Search results for: vibration isolation performance
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13754

Search results for: vibration isolation performance

13454 Nonlinear Vibration Analysis of a Functionally Graded Micro-Beam under a Step DC Voltage

Authors: Ali Raheli, Rahim Habibifar, Behzad Mohammadi-Alasti, Mahdi Abbasgholipour

Abstract:

This paper presents vibration behavior of a FGM micro-beam and its pull-in instability under a nonlinear electrostatic pressure. An exponential function has been applied to show the continuous gradation of the properties along thickness. Nonlinear integro-differential-electro-mechanical equation based on Euler–Bernoulli beam theory has been derived. The governing equation in the static analysis has been solved using Step-by-Step Linearization Method and Finite Difference Method. Fixed points or equilibrium positions and singular points have been shown in the state control space. In order to find the response to a step DC voltage, the nonlinear equation of motion has been solved using Galerkin-based reduced-order model and time histories and phase portrait for different applied voltages have been shown. The effects of electrostatic pressure on stability of FGM micro-beams having various amounts of the ceramic constituent have been investigated.

Keywords: FGM, MEMS, nonlinear vibration, electrical, dynamic pull-in voltage

Procedia PDF Downloads 433
13453 Load Maximization of Two-Link Flexible Manipulator Using Suppression Vibration with Piezoelectric Transducer

Authors: Hamidreza Heidari, Abdollah Malmir Nasab

Abstract:

In this paper, the energy equations of a two-link flexible manipulator were extracted using the Euler-Bernoulli beam hypotheses. Applying Assumed mode and considering some finite degrees of freedom, we could obtain dynamic motions of each manipulator using Euler-Lagrange equations. Using its claws, the robots can carry a certain load with the ached control of vibrations for robot flexible links during the travelling path using the piezoceramics transducer; dynamic load carrying capacity increase. The traveling path of flexible robot claw has been taken from that of equivalent rigid manipulator and coupled; therefore to avoid the role of Euler-Bernoulli beam assumptions and linear strains, material and physical characteristics selection of robot cause deflection of link ends not exceed 5% of link length. To do so, the maximum load carrying capacity of robot is calculated at the horizontal plan. The increasing of robot load carrying capacity with vibration control is 53%.

Keywords: flexible link, DLCC, active control vibration, assumed mode method

Procedia PDF Downloads 371
13452 Bit Error Rate Monitoring for Automatic Bias Control of Quadrature Amplitude Modulators

Authors: Naji Ali Albakay, Abdulrahman Alothaim, Isa Barshushi

Abstract:

The most common quadrature amplitude modulator (QAM) applies two Mach-Zehnder Modulators (MZM) and one phase shifter to generate high order modulation format. The bias of MZM changes over time due to temperature, vibration, and aging factors. The change in the biasing causes distortion to the generated QAM signal which leads to deterioration of bit error rate (BER) performance. Therefore, it is critical to be able to lock MZM’s Q point to the required operating point for good performance. We propose a technique for automatic bias control (ABC) of QAM transmitter using BER measurements and gradient descent optimization algorithm. The proposed technique is attractive because it uses the pertinent metric, BER, which compensates for bias drifting independently from other system variations such as laser source output power. The proposed scheme performance and its operating principles are simulated using OptiSystem simulation software for 4-QAM and 16-QAM transmitters.

Keywords: automatic bias control, optical fiber communication, optical modulation, optical devices

Procedia PDF Downloads 166
13451 Experimental and Modal Determination of the State-Space Model Parameters of a Uni-Axial Shaker System for Virtual Vibration Testing

Authors: Jonathan Martino, Kristof Harri

Abstract:

In some cases, the increase in computing resources makes simulation methods more affordable. The increase in processing speed also allows real time analysis or even more rapid tests analysis offering a real tool for test prediction and design process optimization. Vibration tests are no exception to this trend. The so called ‘Virtual Vibration Testing’ offers solution among others to study the influence of specific loads, to better anticipate the boundary conditions between the exciter and the structure under test, to study the influence of small changes in the structure under test, etc. This article will first present a virtual vibration test modeling with a main focus on the shaker model and will afterwards present the experimental parameters determination. The classical way of modeling a shaker is to consider the shaker as a simple mechanical structure augmented by an electrical circuit that makes the shaker move. The shaker is modeled as a two or three degrees of freedom lumped parameters model while the electrical circuit takes the coil impedance and the dynamic back-electromagnetic force into account. The establishment of the equations of this model, describing the dynamics of the shaker, is presented in this article and is strongly related to the internal physical quantities of the shaker. Those quantities will be reduced into global parameters which will be estimated through experiments. Different experiments will be carried out in order to design an easy and practical method for the identification of the shaker parameters leading to a fully functional shaker model. An experimental modal analysis will also be carried out to extract the modal parameters of the shaker and to combine them with the electrical measurements. Finally, this article will conclude with an experimental validation of the model.

Keywords: lumped parameters model, shaker modeling, shaker parameters, state-space, virtual vibration

Procedia PDF Downloads 249
13450 Tumor Cell Detection, Isolation and Monitoring Using Bi-Layer Magnetic Microfluidic Chip

Authors: Amir Seyfoori, Ehsan Samiei, Mohsen Akbari

Abstract:

The use of microtechnology for detection and high yield isolation of circulating tumor cells (CTCs) has shown enormous promise as an indication of clinical metastasis prognosis and cancer treatment monitoring. The Immunomagnetic assay has been also coupled to microtechnology to improve the selectivity and efficiency of the current methods of cancer biomarker isolation. In this way, generation and configuration of the local high gradient magnetic field play essential roles in such assay. Additionally, considering the intrinsic heterogeneity of cancer cells, real-time analysis of isolated cells is necessary to characterize their responses to therapy. Totally, on-chip isolation and monitoring of the specific tumor cells is considered as a pressing need in the way of modified cancer therapy. To address these challenges, we have developed a bi-layer magnetic-based microfluidic chip for enhanced CTC detection and capturing. Micromagnet arrays at the bottom layer of the chip were fabricated using a new method of magnetic nanoparticle paste deposition so that they were arranged at the center of the chain microchannel with the lowest fluid velocity zone. Breast cancer cells labelled with EPCAM-conjugated smart microgels were immobilized on the tip of the micromagnets with greater localized magnetic field and stronger cell-micromagnet interaction. Considering different magnetic nano-powder usage (MnFe2O4 & gamma-Fe2O3) and micromagnet shapes (ellipsoidal & arrow), the capture efficiency of the systems was adjusted while the higher CTC capture efficiency was acquired for MnFe2O4 arrow micromagnet as around 95.5%. As a proof of concept of on-chip tumor cell monitoring, magnetic smart microgels made of thermo-responsive poly N-isopropylacrylamide-co-acrylic acid (PNIPAM-AA) composition were used for both purposes of targeted cell capturing as well as cell monitoring using antibody conjugation and fluorescent dye loading at the same time. In this regard, magnetic microgels were successfully used as cell tracker after isolation process so that by raising the temperature up to 37⁰ C, they released the contained dye and stained the targeted cell just after capturing. This microfluidic device was able to provide a platform for detection, isolation and efficient real-time analysis of specific CTCs in the liquid biopsy of breast cancer patients.

Keywords: circulating tumor cells, microfluidic, immunomagnetic, cell isolation

Procedia PDF Downloads 118
13449 Free Vibration Analysis of Conical Helicoidal Rods Having Elliptical Cross Sections Positioned in Different Orientation

Authors: Merve Ermis, Akif Kutlu, Nihal Eratlı, Mehmet H. Omurtag

Abstract:

In this study, the free vibration analysis of conical helicoidal rods with two different elliptically oriented cross sections is investigated and the results are compared by the circular cross-section keeping the net area for all cases equal to each other. Problems are solved by using the mixed finite element formulation. Element matrices based on Timoshenko beam theory are employed. The finite element matrices are derived by directly inserting the analytical expressions (arc length, curvature, and torsion) defining helix geometry into the formulation. Helicoidal rod domain is discretized by a two-noded curvilinear element. Each node of the element has 12 DOFs, namely, three translations, three rotations, two shear forces, one axial force, two bending moments and one torque. A parametric study is performed to investigate the influence of elliptical cross sectional geometry and its orientation over the natural frequencies of the conical type helicoidal rod.

Keywords: conical helix, elliptical cross section, finite element, free vibration

Procedia PDF Downloads 291
13448 Vibration Based Structural Health Monitoring of Connections in Offshore Wind Turbines

Authors: Cristobal García

Abstract:

The visual inspection of bolted joints in wind turbines is dangerous, expensive, and impractical due to the non-possibility to access the platform by workboat in certain sea state conditions, as well as the high costs derived from the transportation of maintenance technicians to offshore platforms located far away from the coast, especially if helicopters are involved. Consequently, the wind turbine operators have the need for simpler and less demanding techniques for the analysis of the bolts tightening. Vibration-based structural health monitoring is one of the oldest and most widely-used means for monitoring the health of onshore and offshore wind turbines. The core of this work is to find out if the modal parameters can be efficiently used as a key performance indicator (KPIs) for the assessment of joint bolts in a 1:50 scale tower of a floating offshore wind turbine (12 MW). A non-destructive vibration test is used to extract the vibration signals of the towers with different damage statuses. The procedure can be summarized in three consecutive steps. First, an artificial excitation is introduced by means of a commercial shaker mounted on the top of the tower. Second, the vibration signals of the towers are recorded for 8 s at a sampling rate of 20 kHz using an array of commercial accelerometers (Endevco, 44A16-1032). Third, the natural frequencies, damping, and overall vibration mode shapes are calculated using the software Siemens LMS 16A. Experiments show that the natural frequencies, damping, and mode shapes of the tower are directly dependent on the fixing conditions of the towers, and therefore, the variations of both parameters are a good indicator for the estimation of the static axial force acting in the bolt. Thus, this vibration-based structural method proposed can be potentially used as a diagnostic tool to evaluate the tightening torques of the bolted joints with the advantages of being an economical, straightforward, and multidisciplinary approach that can be applied for different typologies of connections by operation and maintenance technicians. In conclusion, TSI, in collaboration with the consortium of the FIBREGY project, is conducting innovative research where vibrations are utilized for the estimation of the tightening torque of a 1:50 scale steel-based tower prototype. The findings of this research carried out in the context of FIBREGY possess multiple implications for the assessment of the bolted joint integrity in multiple types of connections such as tower-to-nacelle, modular, tower-to-column, tube-to-tube, etc. This research is contextualized in the framework of the FIBREGY project. The EU-funded FIBREGY project (H2020, grant number 952966) will evaluate the feasibility of the design and construction of a new generation of marine renewable energy platforms using lightweight FRP materials in certain structural elements (e.g., tower, floating platform). The FIBREGY consortium is composed of 11 partners specialized in the offshore renewable energy sector and funded partially by the H2020 program of the European Commission with an overall budget of 8 million Euros.

Keywords: SHM, vibrations, connections, floating offshore platform

Procedia PDF Downloads 91
13447 Human Walking Vertical Force and Vertical Vibration of Pedestrian Bridge Induced by Its Higher Components

Authors: Masahiro Yoneda

Abstract:

The purpose of this study is to identify human walking vertical force by using FFT power spectrum density from the experimental acceleration data of the human body. An experiment on human walking is carried out on a stationary floor especially paying attention to higher components of dynamic vertical walking force. Based on measured acceleration data of the human lumbar part, not only in-phase component with frequency of 2 fw, 3 fw, but also in-opposite-phase component with frequency of 0.5 fw, 1.5 fw, 2.5 fw where fw is the walking rate is observed. The vertical vibration of pedestrian bridge induced by higher components of human walking vertical force is also discussed in this paper. A full scale measurement for the existing pedestrian bridge with center span length of 33 m is carried out focusing on the resonance phenomenon due to higher components of human walking vertical force. Dynamic response characteristics excited by these vertical higher components of human walking are revealed from the dynamic design viewpoint of pedestrian bridge.

Keywords: simplified method, human walking vertical force, higher component, pedestrian bridge vibration

Procedia PDF Downloads 413
13446 Simplified Analysis Procedure for Seismic Evaluation of Tall Building at Structure and Component Level

Authors: Tahir Mehmood, Pennung Warnitchai

Abstract:

Simplified static analysis procedures such Nonlinear Static Procedure (NSP) are gaining popularity for the seismic evaluation of buildings. However, these simplified procedures accounts only for the seismic responses of the fundamental vibration mode of the structure. Some other procedures which can take into account the higher modes of vibration, lack in accuracy to determine the component responses. Hence, such procedures are not suitable for evaluating the structures where many vibration modes may participate significantly or where component responses are needed to be evaluated. Moreover, these procedures were found to either computationally expensive or tedious to obtain individual component responses. In this paper, a simplified but accurate procedure is studied. It is called the Uncoupled Modal Response History Analysis (UMRHA) procedure. In this procedure, the nonlinear response of each vibration mode is first computed, and they are later on combined into the total response of the structure. The responses of four tall buildings are computed by this simplified UMRHA procedure and compared with those obtained from the NLRHA procedure. The comparison shows that the UMRHA procedure is able to accurately compute the global responses, i.e., story shears and story overturning moments, floor accelerations and inter-story drifts as well as the component level responses of these tall buildings with heights varying from 20 to 44 stories. The required computational effort is also extremely low compared to that of the Nonlinear Response History Analysis (NLRHA) procedure.

Keywords: higher mode effects, seismic evaluation procedure, tall buildings, component responses

Procedia PDF Downloads 320
13445 Nonlinear Modelling and Analysis of Piezoelectric Smart Thin-Walled Structures in Supersonic Flow

Authors: Shu-Yang Zhang, Shun-Qi Zhang, Zhan-Xi Wang, Xian-Sheng Qin

Abstract:

Thin-walled structures are used more and more widely in modern aircrafts and some other structures in aerospace field nowadays. Accompanied by the wider applications, the vibration of the structures has been a bigger problem. Because of the direct and converse piezoelectric effect, piezoelectric materials combined to host thin-walled structures, named as piezoelectric smart structures, can be an effective way to suppress the vibration. So, an accurate model for piezoelectric thin-walled structures in air flow is necessary and important. In our recent work, an electromechanical coupling nonlinear aerodynamic finite element model of piezoelectric smart thin-walled structures is built based on the Reissner-Mindlin plate theory and first-order piston theory for aerodynamic pressure of supersonic flow. Von Kármán type nonlinearity is considered in the present model. Finally, the model is validated by experimental and numerical results from the literature, which can describe the vibration of the structures in supersonic flow precisely.

Keywords: piezoelectric smart structures, aerodynamic, geometric nonlinearity, finite element analysis

Procedia PDF Downloads 364
13444 Water Droplet Impact on Vibrating Rigid Superhydrophobic Surfaces

Authors: Jingcheng Ma, Patricia B. Weisensee, Young H. Shin, Yujin Chang, Junjiao Tian, William P. King, Nenad Miljkovic

Abstract:

Water droplet impact on surfaces is a ubiquitous phenomenon in both nature and industry. The transfer of mass, momentum and energy can be influenced by the time of contact between droplet and surface. In order to reduce the contact time, we study the influence of substrate motion prior to impact on the dynamics of droplet recoil. Using optical high speed imaging, we investigated the impact dynamics of macroscopic water droplets (~ 2mm) on rigid nanostructured superhydrophobic surfaces vibrating at 60 – 300 Hz and amplitudes of 0 – 3 mm. In addition, we studied the influence of the phase of the substrate at the moment of impact on total contact time. We demonstrate that substrate vibration can alter droplet dynamics, and decrease total contact time by as much as 50% compared to impact on stationary rigid superhydrophobic surfaces. Impact analysis revealed that the vibration frequency mainly affected the maximum contact time, while the amplitude of vibration had little direct effect on the contact time. Through mathematical modeling, we show that the oscillation amplitude influences the possibility density function of droplet impact at a given phase, and thus indirectly influences the average contact time. We also observed more vigorous droplet splashing and breakup during impact at larger amplitudes. Through semi-empirical mathematical modeling, we describe the relationship between contact time and vibration frequency, phase, and amplitude of the substrate. We also show that the maximum acceleration during the impact process is better suited as a threshold parameter for the onset of splashing than a Weber-number criterion. This study not only provides new insights into droplet impact physics on vibrating surfaces, but develops guidelines for the rational design of surfaces to achieve controllable droplet wetting in applications utilizing vibration.

Keywords: contact time, impact dynamics, oscillation, pear-shape droplet

Procedia PDF Downloads 436
13443 Vibrotactility: Exploring and Prototyping the Aesthetics and Technology of Vibrotactility

Authors: Elsa Kosmack Vaara, Cheryl Akner Koler, Yusuf Mulla, Parivash Ranjbar, Anneli Nöu

Abstract:

This transdisciplinary research weaves together an aesthetic perspective with a technical one to develop human sensitivity for vibration and construct flexible, wearable devices that are miniature, lightweight, and energy efficient. By applying methods from artistic research, performative arts, audio science, nanotechnology, and interaction design, we created working prototypes with actuators that were specifically positioned in various places on the body. The vibrotactile prototypes were tested by our research team, design students, and people with deafblindness and blindness, each with different intentions. Some tests supported connoisseurship for vibrotactile musical expression. Others aimed for precise navigational instructions. Our results and discussion concern problems in establishing standards for vibrotactility because standards minimize diversity and narrow possible ways vibration can be experienced. Human bodies vary significantly in ‘where’ vibrotactile signals can be sensed and ‘how’ they awaken emotions. We encourage others to embrace the dynamic exchange between new haptic technology and aesthetic complexity.

Keywords: aesthetics, vibration, music, interaction design, deafblindness

Procedia PDF Downloads 63
13442 Intertextuality as a Dialogue Between Postmodern Writer J. Fowles and Mid-English Writer J. Donne

Authors: Isahakyan Heghine

Abstract:

Intertextuality, being in the centre of attention of both linguists and literary critics, is vividly expressed in the outstanding British novelist and philosopher J. Fowles' works. 'The Magus’ is a deep psychological and philosophical novel with vivid intertextual links with the Greek mythology and authors from different epochs. The aim of the paper is to show how intertextuality might serve as a dialogue between two authors (J. Fowles and J. Donne) disguised in the dialogue of two protagonists of the novel : Conchis and Nicholas. Contrastive viewpoints concerning man's isolation, loneliness are stated in the dialogue. Due to the conceptual analysis of the text it becomes possible both to decode the conceptual information of the text and find out its intertextual links.

Keywords: dialogue, conceptual analysis, isolation, intertextuality

Procedia PDF Downloads 305
13441 Isolation and Identification of Biosurfactant Producing Microorganism for Bioaugmentation

Authors: Karthick Gopalan, Selvamohan Thankiah

Abstract:

Biosurfactants are lipid compounds produced by microbes, which are amphipathic molecules consisting of hydrophophic and hydrophilic domains. In the present investigation, ten bacterial strains were isolated from petroleum oil contaminated sites near petrol bunk. Oil collapsing test, haemolytic activity were used as a criteria for primary isolation of biosurfactant producing bacteria. In this study, all the bacterial strains gave positive results. Among the ten strains, two were observed as good biosurfactant producers, they utilize the diesel as a sole carbon source. Optimization of biosurfactant producing bacteria isolated from petroleum oil contaminated sites was carried out using different parameters such as, temperature (20ºC, 25ºC, 30ºC, 37ºC and 45ºC), pH (5,6,7,8 & 9) and nitrogen sources (ammonium chloride, ammonium carbonate and sodium nitrate). Biosurfactants produced by bacteria were extracted, dried and quantified. As a result of optimization of parameters the suitable values for the production of more amount of biosurfactant by the isolated bacterial species was observed as 30ºC (0.543 gm/lt) in the pH 7 (0.537 gm/lt) with ammonium nitrate (0.431 gm/lt) as sole carbon source.

Keywords: isolation and identification, biosurfactant, microorganism, bioaugmentation

Procedia PDF Downloads 317
13440 Diagnosis and Resolution of Intermittent High Vibration Spikes at Exhaust Bearing of Mitsubishi H-25 Gas Turbine using Shaft Vibration Analysis and Detailed Root Cause Analysis

Authors: Fahad Qureshi

Abstract:

This paper provides detailed study on the diagnosis of intermittent high vibration spikes at exhaust bearing (Non-Drive End) of Mitsubishi H-25 gas turbine installed in a petrochemical plant in Pakistan. The diagnosis is followed by successful root cause analysis of the issue and recommendations for improving the reliability of machine. Engro Polymer and Chemicals (EPCL), a Chlor Vinyl complex, has a captive power plant consisting of one combined cycle power plant (CCPP), having two gas turbines each having 25 MW capacity (make: Hitachi) and one extraction condensing steam turbine having 15 MW capacity (make: HTC). Besides, one 6.75 MW SGT-200 1S gas turbine (make: Alstom) is also available. In 2018, the organization faced an issue of intermittent high vibration at exhaust bearing of one of H-25 units having tag GT-2101 A, which eventually led to tripping of machine at configured securities. Since the machine had surpassed 64,000 running hours and major inspection was also due, so bearings inspection was performed. Inspection revealed excessive coke deposition at labyrinth where evidence of rotor rub was also present. Bearing clearance was also at upper limit, and slight babbitt (soft metal) chip off was observed at one of its pads so it was preventively replaced. The unit was restated successfully and exhibited no abnormality until October 2020, when these spikes reoccurred, leading to machine trip. Recurrence of the issue within two years indicated that root cause was not properly addressed, so this paper furthers the discussion on in-depth analysis of findings and establishes successful root cause analysis, which captured significant learnings both in terms of machine design deficiencies and gaps in operation & maintenance (O & M) regime. Lastly, revised O& M regime along with set of recommendations are proposed to avoid recurrence.

Keywords: exhaust side bearing, Gas turbine, rubbing, vibration

Procedia PDF Downloads 152
13439 Verification of a Simple Model for Rolling Isolation System Response

Authors: Aarthi Sridhar, Henri Gavin, Karah Kelly

Abstract:

Rolling Isolation Systems (RISs) are simple and effective means to mitigate earthquake hazards to equipment in critical and precious facilities, such as hospitals, network collocation facilities, supercomputer centers, and museums. The RIS works by isolating components acceleration the inertial forces felt by the subsystem. The RIS consists of two platforms with counter-facing concave surfaces (dishes) in each corner. Steel balls lie inside the dishes and allow the relative motion between the top and bottom platform. Formerly, a mathematical model for the dynamics of RISs was developed using Lagrange’s equations (LE) and experimentally validated. A new mathematical model was developed using Gauss’s Principle of Least Constraint (GPLC) and verified by comparing impulse response trajectories of the GPLC model and the LE model in terms of the peak displacements and accelerations of the top platform. Mathematical models for the RIS are tedious to derive because of the non-holonomic rolling constraints imposed on the system. However, using Gauss’s Principle of Least constraint to find the equations of motion removes some of the obscurity and yields a system that can be easily extended. Though the GPLC model requires more state variables, the equations of motion are far simpler. The non-holonomic constraint is enforced in terms of accelerations and therefore requires additional constraint stabilization methods in order to avoid the possibility that numerical integration methods can cause the system to go unstable. The GPLC model allows the incorporation of more physical aspects related to the RIS, such as contribution of the vertical velocity of the platform to the kinetic energy and the mass of the balls. This mathematical model for the RIS is a tool to predict the motion of the isolation platform. The ability to statistically quantify the expected responses of the RIS is critical in the implementation of earthquake hazard mitigation.

Keywords: earthquake hazard mitigation, earthquake isolation, Gauss’s Principle of Least Constraint, nonlinear dynamics, rolling isolation system

Procedia PDF Downloads 225
13438 Sensitive Detection of Nano-Scale Vibrations by the Metal-Coated Fiber Tip at the Liquid-Air Interface

Authors: A. J. Babajanyan, T. A. Abrahamyan, H. A. Minasyan, K. V. Nerkararyan

Abstract:

Optical radiation emitted from a metal-coated fiber tip apex at liquid-air interface was measured. The intensity of the output radiation was strongly depending on the relative position of the tip to a liquid-air interface and varied with surface fluctuations. This phenomenon permits in-situ real-time investigation of nano-metric vibrations of the liquid surface and provides a basis for development of various origin ultrasensitive vibration detecting sensors. The described method can be used for detection of week seismic vibrations.

Keywords: fiber-tip, liquid-air interface, nano vibration, opto-mechanical sensor

Procedia PDF Downloads 459
13437 Effect of Whole-Body Vibration Training on Self-Reported Physical Disability in Employees with Chronic Low-Back Pain: A Randomized Controlled Trial

Authors: Tobias Stephan Kaeding, Rebecca Schwarz, Momme Kück, Lothar Stein

Abstract:

Introduction: The goal of this randomized and controlled study is to examine whether whole-body vibration (WBV) training is able to reduce self-reported physical disability in office employees with chronic low-back pain. Materials and methods: 41 subjects (68.3% female/mean age 45.5 ± 9.1 years/mean BMI 26.6 ± 5.2) were randomly allocated to an intervention group (INT (n= 21)) or a control group (CON (n=20). The INT participated in WBV training 2.5 times per week for 3 months. The primary outcome was the change in the Roland and Morris disability questionnaire (RMQ) score over the study period. In addition, secondary outcomes included changes in the Oswestry Disability Index (ODI). Results: The compliance with the intervention in the INT reached a mean of 81.1% ± 31.2% with no long-lasting unwanted side effects. We found significant positive effects of 3 months of WBV training in the INT compared to the CON regarding the RMQ (p=0.027) and the ODI (p=0.002). Conclusions: WBV training seems to be an effective, safe and suitable intervention for the reduction of the self-reported physical disability in seated working employees with chronic low-back pain.

Keywords: back pain, exercise, occupational health management, vibration training

Procedia PDF Downloads 274
13436 Parametric Optimization of High-Performance Electric Vehicle E-Gear Drive for Radiated Noise Using 1-D System Simulation

Authors: Sanjai Sureshkumar, Sathish G. Kumar, P. V. V. Sathyanarayana

Abstract:

For e-gear drivetrain, the transmission error and the resulting variation in mesh stiffness is one of the main source of excitation in High performance Electric Vehicle. These vibrations are transferred through the shaft to the bearings and then to the e-Gear drive housing eventually radiating noise. A parametrical model developed in 1-D system simulation by optimizing the micro and macro geometry along with bearing properties and oil filtration to achieve least transmission error and high contact ratio. Histogram analysis is performed to condense the actual road load data into condensed duty cycle to find the bearing forces. The structural vibration generated by these forces will be simulated in a nonlinear solver obtaining the normal surface velocity of the housing and the results will be carried forward to Acoustic software wherein a virtual environment of the surrounding (actual testing scenario) with accurate microphone position will be maintained to predict the sound pressure level of radiated noise and directivity plot of the e-Gear Drive. Order analysis will be carried out to find the root cause of the vibration and whine noise. Broadband spectrum will be checked to find the rattle noise source. Further, with the available results, the design will be optimized, and the next loop of simulation will be performed to build a best e-Gear Drive on NVH aspect. Structural analysis will be also carried out to check the robustness of the e-Gear Drive.

Keywords: 1-D system simulation, contact ratio, e-Gear, mesh stiffness, micro and macro geometry, transmission error, radiated noise, NVH

Procedia PDF Downloads 134
13435 How Digital Empowerment Affects Dissolution of Segmentation Effect and Construction of Opinion Leaders in Isolated Communities: Ethnographic Investigation of Leprosy Rehabilitation Groups

Authors: Lin Zhang

Abstract:

The fear of leprosy has been longstanding throughout the human history. In an era where isolation is practiced as a means of epidemic prevention, the leprosy rehabilitation group has itself become an isolated community with an entrenched metaphor. In the process of new mediatization of the leprosy isolation community, what are the relations among media literacy, the leprosy internalized stigma and social support? To address the question, the “portrait” of leprosy rehabilitation group is re-delineated through two field studies in the “post-leprosy age” in 2012 and 2020, respectively. Taking an isolation community on Si’an Leprosy Island in Dongguan City, Guangdong Province, China as the study object, it is found that new media promotes the dissolution of segregation effect of the leprosy isolation community and the cultivation of opinion leaders by breaking spatial, psychological and social segregation and by building a community of village affairs and public space in the following way: the cured patients with high new media literacy, especially those who use WeChat and other applications and largely rely on new media for information, have a low level of leprosy internalized stigma and a high level of social support, and they are often the opinion leaders inside their community; on the contrary, the cured patients with low new media literacy, a high level of leprosy internalized stigma and a low level of social support are often the followers inside their community. Such effects of dissolution and construction are reflected not only in the vertical differentiation of the same individual at different times, but also in the horizontal differentiation between different individuals at the same time.

Keywords: segregation, the leprosy rehabilitation group, new mediatization, digital empowerment, opinion leaders

Procedia PDF Downloads 152
13434 In situ Modelling of Lateral-Torsional Vibration of a Rotor-Stator with Multiple Parametric Excitations

Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu

Abstract:

This paper presents a 4-DOF nonlinear model of a cracked of Laval rotor established based on Energy Principles. The model has been used to simulate coupled torsional-lateral response of the cracked rotor stator-system with multiple parametric excitations, namely, rotor-stator-rub, a breathing transverse crack, unbalanced mass, and an axial force. Nonlinearity due to a “breathing” crack is incorporated by considering a simple hinge model which is suitable for small breathing crack. The vibration response of a cracked rotor passing through its critical speed with rotor-stator interaction is analyzed, and an attempt for crack detection and monitoring explored. Effects of unbalanced eccentricity with phase and acceleration are investigated. By solving the motion equations, steady-state vibration response is obtained in presence of several rotor faults. The presence of a crack is observable in the power spectrum despite the excitation by the axial force and rotor-stator rub impact. Presented results are consistent with existing literature and could be adopted into rotor condition monitoring strategies

Keywords: rotor, crack, rubbing, axial force, non linear

Procedia PDF Downloads 370
13433 Scour Damaged Detection of Bridge Piers Using Vibration Analysis - Numerical Study of a Bridge

Authors: Solaine Hachem, Frédéric Bourquin, Dominique Siegert

Abstract:

The brutal collapse of bridges is mainly due to scour. Indeed, the soil erosion in the riverbed around a pier modifies the embedding conditions of the structure, reduces its overall stiffness and threatens its stability. Hence, finding an efficient technique that allows early scour detection becomes mandatory. Vibration analysis is an indirect method for scour detection that relies on real-time monitoring of the bridge. It tends to indicate the presence of a scour based on its consequences on the stability of the structure and its dynamic response. Most of the research in this field has focused on the dynamic behavior of a single pile and has examined the depth of the scour. In this paper, a bridge is fully modeled with all piles and spans and the scour is represented by a reduction in the foundation's stiffnesses. This work aims to identify the vibration modes sensitive to the rigidity’s loss in the foundations so that their variations can be considered as a scour indicator: the decrease in soil-structure interaction rigidity leads to a decrease in the natural frequencies’ values. By using the first-order perturbation method, the expression of sensitivity, which depends only on the selected vibration modes, is established to determine the deficiency of foundations stiffnesses. The solutions are obtained by using the singular value decomposition method for the regularization of the inverse problem. The propagation of uncertainties is also calculated to verify the efficiency of the inverse problem method. Numerical simulations describing different scenarios of scour are investigated on a simplified model of a real composite steel-concrete bridge located in France. The results of the modal analysis show that the modes corresponding to in-plane and out-of-plane piers vibrations are sensitive to the loss of foundation stiffness. While the deck bending modes are not affected by this damage.

Keywords: bridge’s piers, inverse problems, modal sensitivity, scour detection, vibration analysis

Procedia PDF Downloads 70
13432 Single Cell Sorter Driven by Resonance Vibration of Cell Culture Substrate

Authors: Misa Nakao, Yuta Kurashina, Chikahiro Imashiro, Kenjiro Takemura

Abstract:

The Research Goal: With the growing demand for regenerative medicine, an effective mass cell culture process is required. In a repetitive subculture process for proliferating cells, preparing single cell suspension which does not contain any cell aggregates is highly required because cell aggregates often raise various undesirable phenomena, e.g., apoptosis and decrease of cell proliferation. Since cell aggregates often occur in cell suspension during conventional subculture processes, this study proposes a single cell sorter driven by a resonance vibration of a cell culture substrate. The Method and the Result: The single cell sorter is simply composed of a cell culture substrate and a glass pipe vertically placed against the cell culture substrate with a certain gap corresponding to a cell diameter. The cell culture substrate is made of biocompatible stainless steel with a piezoelectric ceramic disk glued to the bottom side. Applying AC voltage to the piezoelectric ceramic disk, an out-of-plane resonance vibration with a single nodal circle of the cell culture substrate can be excited at 5.5 kHz. By doing so, acoustic radiation force is emitted, and then cell suspension containing only single cells is pumped into the pipe and collected. This single cell sorter is effective to collect single cells selectively in spite of its quite simple structure. We collected C2C12 myoblast cell suspension by the single cell sorter with the vibration amplitude of 12 µmp-p and evaluated the ratio of single cells in number against the entire cells in the suspension. Additionally, we cultured the collected cells for 72 hrs and measured the number of cells after the cultivation in order to evaluate their proliferation. As a control sample, we also collected cell suspension by conventional pipetting, and evaluated the ratio of single cells and the number of cells after the 72-hour cultivation. The ratio of single cells in the cell suspension collected by the single cell sorter was 98.2%. This ratio was 9.6% higher than that collected by conventional pipetting (statistically significant). Moreover, the number of cells cultured for 72 hrs after the collection by the single cell sorter yielded statistically more cells than that collected by pipetting, resulting in a 13.6% increase in proliferated cells. These results suggest that the cell suspension collected by the single cell sorter driven by the resonance vibration hardly contains cell aggregates whose diameter is larger than the gap between the cell culture substrate and the pipe. Consequently, the cell suspension collected by the single cell sorter maintains high cell proliferation. Conclusions: In this study, we developed a single cell sorter capable of sorting and pumping single cells by a resonance vibration of a cell culture substrate. The experimental results show the single cell sorter collects single cell suspension which hardly contains cell aggregates. Furthermore, the collected cells show higher proliferation than that of cells collected by conventional pipetting. This means the resonance vibration of the cell culture substrate can benefit us with the increase in efficiency of mass cell culture process for clinical applications.

Keywords: acoustic radiation force, cell proliferation, regenerative medicine, resonance vibration, single cell sorter

Procedia PDF Downloads 242
13431 Frequency Domain Decomposition, Stochastic Subspace Identification and Continuous Wavelet Transform for Operational Modal Analysis of Three Story Steel Frame

Authors: Ardalan Sabamehr, Ashutosh Bagchi

Abstract:

Recently, Structural Health Monitoring (SHM) based on the vibration of structures has attracted the attention of researchers in different fields such as: civil, aeronautical and mechanical engineering. Operational Modal Analysis (OMA) have been developed to identify modal properties of infrastructure such as bridge, building and so on. Frequency Domain Decomposition (FDD), Stochastic Subspace Identification (SSI) and Continuous Wavelet Transform (CWT) are the three most common methods in output only modal identification. FDD, SSI, and CWT operate based on the frequency domain, time domain, and time-frequency plane respectively. So, FDD and SSI are not able to display time and frequency at the same time. By the way, FDD and SSI have some difficulties in a noisy environment and finding the closed modes. CWT technique which is currently developed works on time-frequency plane and a reasonable performance in such condition. The other advantage of wavelet transform rather than other current techniques is that it can be applied for the non-stationary signal as well. The aim of this paper is to compare three most common modal identification techniques to find modal properties (such as natural frequency, mode shape, and damping ratio) of three story steel frame which was built in Concordia University Lab by use of ambient vibration. The frame has made of Galvanized steel with 60 cm length, 27 cm width and 133 cm height with no brace along the long span and short space. Three uniaxial wired accelerations (MicroStarin with 100mv/g accuracy) have been attached to the middle of each floor and gateway receives the data and send to the PC by use of Node Commander Software. The real-time monitoring has been performed for 20 seconds with 512 Hz sampling rate. The test is repeated for 5 times in each direction by hand shaking and impact hammer. CWT is able to detect instantaneous frequency by used of ridge detection method. In this paper, partial derivative ridge detection technique has been applied to the local maxima of time-frequency plane to detect the instantaneous frequency. The extracted result from all three methods have been compared, and it demonstrated that CWT has the better performance in term of its accuracy in noisy environment. The modal parameters such as natural frequency, damping ratio and mode shapes are identified from all three methods.

Keywords: ambient vibration, frequency domain decomposition, stochastic subspace identification, continuous wavelet transform

Procedia PDF Downloads 270
13430 Theoretical-Experimental Investigations on Free Vibration of Glass Fiber/Polyester Composite Conical Shells Containing Fluid

Authors: Tran Ich Thinh, Nguyen Manh Cuong

Abstract:

Free vibrations of partial fluid-filled composite truncated conical shells are investigated using the Dynamic Stiffness Method (DSM) or Continuous Element Method (CEM) based on the First Order Shear Deformation Theory (FSDT) and non-viscous incompressible fluid equations. Numerical examples are given for analyzing natural frequencies and harmonic responses of clamped-free conical shells partially and completely filled with fluid. To compare with the theoretical results, detailed experimental results have been obtained on the free vibration of a clamped-free conical shells partially filled with water by using a multi-vibration measuring machine (DEWEBOOK-DASYLab 5.61.10). Three glass fiber/polyester composite truncated cones with the radius of the larger end 285 mm, thickness 2 mm, and the cone lengths along the generators are 285 mm, 427.5 mm and 570 mm with the semi-vertex angles 27, 14 and 9 degrees respectively were used, and the filling ratio of the contained water was 0, 0.25, 0.50, 0.75 and 1.0. The results calculated by proposed computational model for studied composite conical shells are in good agreement with experiments. Obtained results indicate that the fluid filling can reduce significantly the natural frequencies of composite conical shells. Parametric studies including circumferential wave number, fluid depth and cone angles are carried out.

Keywords: dynamic stiffness method, experimental study, free vibration, fluid-shell interaction, glass fiber/polyester composite conical shell

Procedia PDF Downloads 471
13429 Effects of Tool State on the Output Parameters of Front Milling Using Discrete Wavelet Transform

Authors: Bruno S. Soria, Mauricio R. Policena, Andre J. Souza

Abstract:

The state of the cutting tool is an important factor to consider during machining to achieve a good surface quality. The vibration generated during material cutting can also directly affect the surface quality and life of the cutting tool. In this work, the effect of mechanical broken failure (MBF) on carbide insert tools during face milling of AISI 304 stainless steel was evaluated using three levels of feed rate and two spindle speeds for each tool condition: three carbide inserts have perfect geometry, and three other carbide inserts have MBF. The axial and radial depths remained constant. The cutting forces were determined through a sensory system that consists of a piezoelectric dynamometer and data acquisition system. Discrete Wavelet Transform was used to separate the static part of the signals of force and vibration. The roughness of the machined surface was analyzed for each machining condition. The MBF of the tool increased the intensity and force of vibration and worsened the roughness factors.

Keywords: face milling, stainless steel, tool condition monitoring, wavelet discrete transform

Procedia PDF Downloads 121
13428 Using Seismic Base Isolation Systems in High-Rise Hospital Buildings and a Hybrid Proposal

Authors: Elif Bakkaloglu, Necdet Torunbalci

Abstract:

The fact of earthquakes in Turkiye is an inevitable natural disaster. Therefore, buildings must be prepared for this natural hazard. Especially in hospital buildings, earthquake resistance is an essential point because hospitals are one of the first places where people come after an earthquake. Although hospital buildings are more suitable for horizontal architecture, it is necessary to construct and expand multi-storey hospital buildings due to difficulties in finding suitable places as a result of excessive urbanization, difficulties in obtaining appropriate size land and decrease in suitable places and increase in land values. In Turkiye, using seismic isolators in public hospitals, which are placed in first-degree earthquake zone and have more than 100 beds, is made obligatory by general instruction. As a result of this decision, it may sometimes be necessary to construct seismic isolated multi-storey hospital buildings in cities where those problems are experienced. Although widespread use of seismic isolators in Japan, there are few multi-storey buildings in which seismic isolators are used in Turkiye. As it is known, base isolation systems are the most effective methods of earthquake resistance, as number of floors increases, center of gravity moves away from base in multi-storey buildings, increasing the overturning effect and limiting the use of these systems. In this context, it is aimed to investigate structural systems of multi-storey buildings which built using seismic isolation methods in the World. In addition to this, a working principle is suggested for disseminating seismic isolators in multi-storey hospital buildings. The results to be obtained from the study will guide architects who design multi-storey hospital buildings in their architectural designs and engineers in terms of structural system design.

Keywords: earthquake, energy absorbing systems, hospital, seismic isolation systems

Procedia PDF Downloads 117
13427 Viability of Slab Sliding System for Single Story Structure

Authors: C. Iihoshi, G. A. MacRae, G. W. Rodgers, J. G. Chase

Abstract:

Slab Sliding System (SSS) with Coulomb friction interface between slab and supporting frame is a passive structural vibration control technology. The system can significantly reduce the slab acceleration and accompanied lateral force of the frame. At the same time it is expected to cause the slab displacement magnification by sliding movement. To obtain the general comprehensive seismic response of a single story structure, inelastic response spectra were computed for a large ensemble of ground motions and a practical range of structural periods and friction coefficient values. It was shown that long period structures have no trade-off relation between force reduction and displacement magnification with respect to elastic response, unlike short period structures. For structures with the majority of mass in the slab, the displacement magnification value can be predicted according to simple inelastic displacement relation for in elastically responding SDOF structures because the system behaves elastically to a SDOF structure.

Keywords: earthquake, isolation, slab, sliding

Procedia PDF Downloads 229
13426 Condition Monitoring of a 3-Ø Induction Motor by Vibration Spectrum Analysis Using FFT Analyzer, a Case Study

Authors: Adinarayana S., Sudhakar I.

Abstract:

Energy conversion is one of the inevitable parts of any industries. It involves either conversion of mechanical energy in to electrical or vice versa. The later conversion of energy i.e. electrical to mechanical emphasizes the need of motor. Statistics reveals, about 8 % of industries’ annual turnover met on maintenance. Thus substantial numbers of efforts are required to minimize in incurring expenditure met towards break down maintenance. Condition monitoring is one of such techniques based on vibration widely used to recognize premature failures and paves a way to minimize cumbersome involved during breakdown of machinery. The present investigation involves a case study of squirrel cage induction motor (frequently in the electro machines) has been chosen for the conditional monitoring to predict its soundness on the basis of results of FFT analyser. Accelerometer which measures the acceleration converts in to impulses by FFT analyser generates vibration spectrum and time spectrum has been located at various positions on motor under different conditions. Results obtained from the FFT analyser are compared to that of ISO standard vibration severity charts are taken to predict the preventative condition of considered machinery. Initial inspection of motor revealed that stator faults, broken end rings in rotor, eccentricity faults and misalignment between bearings are trouble shootings areas for present investigation. From the results of the shaft frequencies, it can be perceived that there is a misalignment between the bearings at both the ends. The higher order harmonics of FTF shows the presence of cracks on the race of the bearings at both the ends which are in the incipient stage. Replacement of the bearings at both the drive end (6306) and non drive end (6206) and the alignment check between the bearings in the shaft are suggested as the constructive measures towards preventive maintenance of considered squirrel cage induction motor.

Keywords: FFT analyser, condition monitoring, vibration spectrum, time wave form

Procedia PDF Downloads 359
13425 Effect of Social Stress on Behavioural and Physiological Responses and its Assessment by non-Invasive Method in Zebu Cattle

Authors: Baishali Deb, Hari Om Pandey, Shrilla Elangbam, Mukesh Singh, Ayon Tarafdar, A. K. S. Tomar, A. K. Pandey, Triveni Dutt

Abstract:

The goal of the present investigation was to determine the impact of social stress on behavioural characteristics, physiological responses, and haemato-biochemical indicators under various social environments in Tharparkar cattle. Serum cortisol and faecal cortisol metabolites analysis were used to determine the stress level of Tharparkar cattle. Social isolation and social mixing were the two different social circumstances used to evaluate the animals. In both the experiments i.e., social isolation and social mixing, the lying period of animals decreased significantly (p<0.05) while standing period significantly (p<0.05) increased. Frequency and duration of activities like idling, walking, exploration, oral manipulation, and elimination increased significantly (p<0.05) in Tharparkar cattle after being subjected to social isolation and social mixing. Time spent in grooming (self-grooming and allo-grooming) in respect to social isolation significantly increased during isolation and post-reunion, whereas there was a significant (p<0.05) decline in the grooming behaviour especially allo-grooming during mixing of the animals. Feeding and rumination time also decreased significantly (p<0.05) in animals during both the experiments. Physiological parameters such as respiration rate, heart rate and pulse rate increased during the treatment periods. There was no significant difference in the haematological parameters for both the experiments. There was significant (p<0.05) increase in serum cortisol and faecal cortisol metabolites (FCM) concentration in animals subjected to social stress. Therefore, it can be concluded that social stress strongly impacts the behaviour and physiological parameters of the animals, causing stress and nervousness, proving that social stress is a valid psychological stress in animals. The higher concentration of FCM in Tharparkar cattle subjected to social stress, further supported by higher serum cortisol and behaviour manifestations, suggest that FCM could be used to assess stress response as a non-invasive method.

Keywords: social stress, fecal cortisol metabolites, non-invasive, animal welfare, behaviour

Procedia PDF Downloads 69