Search results for: uncertainty reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5571

Search results for: uncertainty reduction

5481 A Robust Optimization Model for the Single-Depot Capacitated Location-Routing Problem

Authors: Abdolsalam Ghaderi

Abstract:

In this paper, the single-depot capacitated location-routing problem under uncertainty is presented. The problem aims to find the optimal location of a single depot and the routing of vehicles to serve the customers when the parameters may change under different circumstances. This problem has many applications, especially in the area of supply chain management and distribution systems. To get closer to real-world situations, travel time of vehicles, the fixed cost of vehicles usage and customers’ demand are considered as a source of uncertainty. A combined approach including robust optimization and stochastic programming was presented to deal with the uncertainty in the problem at hand. For this purpose, a mixed integer programming model is developed and a heuristic algorithm based on Variable Neighborhood Search(VNS) is presented to solve the model. Finally, the computational results are presented and future research directions are discussed.

Keywords: location-routing problem, robust optimization, stochastic programming, variable neighborhood search

Procedia PDF Downloads 244
5480 Observer-Based Control Design for Double Integrators Systems with Long Sampling Periods and Actuator Uncertainty

Authors: Tomas Menard

Abstract:

The design of control-law for engineering systems has been investigated for many decades. While many results are concerned with continuous systems with continuous output, nowadays, many controlled systems have to transmit their output measurements through network, hence making it discrete-time. But it is well known that the sampling of a system whose control-law is based on the continuous output may render the system unstable, especially when this sampling period is long compared to the system dynamics. The control design then has to be adapted in order to cope with this issue. In this paper, we consider systems which can be modeled as double integrator with uncertainty on the input since many mechanical systems can be put under such form. We present a control scheme based on an observer using only discrete time measurement and which provides continuous time estimation of the state, combined with a continuous control law, which stabilized a system with second-order dynamics even in the presence of uncertainty. It is further shown that arbitrarily long sampling periods can be dealt with properly setting the control scheme parameters.

Keywords: dynamical system, control law design, sampled output, observer design

Procedia PDF Downloads 156
5479 The Development and Validation of the Awareness to Disaster Risk Reduction Questionnaire for Teachers

Authors: Ian Phil Canlas, Mageswary Karpudewan, Joyce Magtolis, Rosario Canlas

Abstract:

This study reported the development and validation of the Awareness to Disaster Risk Reduction Questionnaire for Teachers (ADRRQT). The questionnaire is a combination of Likert scale and open-ended questions that were grouped into two parts. The first part included questions relating to the general awareness on disaster risk reduction. Whereas, the second part comprised questions regarding the integration of disaster risk reduction in the teaching process. The entire process of developing and validating of the ADRRQT was described in this study. Statistical and qualitative findings revealed that the ADRRQT is significantly valid and reliable and has the potential of measuring awareness to disaster risk reduction of stakeholders in the field of teaching. Moreover, it also shows the potential to be adopted in other fields.

Keywords: awareness, development, disaster risk reduction, questionnaire, validation

Procedia PDF Downloads 190
5478 Belief-Based Games: An Appropriate Tool for Uncertain Strategic Situation

Authors: Saied Farham-Nia, Alireza Ghaffari-Hadigheh

Abstract:

Game theory is a mathematical tool to study the behaviors of a rational and strategic decision-makers, that analyze existing equilibrium in interest conflict situation and provides an appropriate mechanisms for cooperation between two or more player. Game theory is applicable for any strategic and interest conflict situation in politics, management and economics, sociology and etc. Real worlds’ decisions are usually made in the state of indeterminacy and the players often are lack of the information about the other players’ payoffs or even his own, which leads to the games in uncertain environments. When historical data for decision parameters distribution estimation is unavailable, we may have no choice but to use expertise belief degree, which represents the strength with that we believe the event will happen. To deal with belief degrees, we have use uncertainty theory which is introduced and developed by Liu based on normality, duality, subadditivity and product axioms to modeling personal belief degree. As we know, the personal belief degree heavily depends on the personal knowledge concerning the event and when personal knowledge changes, cause changes in the belief degree too. Uncertainty theory not only theoretically is self-consistent but also is the best among other theories for modeling belief degree on practical problem. In this attempt, we primarily reintroduced Expected Utility Function in uncertainty environment according to uncertainty theory axioms to extract payoffs. Then, we employed Nash Equilibrium to investigate the solutions. For more practical issues, Stackelberg leader-follower Game and Bertrand Game, as a benchmark models are discussed. Compared to existing articles in the similar topics, the game models and solution concepts introduced in this article can be a framework for problems in an uncertain competitive situation based on experienced expert’s belief degree.

Keywords: game theory, uncertainty theory, belief degree, uncertain expected value, Nash equilibrium

Procedia PDF Downloads 382
5477 A Robust Optimization Method for Service Quality Improvement in Health Care Systems under Budget Uncertainty

Authors: H. Ashrafi, S. Ebrahimi, H. Kamalzadeh

Abstract:

With the development of business competition, it is important for healthcare providers to improve their service qualities. In order to improve service quality of a clinic, four important dimensions are defined: tangibles, responsiveness, empathy, and reliability. Moreover, there are several service stages in hospitals such as financial screening and examination. One of the most challenging limitations for improving service quality is budget which impressively affects the service quality. In this paper, we present an approach to address budget uncertainty and provide guidelines for service resource allocation. In this paper, a service quality improvement approach is proposed which can be adopted to multistage service processes to improve service quality, while controlling the costs. A multi-objective function based on the importance of each area and dimension is defined to link operational variables to service quality dimensions. The results demonstrate that our approach is not ultra-conservative and it shows the actual condition very well. Moreover, it is shown that different strategies can affect the number of employees in different stages.

Keywords: allocation, budget uncertainty, healthcare resource, service quality assessment, robust optimization

Procedia PDF Downloads 150
5476 "Project" Approach in Urban: A Response to Uncertainty

Authors: Mouhoubi Nedjima, Sassi Boudemagh Souad

Abstract:

In this paper, we will try to demonstrate the importance of the project approach in the urban to deal with uncertainty, the importance of the involvement of all stakeholders in the urban project process and that the absence of an actor can lead to project failure but also the importance of the urban project management. These points are handled through the following questions: Does the urban adhere to the theory of complexity? Does the project approach bring hope and solution to make urban planning "sustainable"? How converging visions of actors for the same project? Is the management of urban project the solution to support the urban project approach?

Keywords: strategic planning, project, urban project stakeholders, management

Procedia PDF Downloads 474
5475 Flexible Mixed Model Assembly Line Design: A Strategy to Respond for Demand Uncertainty at Automotive Part Manufacturer in Indonesia

Authors: T. Yuri, M. Zagloel, Inaki M. Hakim, Tegu Bintang Nugraha

Abstract:

In an era of customer centricity, automotive parts manufacturer in Indonesia must be able to keep up with the uncertainty and fluctuation of consumer demand. Flexible Manufacturing System (FMS) is a strategy to react to predicted and unpredicted changes of demand in automotive industry. This research is about flexible mixed model assembly line design through Value Stream Mapping (VSM) and Line Balancing in mixed model assembly line prior to simulation. It uses value stream mapping to identify and reduce waste while finding the best position to add or reduce manpower. Line balancing is conducted to minimize or maximize production rate while increasing assembly line productivity and efficiency. Results of this research is a recommendation of standard work combination for specifics demand scenario which can enhance assembly line efficiency and productivity.

Keywords: automotive industry, demand uncertainty, flexible assembly system, line balancing, value stream mapping

Procedia PDF Downloads 304
5474 An Empirical Investigation of Uncertainty and the Lumpy Investment Channel of Monetary Policy

Authors: Min Fang, Jiaxi Yang

Abstract:

Monetary policy could be less effective at stimulating investment during periods of elevated volatility than during normal times. In this paper, we argue that elevated volatility leads to a decrease in extensive margin investment incentive so that nominal stimulus generates less aggregate investment. To do this, we first empirically document that high volatility weakens firms’ investment responses to monetary stimulus. Such effects depend on the lumpiness nature of the firm-level investment. The findings are that the channel exists for all of the physical investment, innovation investment, and organization investment.

Keywords: investment, irreversibility, volatility, uncertainty, firm heterogeneity, monetary policy

Procedia PDF Downloads 71
5473 Optimized Real Ground Motion Scaling for Vulnerability Assessment of Building Considering the Spectral Uncertainty and Shape

Authors: Chen Bo, Wen Zengping

Abstract:

Based on the results of previous studies, we focus on the research of real ground motion selection and scaling method for structural performance-based seismic evaluation using nonlinear dynamic analysis. The input of earthquake ground motion should be determined appropriately to make them compatible with the site-specific hazard level considered. Thus, an optimized selection and scaling method are established including the use of not only Monte Carlo simulation method to create the stochastic simulation spectrum considering the multivariate lognormal distribution of target spectrum, but also a spectral shape parameter. Its applications in structural fragility analysis are demonstrated through case studies. Compared to the previous scheme with no consideration of the uncertainty of target spectrum, the method shown here can make sure that the selected records are in good agreement with the median value, standard deviation and spectral correction of the target spectrum, and greatly reveal the uncertainty feature of site-specific hazard level. Meanwhile, it can help improve computational efficiency and matching accuracy. Given the important infection of target spectrum’s uncertainty on structural seismic fragility analysis, this work can provide the reasonable and reliable basis for structural seismic evaluation under scenario earthquake environment.

Keywords: ground motion selection, scaling method, seismic fragility analysis, spectral shape

Procedia PDF Downloads 265
5472 Dual-Channel Reliable Breast Ultrasound Image Classification Based on Explainable Attribution and Uncertainty Quantification

Authors: Haonan Hu, Shuge Lei, Dasheng Sun, Huabin Zhang, Kehong Yuan, Jian Dai, Jijun Tang

Abstract:

This paper focuses on the classification task of breast ultrasound images and conducts research on the reliability measurement of classification results. A dual-channel evaluation framework was developed based on the proposed inference reliability and predictive reliability scores. For the inference reliability evaluation, human-aligned and doctor-agreed inference rationals based on the improved feature attribution algorithm SP-RISA are gracefully applied. Uncertainty quantification is used to evaluate the predictive reliability via the test time enhancement. The effectiveness of this reliability evaluation framework has been verified on the breast ultrasound clinical dataset YBUS, and its robustness is verified on the public dataset BUSI. The expected calibration errors on both datasets are significantly lower than traditional evaluation methods, which proves the effectiveness of the proposed reliability measurement.

Keywords: medical imaging, ultrasound imaging, XAI, uncertainty measurement, trustworthy AI

Procedia PDF Downloads 55
5471 Exploring Time-Series Phosphoproteomic Datasets in the Context of Network Models

Authors: Sandeep Kaur, Jenny Vuong, Marcel Julliard, Sean O'Donoghue

Abstract:

Time-series data are useful for modelling as they can enable model-evaluation. However, when reconstructing models from phosphoproteomic data, often non-exact methods are utilised, as the knowledge regarding the network structure, such as, which kinases and phosphatases lead to the observed phosphorylation state, is incomplete. Thus, such reactions are often hypothesised, which gives rise to uncertainty. Here, we propose a framework, implemented via a web-based tool (as an extension to Minardo), which given time-series phosphoproteomic datasets, can generate κ models. The incompleteness and uncertainty in the generated model and reactions are clearly presented to the user via the visual method. Furthermore, we demonstrate, via a toy EGF signalling model, the use of algorithmic verification to verify κ models. Manually formulated requirements were evaluated with regards to the model, leading to the highlighting of the nodes causing unsatisfiability (i.e. error causing nodes). We aim to integrate such methods into our web-based tool and demonstrate how the identified erroneous nodes can be presented to the user via the visual method. Thus, in this research we present a framework, to enable a user to explore phosphorylation proteomic time-series data in the context of models. The observer can visualise which reactions in the model are highly uncertain, and which nodes cause incorrect simulation outputs. A tool such as this enables an end-user to determine the empirical analysis to perform, to reduce uncertainty in the presented model - thus enabling a better understanding of the underlying system.

Keywords: κ-models, model verification, time-series phosphoproteomic datasets, uncertainty and error visualisation

Procedia PDF Downloads 227
5470 Investigating Salience Theory’s Implications for Real-Life Decision Making: An Experimental Test for Whether the Allais Paradox Exists under Subjective Uncertainty

Authors: Christoph Ostermair

Abstract:

We deal with the effect of correlation between prospects on human decision making under uncertainty as proposed by the comparatively new and promising model of “salience theory of choice under risk”. In this regard, we show that the theory entails the prediction that the inconsistency of choices, known as the Allais paradox, should not be an issue in the context of “real-life decision making”, which typically corresponds to situations of subjective uncertainty. The Allais paradox, probably the best-known anomaly regarding expected utility theory, would then essentially have no practical relevance. If, however, empiricism contradicts this prediction, salience theory might suffer a serious setback. Explanations of the model for variable human choice behavior are mostly the result of a particular mechanism that does not come to play under perfect correlation. Hence, if it turns out that correlation between prospects – as typically found in real-world applications – does not influence human decision making in the expected way, this might to a large extent cost the theory its explanatory power. The empirical literature regarding the Allais paradox under subjective uncertainty is so far rather moderate. Beyond that, the results are hard to maintain as an argument, as the presentation formats commonly employed, supposably have generated so-called event-splitting effects, thereby distorting subjects’ choice behavior. In our own incentivized experimental study, we control for such effects by means of two different choice settings. We find significant event-splitting effects in both settings, thereby supporting the suspicion that the so far existing empirical results related to Allais paradoxes under subjective uncertainty may not be able to answer the question at hand. Nevertheless, we find that the basic tendency behind the Allais paradox, which is a particular switch of the preference relation due to a modified common consequence, shared by two prospects, is still existent both under an event-splitting and a coalesced presentation format. Yet, the modal choice pattern is in line with the prediction of salience theory. As a consequence, the effect of correlation, as proposed by the model, might - if anything - only weaken the systematic choice pattern behind the Allais paradox.

Keywords: Allais paradox, common consequence effect, models of decision making under risk and uncertainty, salience theory

Procedia PDF Downloads 163
5469 Soft Computing Employment to Optimize Safety Stock Levels in Supply Chain Dairy Product under Supply and Demand Uncertainty

Authors: Riyadh Jamegh, Alla Eldin Kassam, Sawsan Sabih

Abstract:

In order to overcome uncertainty conditions and inability to meet customers' requests due to these conditions, organizations tend to reserve a certain safety stock level (SSL). This level must be chosen carefully in order to avoid the increase in holding cost due to excess in SSL or shortage cost due to too low SSL. This paper used soft computing fuzzy logic to identify optimal SSL; this fuzzy model uses the dynamic concept to cope with high complexity environment status. The proposed model can deal with three input variables, i.e., demand stability level, raw material availability level, and on hand inventory level by using dynamic fuzzy logic to obtain the best SSL as an output. In this model, demand stability, raw material, and on hand inventory levels are described linguistically and then treated by inference rules of the fuzzy model to extract the best level of safety stock. The aim of this research is to provide dynamic approach which is used to identify safety stock level, and it can be implanted in different industries. Numerical case study in the dairy industry with Yogurt 200 gm cup product is explained to approve the validity of the proposed model. The obtained results are compared with the current level of safety stock which is calculated by using the traditional approach. The importance of the proposed model has been demonstrated by the significant reduction in safety stock level.

Keywords: inventory optimization, soft computing, safety stock optimization, dairy industries inventory optimization

Procedia PDF Downloads 101
5468 Modeling of Coagulation Process for the Removal of Carbofuran in Aqueous Solution

Authors: Roli Saini, Pradeep Kumar

Abstract:

A coagulation/flocculation process was adopted for the reduction of carbamate insecticide (carbofuran) from aqueous solution. Ferric chloride (FeCl3) was used as a coagulant to treat the carbofuran. To exploit the reduction efficiency of pesticide concentration and COD, the jar-test experiments were carried out and process was optimized through response surface methodology (RSM). The effects of two independent factors; i.e., FeCl3 dosage and pH on the reduction efficiency were estimated by using central composite design (CCD). The initial COD of the 30 mg/L concentrated solution was found to be 510 mg/L. Results exposed that the maximum reduction occurred at an optimal condition of FeCl3 = 80 mg/L, and pH = 5.0, from which the reduction of concentration and COD 75.13% and 65.34%, respectively. The present study also predicted that the obtained regression equations could be helpful as the theoretical basis for the coagulation process of pesticide wastewater.

Keywords: carbofuran, coagulation, optimization, response surface methodology

Procedia PDF Downloads 289
5467 Representation Data without Lost Compression Properties in Time Series: A Review

Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.

Keywords: compression properties, uncertainty, uncertain time series, mining technique, weather prediction

Procedia PDF Downloads 396
5466 Evolution of Performance Measurement Methods in Conditions of Uncertainty: The Implementation of Fuzzy Sets in Performance Measurement

Authors: E. A. Tkachenko, E. M. Rogova, V. V. Klimov

Abstract:

One of the basic issues of development management is connected with performance measurement as a prerequisite for identifying the achievement of development objectives. The aim of our research is to develop an improved model of assessing a company’s development results. The model should take into account the cyclical nature of development and the high degree of uncertainty in dealing with numerous management tasks. Our hypotheses may be formulated as follows: Hypothesis 1. The cycle of a company’s development may be studied from the standpoint of a project cycle. To do that, methods and tools of project analysis are to be used. Hypothesis 2. The problem of the uncertainty when justifying managerial decisions within the framework of a company’s development cycle can be solved through the use of the mathematical apparatus of fuzzy logic. The reasoned justification of the validity of the hypotheses made is given in the suggested article. The fuzzy logic toolkit applies to the case of technology shift within an enterprise. It is proven that some restrictions in performance measurement that are incurred to conventional methods could be eliminated by implementation of the fuzzy logic apparatus in performance measurement models.

Keywords: logic, fuzzy sets, performance measurement, project analysis

Procedia PDF Downloads 346
5465 Capability Prediction of Machining Processes Based on Uncertainty Analysis

Authors: Hamed Afrasiab, Saeed Khodaygan

Abstract:

Prediction of machining process capability in the design stage plays a key role to reach the precision design and manufacturing of mechanical products. Inaccuracies in machining process lead to errors in position and orientation of machined features on the part, and strongly affect the process capability in the final quality of the product. In this paper, an efficient systematic approach is given to investigate the machining errors to predict the manufacturing errors of the parts and capability prediction of corresponding machining processes. A mathematical formulation of fixture locators modeling is presented to establish the relationship between the part errors and the related sources. Based on this method, the final machining errors of the part can be accurately estimated by relating them to the combined dimensional and geometric tolerances of the workpiece – fixture system. This method is developed for uncertainty analysis based on the Worst Case and statistical approaches. The application of the presented method is illustrated through presenting an example and the computational results are compared with the Monte Carlo simulation results.

Keywords: process capability, machining error, dimensional and geometrical tolerances, uncertainty analysis

Procedia PDF Downloads 269
5464 Risk Aversion and Dynamic Games between Hydroelectric Operators under Uncertainty

Authors: Abdessalem Abbassi, Ahlem Dakhlaoui, Lota D. Tamini

Abstract:

This article analyses management of hydropower dams within two different industrial structures: monopolistic and oligopolistic; when hydroelectricity producers are risk averse and face demand uncertainty. In each type of market structure we determine the water release path in closed-loop equilibrium. We show how a monopoly can manage its hydropower dams by additional pumping or storage depending on the relative abundance of water between different regions to smooth the effect of uncertainty on electricity prices. In the oligopolistic case with symmetric rates of risk aversion, we determine the conditions under which the relative scarcity (abundance) of water in the dam of a hydroelectric operator can favor additional strategic pumping (storage) in its competitor’s dams. When there is asymmetry of the risk aversion coefficient, the firm’s hydroelectricity production increases as its competitor’s risk aversion increases, if and only if the average recharge speed of the competitor’s dam exceeds a certain threshold, which is an increasing function of its average water inflows.

Keywords: asymmetric risk aversion, closed-loop Cournot competition, electricity wholesale market, hydropower dams

Procedia PDF Downloads 332
5463 Thermodynamic Analysis of Hydrogen Plasma Reduction of TiCl₄

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

With increasing demands for high performance materials, intensive interest on the Ti has been focused. Especially, low cost production process of Ti has been extremely necessitated from wide parts and various industries. Tetrachloride (TiCl₄) is produced by fluidized bed using high TiO₂ feedstock and used as an intermediate product for the production of metal titanium sponge. Reduction of TiCl₄ is usually conducted by Kroll process using magnesium as a reduction reagent, producing metallic Ti in the shape of sponge. The process is batch type and takes very long time including post processes treating sponge. As an alternative reduction reagent, hydrogen in the state of plasma has long been strongly recommended. Experimental confirmation has not been completely reported yet and more strict analysis is required. In the present study, hydrogen plasma reduction process has been thermodynamically analyzed focusing the effects of temperature, pressure and concentration. All thermodynamic calculations were performed using the FactSage® thermodynamical software.

Keywords: TiCl₄, titanium, hydrogen, plasma, reduction, thermodynamic calculation

Procedia PDF Downloads 295
5462 Meeting the Energy Balancing Needs in a Fully Renewable European Energy System: A Stochastic Portfolio Framework

Authors: Iulia E. Falcan

Abstract:

The transition of the European power sector towards a clean, renewable energy (RE) system faces the challenge of meeting power demand in times of low wind speed and low solar radiation, at a reasonable cost. This is likely to be achieved through a combination of 1) energy storage technologies, 2) development of the cross-border power grid, 3) installed overcapacity of RE and 4) dispatchable power sources – such as biomass. This paper uses NASA; derived hourly data on weather patterns of sixteen European countries for the past twenty-five years, and load data from the European Network of Transmission System Operators-Electricity (ENTSO-E), to develop a stochastic optimization model. This model aims to understand the synergies between the four classes of technologies mentioned above and to determine the optimal configuration of the energy technologies portfolio. While this issue has been addressed before, it was done so using deterministic models that extrapolated historic data on weather patterns and power demand, as well as ignoring the risk of an unbalanced grid-risk stemming from both the supply and the demand side. This paper aims to explicitly account for the inherent uncertainty in the energy system transition. It articulates two levels of uncertainty: a) the inherent uncertainty in future weather patterns and b) the uncertainty of fully meeting power demand. The first level of uncertainty is addressed by developing probability distributions for future weather data and thus expected power output from RE technologies, rather than known future power output. The latter level of uncertainty is operationalized by introducing a Conditional Value at Risk (CVaR) constraint in the portfolio optimization problem. By setting the risk threshold at different levels – 1%, 5% and 10%, important insights are revealed regarding the synergies of the different energy technologies, i.e., the circumstances under which they behave as either complements or substitutes to each other. The paper concludes that allowing for uncertainty in expected power output - rather than extrapolating historic data - paints a more realistic picture and reveals important departures from results of deterministic models. In addition, explicitly acknowledging the risk of an unbalanced grid - and assigning it different thresholds - reveals non-linearity in the cost functions of different technology portfolio configurations. This finding has significant implications for the design of the European energy mix.

Keywords: cross-border grid extension, energy storage technologies, energy system transition, stochastic portfolio optimization

Procedia PDF Downloads 142
5461 Estimating CO₂ Storage Capacity under Geological Uncertainty Using 3D Geological Modeling of Unconventional Reservoir Rocks in Block nv32, Shenvsi Oilfield, China

Authors: Ayman Mutahar Alrassas, Shaoran Ren, Renyuan Ren, Hung Vo Thanh, Mohammed Hail Hakimi, Zhenliang Guan

Abstract:

The significant effect of CO₂ on global climate and the environment has gained more concern worldwide. Enhance oil recovery (EOR) associated with sequestration of CO₂ particularly into the depleted oil reservoir is considered the viable approach under financial limitations since it improves the oil recovery from the existing oil reservoir and boosts the relation between global-scale of CO₂ capture and geological sequestration. Consequently, practical measurements are required to attain large-scale CO₂ emission reduction. This paper presents an integrated modeling workflow to construct an accurate 3D reservoir geological model to estimate the storage capacity of CO₂ under geological uncertainty in an unconventional oil reservoir of the Paleogene Shahejie Formation (Es1) in the block Nv32, Shenvsi oilfield, China. In this regard, geophysical data, including well logs of twenty-two well locations and seismic data, were combined with geological and engineering data and used to construct a 3D reservoir geological modeling. The geological modeling focused on four tight reservoir units of the Shahejie Formation (Es1-x1, Es1-x2, Es1-x3, and Es1-x4). The validated 3D reservoir models were subsequently used to calculate the theoretical CO₂ storage capacity in the block Nv32, Shenvsi oilfield. Well logs were utilized to predict petrophysical properties such as porosity and permeability, and lithofacies and indicate that the Es1 reservoir units are mainly sandstone, shale, and limestone with a proportion of 38.09%, 32.42%, and 29.49, respectively. Well log-based petrophysical results also show that the Es1 reservoir units generally exhibit 2–36% porosity, 0.017 mD to 974.8 mD permeability, and moderate to good net to gross ratios. These estimated values of porosity, permeability, lithofacies, and net to gross were up-scaled and distributed laterally using Sequential Gaussian Simulation (SGS) and Simulation Sequential Indicator (SIS) methods to generate 3D reservoir geological models. The reservoir geological models show there are lateral heterogeneities of the reservoir properties and lithofacies, and the best reservoir rocks exist in the Es1-x4, Es1-x3, and Es1-x2 units, respectively. In addition, the reservoir volumetric of the Es1 units in block Nv32 was also estimated based on the petrophysical property models and fund to be between 0.554368

Keywords: CO₂ storage capacity, 3D geological model, geological uncertainty, unconventional oil reservoir, block Nv32

Procedia PDF Downloads 145
5460 Mine Project Evaluations in the Rising of Uncertainty: Real Options Analysis

Authors: I. Inthanongsone, C. Drebenstedt, J. C. Bongaerts, P. Sontamino

Abstract:

The major concern in evaluating the value of mining projects related to the deficiency of the traditional discounted cash flow (DCF) method. This method does not take uncertainties into account and, hence it does not allow for an economic assessment of managerial flexibility and operational adaptability, which are increasingly determining long-term corporate success. Such an assessment can be performed with the real options valuation (ROV) approach, since it allows for a comparative evaluation of unforeseen uncertainties in a project life cycle. This paper presents an economic evaluation model for open pit mining projects based on real options valuation approach. Uncertainties in the model are caused by metal prices and cost uncertainties and the system dynamics (SD) modeling method is used to structure and solve the real options model. The model is applied to a case study. It can be shown that that managerial flexibility reacting to uncertainties may create additional value to a mining project in comparison to the outcomes of a DCF method. One important insight for management dealing with uncertainty is seen in choosing the optimal time to exercise strategic options.

Keywords: DCF methods, ROV approach, system dynamics modeling methods, uncertainty

Procedia PDF Downloads 469
5459 Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of Runoffs Model

Authors: Myungjin Lee, Daegun Han, Jongsung Kim, Soojun Kim, Hung Soo Kim

Abstract:

Recently, the localized heavy rainfall and typhoons are frequently occurred due to the climate change and the damage is becoming bigger. Therefore, we may need a more accurate prediction of the rainfall and runoff. However, the gauge rainfall has the limited accuracy in space. Radar rainfall is better than gauge rainfall for the explanation of the spatial variability of rainfall but it is mostly underestimated with the uncertainty involved. Therefore, the ensemble of radar rainfall was simulated using error structure to overcome the uncertainty and gauge rainfall. The simulated ensemble was used as the input data of the rainfall-runoff models for obtaining the ensemble of runoff hydrographs. The previous studies discussed about the accuracy of the rainfall-runoff model. Even if the same input data such as rainfall is used for the runoff analysis using the models in the same basin, the models can have different results because of the uncertainty involved in the models. Therefore, we used two models of the SSARR model which is the lumped model, and the Vflo model which is a distributed model and tried to simulate the optimum runoff considering the uncertainty of each rainfall-runoff model. The study basin is located in Han river basin and we obtained one integrated runoff hydrograph which is an optimum runoff hydrograph using the blending methods such as Multi-Model Super Ensemble (MMSE), Simple Model Average (SMA), Mean Square Error (MSE). From this study, we could confirm the accuracy of rainfall and rainfall-runoff model using ensemble scenario and various rainfall-runoff model and we can use this result to study flood control measure due to climate change. Acknowledgements: This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 18AWMP-B083066-05).

Keywords: radar rainfall ensemble, rainfall-runoff models, blending method, optimum runoff hydrograph

Procedia PDF Downloads 245
5458 Evaluating the Destination Image of Iran and Its Influence on Revisit Intention: After Iran’s 2022 Crisis

Authors: Hamideh S. Shahidi

Abstract:

This research examines destination image and its impact on tourist revisit intention. Destination images can evolve over time, depending on a number of factors. Due to the multidimensional nature of destination image, the full extent of what might influence that change is not yet fully understood. As a result, the destination image should be measured with a heavy consideration of the variables used. Depending on the time and circumstances, these variables should be adjusted based on the research’s objectives. The aim of this research is to evaluate the image of destinations that may be perceived as risky, such as Iran, from the perspective of European cultural travellers. Further to the goal of understanding the effects of an image on tourists’ decision-making, the research will assess the impact of destination image on the revisit intention using push and pull factors and perceived risks with the potential moderating effect of cultural contact (the direct interaction between the host and the tourists with different culture). In addition, the moderating effect of uncertainty avoidance on revisit intention after Iran’s crisis in 2022 will be measured. Furthermore, the level of uncertainty avoidance between gender and age will be compared.

Keywords: destination image, Iran’s 2022 crisis, revisit intention, uncertainty avoidance

Procedia PDF Downloads 70
5457 On the Added Value of Probabilistic Forecasts Applied to the Optimal Scheduling of a PV Power Plant with Batteries in French Guiana

Authors: Rafael Alvarenga, Hubert Herbaux, Laurent Linguet

Abstract:

The uncertainty concerning the power production of intermittent renewable energy is one of the main barriers to the integration of such assets into the power grid. Efforts have thus been made to develop methods to quantify this uncertainty, allowing producers to ensure more reliable and profitable engagements related to their future power delivery. Even though a diversity of probabilistic approaches was proposed in the literature giving promising results, the added value of adopting such methods for scheduling intermittent power plants is still unclear. In this study, the profits obtained by a decision-making model used to optimally schedule an existing PV power plant connected to batteries are compared when the model is fed with deterministic and probabilistic forecasts generated with two of the most recent methods proposed in the literature. Moreover, deterministic forecasts with different accuracy levels were used in the experiments, testing the utility and the capability of probabilistic methods of modeling the progressively increasing uncertainty. Even though probabilistic approaches are unquestionably developed in the recent literature, the results obtained through a study case show that deterministic forecasts still provide the best performance if accurate, ensuring a gain of 14% on final profits compared to the average performance of probabilistic models conditioned to the same forecasts. When the accuracy of deterministic forecasts progressively decreases, probabilistic approaches start to become competitive options until they completely outperform deterministic forecasts when these are very inaccurate, generating 73% more profits in the case considered compared to the deterministic approach.

Keywords: PV power forecasting, uncertainty quantification, optimal scheduling, power systems

Procedia PDF Downloads 45
5456 Uncertainty and Multifunctionality as Bridging Concepts from Socio-Ecological Resilience to Infrastructure Finance in Water Resource Decision Making

Authors: Anita Lazurko, Laszlo Pinter, Jeremy Richardson

Abstract:

Uncertain climate projections, multiple possible development futures, and a financing gap create challenges for water infrastructure decision making. In contrast to conventional predict-plan-act methods, an emerging decision paradigm that enables social-ecological resilience supports decisions that are appropriate for uncertainty and leverage social, ecological, and economic multifunctionality. Concurrently, water infrastructure project finance plays a powerful role in sustainable infrastructure development but remains disconnected from discourse in socio-ecological resilience. At the time of research, a project to transfer water from Lesotho to Botswana through South Africa in the Orange-Senqu River Basin was at the pre-feasibility stage. This case was analysed through documents and interviews to investigate how uncertainty and multifunctionality are conceptualised and considered in decisions for the resilience of water infrastructure and to explore bridging concepts that might allow project finance to better enable socio-ecological resilience. Interviewees conceptualised uncertainty as risk, ambiguity and ignorance, and multifunctionality as politically-motivated shared benefits. Numerous efforts to adopt emerging decision methods that consider these terms were in use but required compromises to accommodate the persistent, conventional decision paradigm, though a range of future opportunities was identified. Bridging these findings to finance revealed opportunities to consider a more comprehensive scope of risk, to leverage risk mitigation measures, to diffuse risks and benefits over space, time and to diverse actor groups, and to clarify roles to achieve multiple objectives for resilience. In addition to insights into how multiple decision paradigms interact in real-world decision contexts, the research highlights untapped potential at the juncture between socio-ecological resilience and project finance.

Keywords: socio-ecological resilience, finance, multifunctionality, uncertainty

Procedia PDF Downloads 97
5455 Setting Uncertainty Conditions Using Singular Values for Repetitive Control in State Feedback

Authors: Muhammad A. Alsubaie, Mubarak K. H. Alhajri, Tarek S. Altowaim

Abstract:

A repetitive controller designed to accommodate periodic disturbances via state feedback is discussed. Periodic disturbances can be represented by a time delay model in a positive feedback loop acting on system output. A direct use of the small gain theorem solves the periodic disturbances problem via 1) isolating the delay model, 2) finding the overall system representation around the delay model and 3) designing a feedback controller that assures overall system stability and tracking error convergence. This paper addresses uncertainty conditions for the repetitive controller designed in state feedback in either past error feedforward or current error feedback using singular values. The uncertainty investigation is based on the overall system found and the stability condition associated with it; depending on the scheme used, to set an upper/lower limit weighting parameter. This creates a region that should not be exceeded in selecting the weighting parameter which in turns assures performance improvement against system uncertainty. Repetitive control problem can be described in lifted form. This allows the usage of singular values principle in setting the range for the weighting parameter selection. The Simulation results obtained show a tracking error convergence against dynamic system perturbation if the weighting parameter chosen is within the range obtained. Simulation results also show the advantage of weighting parameter usage compared to the case where it is omitted.

Keywords: model mismatch, repetitive control, singular values, state feedback

Procedia PDF Downloads 124
5454 Good Practices for Model Structure Development and Managing Structural Uncertainty in Decision Making

Authors: Hossein Afzali

Abstract:

Increasingly, decision analytic models are used to inform decisions about whether or not to publicly fund new health technologies. It is well noted that the accuracy of model predictions is strongly influenced by the appropriateness of model structuring. However, there is relatively inadequate methodological guidance surrounding this issue in guidelines developed by national funding bodies such as the Australian Pharmaceutical Benefits Advisory Committee (PBAC) and The National Institute for Health and Care Excellence (NICE) in the UK. This presentation aims to discuss issues around model structuring within decision making with a focus on (1) the need for a transparent and evidence-based model structuring process to inform the most appropriate set of structural aspects as the base case analysis; (2) the need to characterise structural uncertainty (If there exist alternative plausible structural assumptions (or judgements), there is a need to appropriately characterise the related structural uncertainty). The presentation will provide an opportunity to share ideas and experiences on how the guidelines developed by national funding bodies address the above issues and identify areas for further improvements. First, a review and analysis of the literature and guidelines developed by PBAC and NICE will be provided. Then, it will be discussed how the issues around model structuring (including structural uncertainty) are not handled and justified in a systematic way within the decision-making process, its potential impact on the quality of public funding decisions, and how it should be presented in submissions to national funding bodies. This presentation represents a contribution to the good modelling practice within the decision-making process. Although the presentation focuses on the PBAC and NICE guidelines, the discussion can be applied more widely to many other national funding bodies that use economic evaluation to inform funding decisions but do not transparently address model structuring issues e.g. the Medical Services Advisory Committee (MSAC) in Australia or the Canadian Agency for Drugs and Technologies in Health.

Keywords: decision-making process, economic evaluation, good modelling practice, structural uncertainty

Procedia PDF Downloads 160
5453 Evaluation of Reliability Flood Control System Based on Uncertainty of Flood Discharge, Case Study Wulan River, Central Java, Indonesia

Authors: Anik Sarminingsih, Krishna V. Pradana

Abstract:

The failure of flood control system can be caused by various factors, such as not considering the uncertainty of designed flood causing the capacity of the flood control system is exceeded. The presence of the uncertainty factor is recognized as a serious issue in hydrological studies. Uncertainty in hydrological analysis is influenced by many factors, starting from reading water elevation data, rainfall data, selection of method of analysis, etc. In hydrological modeling selection of models and parameters corresponding to the watershed conditions should be evaluated by the hydraulic model in the river as a drainage channel. River cross-section capacity is the first defense in knowing the reliability of the flood control system. Reliability of river capacity describes the potential magnitude of flood risk. Case study in this research is Wulan River in Central Java. This river occurring flood almost every year despite some efforts to control floods such as levee, floodway and diversion. The flood-affected areas include several sub-districts, mainly in Kabupaten Kudus and Kabupaten Demak. First step is analyze the frequency of discharge observation from Klambu weir which have time series data from 1951-2013. Frequency analysis is performed using several distribution frequency models such as Gumbel distribution, Normal, Normal Log, Pearson Type III and Log Pearson. The result of the model based on standard deviation overlaps, so the maximum flood discharge from the lower return periods may be worth more than the average discharge for larger return periods. The next step is to perform a hydraulic analysis to evaluate the reliability of river capacity based on the flood discharge resulted from several methods. The selection of the design flood discharge of flood control system is the result of the method closest to bankfull capacity of the river.

Keywords: design flood, hydrological model, reliability, uncertainty, Wulan river

Procedia PDF Downloads 265
5452 Alginate Wrapped NiO-ZnO Nanocomposites-Based Catalyst for the Reduction of Methylene Blue

Authors: Mohamed A. Adam Abakar, Abdullah M. Asiri, Sher Bahadar Khan

Abstract:

In this paper, nickel oxide-zinc oxide (NiO-ZnO) catalyst was embedded in an alginate polymer (Na alg/NiO-ZnO), a nanocomposite that was used as a nano-catalyst for catalytic conversion of deleterious contaminants such as organic dyes (Acridine Orange “ArO”, Methylene Blue “MB”, Methyl Orange “MO”) and 4-Nitrophenol “4-NP” as well. FESEM, EDS, FTIR and XRD techniques were used to identify the shape and structure of the nano-catalyst (Na alg/NiO-ZnO). UV spectrophotometry is used to collect the results and it showed greater and faster reduction rate for MB (illustrated in figures 2, 3, 4 and 5). Data recorded and processed, drawing and analysis of graphs achieved by using Origin 2018. Reduction percentage of MB was assessed to be 95.25 % in just 13 minutes. Furthermore, the catalytic property of Na alg/NiO-ZnO in the reduction of organic dyes was investigated using various catalyst amounts, dye types, reaction times and reducing agent dosages at room temperature (rt). NaBH4-assisted reduction of organic dyes was studied using alg/NiO-ZnO as a potential catalyst.

Keywords: Alginate, metal oxides, nanocomposites-based, catalysts, reduction, photocatalytic degradation, water treatment

Procedia PDF Downloads 47