the paper is to investigate the mechanical properties, i.e. compressive strength, splitting tensile strength, and the flexural strength of polymer concrete blend using an unsaturated polyester resin based on recycled PET. The relationships between the mechanical properties are also analyzed.

Keywords: polyethylene terephthalate (PET), concrete aggregates, compressive strength, splitting tensile strength

Procedia PDF Downloads 534
8518 Behavior of Common Philippine-Made Concrete Hollow Block Structures Subjected to Seismic Load Using Rigid Body Spring-Discrete Element Method

Authors: Arwin Malabanan, Carl Chester Ragudo, Jerome Tadiosa, John Dee Mangoba, Eric Augustus Tingatinga, Romeo Eliezer Longalong

Abstract:

Concrete hollow blocks (CHB) are the most commonly used masonry block for walls in residential houses, school buildings and public buildings in the Philippines. During the recent 2013 Bohol earthquake (Mw 7.2), it has been proven that CHB walls are very vulnerable to severe external action like strong ground motion. In this paper, a numerical model of CHB structures is proposed, and seismic behavior of CHB houses is presented. In modeling, the Rigid Body Spring-Discrete Element method (RBS-DEM)) is used wherein masonry blocks are discretized into rigid elements and connected by nonlinear springs at preselected contact points. The shear and normal stiffness of springs are derived from the material properties of CHB unit incorporating the grout and mortar fillings through the volumetric transformation of the dimension using material ratio. Numerical models of reinforced and unreinforced walls are first subjected to linearly-increasing in plane loading to observe the different failure mechanisms. These wall models are then assembled to form typical model masonry houses and then subjected to the El Centro and Pacoima earthquake records. Numerical simulations show that the elastic, failure and collapse behavior of the model houses agree well with shaking table tests results. The effectiveness of the method in replicating failure patterns will serve as a basis for the improvement of the design and provides a good basis of strengthening the structure.

Keywords: concrete hollow blocks, discrete element method, earthquake, rigid body spring model

Procedia PDF Downloads 329
8517 Electrical and Magnetic Properties of Neodymium and Erbium Doped Bismuth Ferrite Multifunctional Materials for Spintronic Devices

Authors: Ravinder Dachepalli, Naveena Gadwala, K. Vani

Abstract:

Nd and Er substituted bismuth nano crystalline multifunctional materials were prepared by citrate gel autocombution technique. The structural characterization was carried out by XRD and SEM. Electrical properties such are electrical conductivity and dielectric properties have been measured. Plots of electrical conductivity versus temperature increases with increasing temperature and shown a transition near Curie temperature. Dielectric properties such are dielectric constant and dielectric loss tangent have been measured from 20Hz to 2 MHz at room temperature. Plots of dielectric constant versus frequency show a normal dielectric behaviour of multifunctional materials. Temperature dependence of magnetic properties of Bi-Nd and Bi-Er multi-functional materials were carried out by using Vibrating sample magnetometer (VSM). The magnetization as a function of an applied field ±100 Oe was carried out at 3K and 360 K. Zero field Cooled (ZFC) and Field Cooled (FC) magnetization measurements under an applied field of 100Oe a in the temperature range of 5-375K. The observed results can be explained for spintronic devices.

Keywords: Bi-Nd and Bi-Er Multifunctional Materia, Citrate Gel Auto combustion Technique, FC-ZFC magnetization, Dielectric constant

Procedia PDF Downloads 373
8516 Development of Impressive Tensile Properties of Hybrid Rolled Ta0.5Nb0.5Hf0.5ZrTi1.5 Refractory High Entropy Alloy

Authors: M. Veeresham

Abstract:

The microstructure, texture, phase stability, and tensile properties of annealed Ta0.5Nb0.5Hf0.5ZrTi1.5 alloy have been investigated in the present research. The alloy was severely hybrid-rolled up to 93.5% thickness reduction, subsequently rolled samples subjected to an annealing treatment at 800 °C and 1000 °C temperatures for 1 h. Consequently, the rolled condition and both annealed temperatures have a body-centered cubic (BCC) structure. Furthermore, quantitative texture measurements (orientation distribution function (ODF) analysis) and microstructural examinations (analytical electron backscatter diffraction (EBSD) maps) permitted to establish a good relationship between annealing texture and microstructure and universal testing machine (UTM) utilized for obtaining the mechanical properties. Impressive room temperature tensile properties combination with the tensile strength (1380 MPa) and (24.7%) elongation is achieved for the 800 °C heat-treated condition. The evolution of the coarse microstructure featured in the case of 1000 °C annealed temperature ascribed to the influence of high thermal energy.

Keywords: refractory high entropy alloys, hybrid-rolling, recrystallization, microstructure, tensile properties

Procedia PDF Downloads 103
8515 Molecular Dynamics Simulations of the Structural, Elastic, and Thermodynamic Properties of Cubic AlBi

Authors: M. Zemouli, K. Amara, M. Elkeurti, Y. Benallou

Abstract:

We present a theoretical study of the structural, elastic and thermodynamic properties of the zinc-blende AlBi for a wide temperature range. The simulation calculation is performed in the framework of the molecular dynamics method using the three-body Tersoff potential which reproduces provide, with reasonable accuracy, the lattice constants and elastic constants. Our results for the lattice constant, the bulk modulus and cohesive energy are in good agreement with other theoretical available works. Other thermodynamic properties such as the specific heat and the lattice thermal expansion can also be predicted. In addition, this method allows us to check its ability to predict the phase transition of this compound. In particular, the transition pressure to the rock-salt phase is calculated and the results are compared with other available works.

Keywords: aluminium compounds, molecular dynamics simulations, interatomic potential, thermodynamic properties, structural phase transition

Procedia PDF Downloads 273
8514 Mechanical Properties of Sugar Palm Fibre Reinforced Thermoplastic Polyurethane Composites

Authors: Dandi Bachtiar, Mohammed Ausama Abbas, Januar Parlaungan Siregar, Mohd Ruzaimi Bin Mat Rejab

Abstract:

Short sugar palm fibre and thermoplastic polyurethane were combined to produce new composites by using the extrude method. Two techniques used to prepare a new composite material, firstly, extrusion of the base material with short fibre, secondly hot pressing them. The size of sugar palm fibre was fixed at 250µm. Different weight percent (10 wt%, 20 wt% and 30 wt%) were used in order to optimise preparation process. The optimization of process depended on the characterization mechanical properties such as impact, tensile, and flexural of the new (TPU/SPF) composite material. The results proved that best tensile and impact properties of weight additive fibre applied 10 wt%. There was an increasing trend recorded of flexural properties during increased the fibre loading. Meanwhile, the maximum tensile strength was 14.0 MPa at 10 wt% of the fibre. Moreover, there was no significant effect for additions more than 30 wt% of the fibre.

Keywords: composites, natural fibre, polyurethane, sugar palm

Procedia PDF Downloads 356
8513 Characteristics Flakes Product with Dry Residue of Wild Orenago

Authors: Kosutic Milenko, Filipovic Jelena

Abstract:

Cereals constitute the staple food of the human race. In accordance with the modern nutritionist opinions, cereal products, flakes and snack products are the most common foods in the daily diet, such as ready to eat breakfast cereal, flakes, and snacks. Extrusion technology makes it possible to apply different sources of ingredients for the enrichment of cereal-based flakes or snacks products. Substances with strong antioxidant properties such as wild oregano have a positive impact on human health, therefore attracting the attention of scientists, consumers and food industry experts. This paper investigates the effects of simultaneous addition of dry residue of wild oregano (0.5% and 1%), on the physical and colour properties of corn flakes to obtain new products with altered nutritional properties. Post-hoc Tukey’s HSD test at 95% confidence limit showed significant differences between various samples. Addition of dry residue wild oregano positively influenced physical characteristics (decreased bulk density 30.2%, increased expansion rate 44.9%), influenced of decrease hardness 38.1% and work of compression 40.3% also significantly change the color of flakes product. Presented data point that investigated corn flakes is a new product with good physical and sensory properties due to higher level of dry residue of wild oregano.

Keywords: flakes product, wild oregano, phisical properties, colour, sensory properties

Procedia PDF Downloads 293
8512 Characterization of Calcined Clay Blended Self Compacting Concrete-Correlation between Super-Plasticizer Dosage and Self Compacting Concrete Properties

Authors: Kumator Josiphiah Taku

Abstract:

Sustainability in construction is essential to the economic construction and can be achieved by the use of locally available construction materials. This research work, thus, uses locally available materials –calcined clay and Sandcrete SPR-300 superplasticizer in the production of Self Compacting Concrete (SCC) by investigating the correlation between the superplasticizer dosage and the fresh and hardened states properties of a grade 50 SCC made by incorporating a Calcined Clay (CC) – Portland Limestone Cement (PLC) blend as the cementitious matter at 20% replacement of PLC with CC and using CC as filler. The superplasticizer dosage was varied from 0.4 to 3.0% by weight of cementitious material and the slump, v-funnel, L-box and strength parameters investigated. The result shows a positive correlation between the increased dosage of the superplasticizer and the fresh and hardened states properties of the SCC up to 2% dosage. The J¬Spread¬, t¬500J¬, Slump flow, L-box H¬2¬/H¬1 ¬ratio and strength, all increases with SP dosage while the V-funnel flow decreased with SP dosage. Overall, SP ratio of 0.5 to 2.0 can be used in improving the properties of SCC produced using calcined clay both as filler and cementitious material.

Keywords: calcined clay, compressive strength, fresh-state properties of SCC, self compacting concrete, superplasticizer dosage

Procedia PDF Downloads 126
8511 Thermal Cracking Approach Investigation to Improve Biodiesel Properties

Authors: Roghaieh Parvizsedghy, Seyyed Mojtaba Sadrameli

Abstract:

Biodiesel as an alternative diesel fuel is steadily gaining more attention and significance. However, there are some drawbacks while using biodiesel regarding its properties that requires it to be blended with petrol based diesel and/or additives to improve the fuel characteristics. This study analyses thermal cracking as an alternative technology to improve biodiesel characteristics in which, FAME based biodiesel produced by transesterification of castor oil is fed into a continuous thermal cracking reactor at temperatures range of 450-500°C and flowrate range of 20-40 g/hr. Experiments designed by response surface methodology and subsequent statistical studies show that temperature and feed flowrate significantly affect the products yield. Response surfaces were used to study the impact of temperature and flowrate on the product properties. After each experiment, the produced crude bio-oil was distilled and diesel cut was separated. As shorter chain molecules are produced through thermal cracking, the distillation curve of the diesel cut fitted more with petrol based diesel curve in comparison to the biodiesel. Moreover, the produced diesel cut properties adequately pose within property ranges defined by the related standard of petrol based diesel. Cold flow properties, high heating value as the main drawbacks of the biodiesel are improved by this technology. Thermal cracking decreases kinematic viscosity, Flash point and cetane number.

Keywords: biodiesel, castor oil, fuel properties, thermal cracking

Procedia PDF Downloads 228
8510 Evaluation of the Mechanical Properties of Nano TiO2 and Clay Filler Filled Epoxy Composites

Authors: A. Mimaroglu, H. Unal

Abstract:

In this study, the mechanical properties of nano filled epoxy composites were evaluated. The matrix material is epoxy. nano fillers are Al2O3, TiO2 and clay added in 2.5- 10 wt% by weight ratio. Test samples were prepared using an open mould type die. Mechanical tests were carried out. The tensile strength, elastic modulus, elongation at break and the hardness of the composite materials were obtained and evaluated. It was seen from the results that the filler content had a high influence on the level of the mechanical properties of the epoxy composites.

Keywords: nano, epoxy, composite, fillers, clay

Procedia PDF Downloads 351
8509 Oxygen Transfer in Viscous Non-Newtonian Liquid in a Hybrid Bioreactor

Authors: Sérgio S. de Jesus, Aline Santana, Rubens Maciel Filho

Abstract:

Global oxygen transfer coefficient (kLa) was characterized in a mechanically agitated airlift bio reactor. The experiments were carried out in an airlift bio reactor (3.2 L) with internal re circulation (a concentric draft-tube airlift vessel device); the agitation is carried out through a turbine Rushton impeller located along with the gas sparger in the region comprised in the riser. The experiments were conducted using xanthan gum (0.6%) at 250 C and a constant rotation velocity of 0 and 800 rpm, as well as in the absence of agitation (airlift mode); the superficial gas velocity varied from 0.0157 to 0.0262 ms-1. The volumetric oxygen transfer coefficient dependence of the rotational speed revealed that the presence of agitation increased up to two times the kLa value.

Keywords: aeration, mass transfer, non-Newtonian fluids, stirred airlift bioreactor

Procedia PDF Downloads 426
8508 The Influence of Zeolitic Spent Refinery Admixture on the Rheological and Technological Properties of Steel Fiber Reinforced Self- Compacting Concrete

Authors: Žymantas Rudžionis, Paulius Grigaliūnas, Danutė Vaičiukynienė

Abstract:

By planning this experimental work to investigate the effect of zeolitic waste on rheological and technological properties of self-compacting fiber reinforced concrete, we had an intention to draw attention to the environmental factor. Large amount of zeolitic waste, as a secondary raw materials are not in use properly and large amount of it is collected without a clear view of it’s usage in future. The principal aim of this work is to assure, that zeolitic waste admixture takes positive effect to the self-compacting fiber reinforced concrete mixes stability, flowability and other properties by using the experimental research methods. In addition to that a research on cement and zeolitic waste mortars were implemented to clarify the effect of zeolitic waste on properties of cement paste and stone. Primary studies indicates that zeolitic waste characterizes clear puzzolanic behavior, do not deteriorate and in some cases ensure positive rheological and mechanical characteristics of self-compacting concrete mixes.

Keywords: self compacting concrete, steel fiber reinforced concrete, zeolitic waste, rheological, properties of concrete, slump flow

Procedia PDF Downloads 337