Search results for: transient current
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9072

Search results for: transient current

8952 Transient Simulation Using SPACE for ATLAS Facility to Investigate the Effect of Heat Loss on Major Parameters

Authors: Suhib A. Abu-Seini, Kyung-Doo Kim

Abstract:

A heat loss model for ATLAS facility was introduced using SPACE code predefined correlations and various dialing factors. As all previous simulations were carried out using a heat loss free input; the facility was considered to be completely insulated and the core power was reduced by the experimentally measured values of heat loss to compensate to the account for the loss of heat, this study will consider heat loss throughout the simulation. The new heat loss model will be affecting SPACE code simulation as heat being leaked out of the system throughout a transient will alter many parameters corresponding to temperature and temperature difference. For that, a Station Blackout followed by a multiple Steam Generator Tube Rupture accident will be simulated using both the insulated system approach and the newly introduced heat loss input of the steady state. Major parameters such as system temperatures, pressure values, and flow rates to be put into comparison and various analysis will be suggested upon it as the experimental values will not be the reference to validate the expected outcome. This study will not only show the significance of heat loss consideration in the processes of prevention and mitigation of various incidents, design basis and beyond accidents as it will give a detailed behavior of ATLAS facility during both processes of steady state and major transient, but will also present a verification of how credible the data acquired of ATLAS are; since heat loss values for steady state were already mismatched between SPACE simulation results and ATLAS data acquiring system. Acknowledgement- This work was supported by the Korean institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea.

Keywords: ATLAS, heat loss, simulation, SPACE, station blackout, steam generator tube rupture, verification

Procedia PDF Downloads 202
8951 Experimental and Numerical Analyses of Tehran Research Reactor

Authors: A. Lashkari, H. Khalafi, H. Khazeminejad, S. Khakshourniya

Abstract:

In this paper, a numerical model is presented. The model is used to analyze a steady state thermo-hydraulic and reactivity insertion transient in TRR reference cores respectively. The model predictions are compared with the experiments and PARET code results. The model uses the piecewise constant and lumped parameter methods for the coupled point kinetics and thermal-hydraulics modules respectively. The advantages of the piecewise constant method are simplicity, efficiency and accuracy. A main criterion on the applicability range of this model is that the exit coolant temperature remains below the saturation temperature, i.e. no bulk boiling occurs in the core. The calculation values of power and coolant temperature, in steady state and positive reactivity insertion scenario, are in good agreement with the experiment values. However, the model is a useful tool for the transient analysis of most research reactor encountered in practice. The main objective of this work is using simple calculation methods and benchmarking them with experimental data. This model can be used for training proposes.

Keywords: thermal-hydraulic, research reactor, reactivity insertion, numerical modeling

Procedia PDF Downloads 375
8950 Parameter Estimation of Induction Motors by PSO Algorithm

Authors: A. Mohammadi, S. Asghari, M. Aien, M. Rashidinejad

Abstract:

After emergent of alternative current networks and their popularity, asynchronous motors became more widespread than other kinds of industrial motors. In order to control and run these motors efficiently, an accurate estimation of motor parameters is needed. There are different methods to obtain these parameters such as rotor locked test, no load test, DC test, analytical methods, and so on. The most common drawback of these methods is their inaccuracy in estimation of some motor parameters. In order to remove this concern, a novel method for parameter estimation of induction motors using particle swarm optimization (PSO) algorithm is proposed. In the proposed method, transient state of motor is used for parameter estimation. Comparison of the simulation results purtuined to the PSO algorithm with other available methods justifies the effectiveness of the proposed method.

Keywords: induction motor, motor parameter estimation, PSO algorithm, analytical method

Procedia PDF Downloads 603
8949 Numerical Analysis of the Effects of Transpiration on Transient/Steady Natural Convection Flow of Reactive Viscous Fluid in a Vertical Channel Formed by Two Vertical Porous Plates

Authors: Ahmad K. Samaila, Basant K. Jha

Abstract:

This study is devoted to investigate the effect of transpiration on transient as well as steady-state natural convection flow of a reactive viscous fluid in a vertical channel formed by two infinite vertical parallel porous plates. The Boussinesq assumption is applied and the nonlinear governing equations of energy and momentum are developed. The problem is solved numerically using implicit finite difference method and analytically for steady-state case using perturbation method. Solutions are presented in graphical form for fluid temperature, velocity, and skin-friction and wall heat transfer rate for various parametric values. It is found that velocity, temperature, rate of heat transfer as well as skin-friction are strongly affected by mass leakage through the porous plates.

Keywords: transpiration, reactive viscous fluid, porous plates, natural convection, suction/injection

Procedia PDF Downloads 346
8948 Power Reduction of Hall-Effect Sensor by Pulse Width Modulation of Spinning-Current

Authors: Hyungil Chae

Abstract:

This work presents a method to reduce spinning current of a Hall-effect sensor for low-power magnetic sensor applications. Spinning current of a Hall-effect sensor changes the direction of bias current periodically and can separate signals from DC-offset. The bias current is proportional to the sensor sensitivity but also increases the power consumption. To achieve both high sensitivity and low power consumption, the bias current can be pulse-width modulated. When the bias current duration Tb is reduced by a factor of N compared to the spinning current period of Tₛ/2, the total power consumption can be saved by N times. N can be large as long as the Hall-effect sensor settles down within Tb. The proposed scheme is implemented and simulated in a 0.18um CMOS process, and the power saving factor is 9.6 when N is 10. Acknowledgements: This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIP) (20160001360022003, Development of Hall Semi-conductor for Smart Car and Device).

Keywords: chopper stabilization, Hall-effect sensor, pulse width modulation, spinning current

Procedia PDF Downloads 451
8947 Instructional Consequences of the Transiency of Spoken Words

Authors: Slava Kalyuga, Sujanya Sombatteera

Abstract:

In multimedia learning, written text is often transformed into spoken (narrated) text. This transient information may overwhelm limited processing capacity of working memory and inhibit learning instead of improving it. The paper reviews recent empirical studies in modality and verbal redundancy effects within a cognitive load framework and outlines conditions under which negative effects of transiency may occur. According to the modality effect, textual information accompanying pictures should be presented in an auditory rather than visual form in order to engage two available channels of working memory – auditory and visual - instead of only one of them. However, some studies failed to replicate the modality effect and found differences opposite to those expected. Also, according to the multimedia redundancy effect, the same information should not be presented simultaneously in different modalities to avoid unnecessary cognitive load imposed by the integration of redundant sources of information. However, a few studies failed to replicate the multimedia redundancy effect too. Transiency of information is used to explain these controversial results.

Keywords: cognitive load, transient information, modality effect, verbal redundancy effect

Procedia PDF Downloads 346
8946 Simulation of the Asphaltene Deposition Rate in a Wellbore Blockage via Computational Fluid Dynamic

Authors: Xiaodong Gao, Pingchuan Dong, Qichao Gao

Abstract:

There has been lots of published work focused on asphaltene deposited on the smooth pipe under steady conditions, while particle deposition on the blockage wellbores under transient conditions has not been well elucidated. This work attempts to predict the deposition rate of asphaltene particles in blockage tube through CFD simulation. The Euler-Lagrange equation has been applied during the flow of crude oil and asphaltene particles. The net gravitational force, virtual mass, pressure gradient, saffman lift, and drag forces are incorporated in the simulations process. Validation of CFD simulation results is compared to the benchmark experiments from the previous literature. Furthermore, the effect of blockage location, blockage length, and blockage thickness on deposition rate are also analyzed. The simulation results indicate that the maximum deposition rate of asphaltene occurs in the blocked tube section, and the greater the deposition thickness, the greater the deposition rate. Moreover, the deposition amount and maximum deposition rate along the length of the tube have the same trend. Results of this study are in the ability to better understand the deposition of asphaltene particles in production and help achieve to deal with the asphaltene challenges.

Keywords: asphaltene deposition rate, blockage length, blockage thickness, blockage diameter, transient condition

Procedia PDF Downloads 168
8945 The Impact of Trade Liberalization on Current Account Deficit: The Turkish Case

Authors: E. Selçuk, Z. Karaçor, P. Yardımcı

Abstract:

Trade liberalization and its effects on the economies of developing countries have been investigated by many different studies, and some of them have focused on its impact on the current account balance. Turkey, as being one of the countries, which has liberalized its foreign trade in the 1980s, also needs to be studied in terms of the impact of liberalization on current account deficits. Therefore, the aim of this study is to find out whether trade liberalization has affected Turkey’s trade and current account balances. In order to determine this, yearly data of Turkey from 1980 to 2013 is used. As liberalization dummy, the year 1989, which was set for Turkey, is selected. Structural break test and model estimation results show that trade liberalization has a negative impact on trade balance but do not have a significant impact on the current account balance.

Keywords: budget deficit, liberalization, Turkish economy, current account

Procedia PDF Downloads 352
8944 Harmonic Distortion Caused by Electric Bus Battery Charger in Alexandria Distribution System

Authors: Mohamed Elhosieny Aly Ismail

Abstract:

The paper illustrates the total voltage and current harmonic distortion impact caused by fast-charging an electric bus and maintaining standard limit compliance. Measuring the current harmonic level in the range of 2 kHz-9 kHz. Also, the impact of the total demand distortions current caused by fast charger electric bus on the utility by measuring at the point of common coupling and comparing the measurement with IEEE519 -2014 standard. The results show that the total harmonic current distortion for the charger is within the limits of IEC 61000-3-12 and the fifth harmonic current was the most dominant frequency then the seventh harmonic current. The harmonic current in the range of 2 kHz- 9 kHz shows the frequency 5.1kHz is the most dominant frequency.

Keywords: electric vehicle, total harmonic distortion, IEEE519-2014, IEC 61000-3-12, super harmonic distortion

Procedia PDF Downloads 73
8943 Robotic Exoskeleton Response During Infant Physiological Knee Kinematics

Authors: Breanna Macumber, Victor A. Huayamave, Emir A. Vela, Wangdo Kim, Tamara T. Chamber, Esteban Centeno

Abstract:

Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field.

Keywords: musculoskeletal modeling, soft robotics, rehabilitation, pediatrics

Procedia PDF Downloads 77
8942 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation

Authors: Gyo Woo Lee, Man Young Kim

Abstract:

A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.

Keywords: reheating furnace, steel slab, radiative heat transfer, WSGGM, emissivity, residence time

Procedia PDF Downloads 256
8941 Exoskeleton Response During Infant Physiological Knee Kinematics And Dynamics

Authors: Breanna Macumber, Victor A. Huayamave, Emir A. Vela, Wangdo Kim, Tamara T. Chamber, Esteban Centeno

Abstract:

Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field.

Keywords: musculoskeletal modeling, soft robotics, rehabilitation, pediatrics

Procedia PDF Downloads 46
8940 Investigation of the Level of Physical and Mental Health of Patients Undergoing in Chronic or Transient Hemodialysis at Artificial Kidney Unit

Authors: Styliani Kotrotsiou, Evagelia Kotrotsiou, Fani Mokia, Theodosis Paralikas, Konstantinos Tsaras

Abstract:

Objective: The objective of this study was the investigation of the mental health of patients undergoing chronic or transient hemodialysis at Artificial Kidney Unit, as well as its relationship to the demographic characteristic of patients. Material and Method: The study took place in Larisa during the month of December in 2016 and the sample was composed of 60 patients undergoing in chronic or transient hemodialysis at Artificial Kidney Unit of the University General Hospital of Larisa. For the investigation of the physical and mental health of patients who participated in the study, the tool measurement << General Health Questionnaire- 28 >> (GHQ-28) was used. The questionnaires were administered with the interview method during the hemodialysis. This survey is designed for the existence or not of a mental disorder. It examines four factors (physical symptoms, anxiety, social dysfunction and depression). Results: The hemodialysis patients gave the following scores: -to the physical symptoms, women showed a higher average value than men (1,16 ± 1,26 against 0,49 ± 0,93), -at the anxiety scale, it seems that women are superior to men (1,68 ± 1,20 against 0,90 ± 1,22), -at the social dysfunction scale, the elderly patients ( > 65 years old) were presented a with higher average (2,59), and -at the depression scale, patients with a higher average value were those who lived in non-urban areas. The appearance of mental disorder, in relation to patient characteristics, did not show significant statistical correlation. The sex, the age and the place of residence affect more the assessment of mental health, while education did not seem to have any significant effect on the other. Conclusions: The hemodialysis process can significantly affect the patient’s Quality of Life and it can bring adverse changes in lifestyle, affecting the physical, social and psychological state of the individual. For that reason, hemodialysis should be aimed not only at extending life but in upgrading the Quality of Life.

Keywords: hemodialysis, chronic kidney disease, depression, social dysfunction, physical condition

Procedia PDF Downloads 136
8939 A Benchmark System for Testing Medium Voltage Direct Current (MVDC-CB) Robustness Utilizing Real Time Digital Simulation and Hardware-In-Loop Theory

Authors: Ali Kadivar, Kaveh Niayesh

Abstract:

The integration of green energy resources is a major focus, and the role of Medium Voltage Direct Current (MVDC) systems is exponentially expanding. However, the protection of MVDC systems against DC faults is a challenge that can have consequences on reliable and safe grid operation. This challenge reveals the need for MVDC circuit breakers (MVDC CB), which are in infancies of their improvement. Therefore will be a lack of MVDC CBs standards, including thresholds for acceptable power losses and operation speed. To establish a baseline for comparison purposes, a benchmark system for testing future MVDC CBs is vital. The literatures just give the timing sequence of each switch and the emphasis is on the topology, without in-depth study on the control algorithm of DCCB, as the circuit breaker control system is not yet systematic. A digital testing benchmark is designed for the Proof-of-concept of simulation studies using software models. It can validate studies based on real-time digital simulators and Transient Network Analyzer (TNA) models. The proposed experimental setup utilizes data accusation from the accurate sensors installed on the tested MVDC CB and through general purpose input/outputs (GPIO) from the microcontroller and PC Prototype studies in the laboratory-based models utilizing Hardware-in-the-Loop (HIL) equipment connected to real-time digital simulators is achieved. The improved control algorithm of the circuit breaker can reduce the peak fault current and avoid arc resignation, helping the coordination of DCCB in relay protection. Moreover, several research gaps are identified regarding case studies and evaluation approaches.

Keywords: DC circuit breaker, hardware-in-the-loop, real time digital simulation, testing benchmark

Procedia PDF Downloads 47
8938 Modeling of Power Network by ATP-Draw for Lightning Stroke Studies

Authors: John Morales, Armando Guzman

Abstract:

Protection relay algorithms play a crucial role in Electric Power System stability, where, it is clear that lightning strokes produce the mayor percentage of faults and outages of Transmission Lines (TLs) and Distribution Feeders (DFs). In this context, it is imperative to develop novel protection relay algorithms. However, in order to get this aim, Electric Power Systems (EPS) network have to be simulated as real as possible, especially the lightning phenomena, and EPS elements that affect their behavior like direct and indirect lightning, insulator string, overhead line, soil ionization and other. However, researchers have proposed new protection relay algorithms considering common faults, which are not produced by lightning strokes, omitting these imperative phenomena for the transmission line protection relays behavior. Based on the above said, this paper presents the possibilities of using the Alternative Transient Program ATP-Draw for the modeling and simulation of some models to make lightning stroke studies, especially for protection relays, which are developed through Transient Analysis of Control Systems (TACS) and MODELS language corresponding to the ATP-Draw.

Keywords: back-flashover, faults, flashover, lightning stroke, modeling of lightning, outages, protection relays

Procedia PDF Downloads 288
8937 Impact of Joule Heating on the Electrical Conduction Behavior of Carbon Composite Laminates under Simulated Lightning Strike

Authors: Hong Yu, Dirk Heider, Suresh Advani

Abstract:

Increasing demands for high strength and lightweight materials in aircraft industry prompted the wide use of carbon composites in recent decades. Carbon composite laminates used on aircraft structures are subject to lightning strikes. Unlike its metal/alloy counterparts, carbon fiber reinforced composites demonstrate smaller electrical conductivity, yielding more severe damages due to Joule heating. The anisotropic nature of composite laminates makes the electrical and thermal conduction within carbon composite laminates even more complicated. Good understanding of the electrical conduction behavior of carbon composites is the key to effective lightning protection design. The goal of this study is to numerically and experimentally investigate the impact of ultra-high temperature induced by simulated lightning strike on the electrical conduction of carbon composites. A lightning simulator is designed to apply standard lightning current waveform to composite laminates. Multiple carbon composite laminates made from IM7 and AS4 carbon fiber are tested and the transient resistance data is recorded. A microstructure based resistor network model is developed to describe the electrical and thermal conduction behavior, with consideration of temperature dependent material properties. Material degradations such as thermal and electrical breakdown are also modeled to include the effect of high current and high temperature induced by lightning strikes. Good match between the simulation results and experimental data indicates that the developed model captures the major conduction mechanisms. A parametric study is then conducted using the validated model to investigate the effect of system parameters such as fiber volume fraction, inter-ply interface quality, and lightning current waveforms.

Keywords: carbon composite, joule heating, lightning strike, resistor network

Procedia PDF Downloads 203
8936 Design, Analysis and Construction of a 250vac 8amps Arc Welding Machine

Authors: Anthony Okechukwu Ifediniru, Austin Ikechukwu Gbasouzor, Isidore Uche Uju

Abstract:

This article is centered on the design, analysis, construction, and test of a locally made arc welding machine that operates on 250vac with 8 amp output taps ranging from 60vac to 250vac at a fixed frequency, which is of benefit to urban areas; while considering its cost-effectiveness, strength, portability, and mobility. The welding machine uses a power supply to create an electric arc between an electrode and the metal at the welding point. A current selector coil needed for current selection is connected to the primary winding. Electric power is supplied to the primary winding of its transformer and is transferred to the secondary winding by induction. The voltage and current output of the secondary winding are connected to the output terminal, which is used to carry out welding work. The output current of the machine ranges from 110amps for low current welding to 250amps for high current welding. The machine uses a step-down transformer configuration for stepping down the voltage in order to obtain a high current level for effective welding. The welder can adjust the output current within a certain range. This allows the welder to properly set the output current for the type of welding that is being performed. The constructed arc welding machine was tested by connecting the work piece to it. Since there was no shock or spark from the transformer’s laminated core and was successfully used to join metals, it confirmed and validated the design.

Keywords: AC current, arc welding machine, DC current, transformer, welds

Procedia PDF Downloads 152
8935 Design of a Hand-Held, Clamp-on, Leakage Current Sensor for High Voltage Direct Current Insulators

Authors: Morné Roman, Robert van Zyl, Nishanth Parus, Nishal Mahatho

Abstract:

Leakage current monitoring for high voltage transmission line insulators is of interest as a performance indicator. Presently, to the best of our knowledge, there is no commercially available, clamp-on type, non-intrusive device for measuring leakage current on energised high voltage direct current (HVDC) transmission line insulators. The South African power utility, Eskom, is investigating the development of such a hand-held sensor for two important applications; first, for continuous real-time condition monitoring of HVDC line insulators and, second, for use by live line workers to determine if it is safe to work on energised insulators. In this paper, a DC leakage current sensor based on magnetic field sensing techniques is developed. The magnetic field sensor used in the prototype can also detect alternating current up to 5 MHz. The DC leakage current prototype detects the magnetic field associated with the current flowing on the surface of the insulator. Preliminary HVDC leakage current measurements are performed on glass insulators. The results show that the prototype can accurately measure leakage current in the specified current range of 1-200 mA. The influence of external fields from the HVDC line itself on the leakage current measurements is mitigated through a differential magnetometer sensing technique. Thus, the developed sensor can perform measurements on in-service HVDC insulators. The research contributes to the body of knowledge by providing a sensor to measure leakage current on energised HVDC insulators non-intrusively. This sensor can also be used by live line workers to inform them whether or not it is safe to perform maintenance on energized insulators.

Keywords: direct current, insulator, leakage current, live line, magnetic field, sensor, transmission lines

Procedia PDF Downloads 146
8934 Design and Simulation of a Double-Stator Linear Induction Machine with Short Squirrel-Cage Mover

Authors: David Rafetseder, Walter Bauer, Florian Poltschak, Wolfgang Amrhein

Abstract:

A flat double-stator linear induction machine (DSLIM) with a short squirrel-cage mover is designed for high thrust force at moderate speed < 5m/s. The performance and motor parameters are determined on the basis of a 2D time-transient simulation with the finite element (FE) software Maxwell 2015. Design guidelines and transformation rules for space vector theory of the LIM are presented. Resulting thrust calculated by flux and current vectors is compared with the FE results showing good coherence and reduced noise. The parameters of the equivalent circuit model are obtained.

Keywords: equivalent circuit model, finite element model, linear induction motor, space vector theory

Procedia PDF Downloads 537
8933 Power Integrity Analysis of Power Delivery System in High Speed Digital FPGA Board

Authors: Anil Kumar Pandey

Abstract:

Power plane noise is the most significant source of signal integrity (SI) issues in a high-speed digital design. In this paper, power integrity (PI) analysis of multiple power planes in a power delivery system of a 12-layer high-speed FPGA board is presented. All 10 power planes of HSD board are analyzed separately by using 3D Electromagnetic based PI solver, then the transient simulation is performed on combined PI data of all planes along with voltage regulator modules (VRMs) and 70 current drawing chips to get the board level power noise coupling on different high-speed signals. De-coupling capacitors are placed between power planes and ground to reduce power noise coupling with signals.

Keywords: power integrity, power-aware signal integrity analysis, electromagnetic simulation, channel simulation

Procedia PDF Downloads 407
8932 A 5-V to 30-V Current-Mode Boost Converter with Integrated Current Sensor and Power-on Protection

Authors: Jun Yu, Yat-Hei Lam, Boris Grinberg, Kevin Chai Tshun Chuan

Abstract:

This paper presents a 5-V to 30-V current-mode boost converter for powering the drive circuit of a micro-electro-mechanical sensor. The design of a transconductance amplifier and an integrated current sensing circuit are presented. In addition, essential building blocks for power-on protection such as a soft-start and clamp block and supply and clock ready block are discussed in details. The chip is fabricated in a 0.18-μm CMOS process. Measurement results show that the soft-start and clamp block can effectively limit the inrush current during startup and protect the boost converter from startup failure.

Keywords: boost converter, current sensing, power-on protection, step-up converter, soft-start

Procedia PDF Downloads 984
8931 Fixed-Frequency Pulse Width Modulation-Based Sliding Mode Controller for Switching Multicellular Converter

Authors: Rihab Hamdi, Amel Hadri Hamida, Ouafae Bennis, Fatima Babaa, Sakina Zerouali

Abstract:

This paper features a sliding mode controller (SMC) for closed-loop voltage control of DC-DC three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM). To maintain the switching frequency, the approach is to incorporate a pulse-width modulation that utilizes an equivalent control, inferred by applying the SM control method, to produce a control sign to be contrasted and the fixed-frequency within the modulator. Detailed stability and transient performance analysis have been conducted using Lyapunov stability criteria to restrict the switching frequency variation facing wide variations in output load, input changes, and set-point changes. The results obtained confirm the effectiveness of the proposed control scheme in achieving an enhanced output transient performance while faithfully realizing its control objective in the event of abrupt and uncertain parameter variations. Simulations studies in MATLAB/Simulink environment are performed to confirm the idea.

Keywords: DC-DC converter, pulse width modulation, power electronics, sliding mode control

Procedia PDF Downloads 114
8930 Conductivity-Depth Inversion of Large Loop Transient Electromagnetic Sounding Data over Layered Earth Models

Authors: Ravi Ande, Mousumi Hazari

Abstract:

One of the common geophysical techniques for mapping subsurface geo-electrical structures, extensive hydro-geological research, and engineering and environmental geophysics applications is the use of time domain electromagnetic (TDEM)/transient electromagnetic (TEM) soundings. A large transmitter loop for energising the ground and a small receiver loop or magnetometer for recording the transient voltage or magnetic field in the air or on the surface of the earth, with the receiver at the center of the loop or at any random point inside or outside the source loop, make up a large loop TEM system. In general, one can acquire data using one of the configurations with a large loop source, namely, with the receiver at the center point of the loop (central loop method), at an arbitrary in-loop point (in-loop method), coincident with the transmitter loop (coincidence-loop method), and at an arbitrary offset loop point (offset-loop method), respectively. Because of the mathematical simplicity associated with the expressions of EM fields, as compared to the in-loop and offset-loop systems, the central loop system (for ground surveys) and coincident loop system (for ground as well as airborne surveys) have been developed and used extensively for the exploration of mineral and geothermal resources, for mapping contaminated groundwater caused by hazardous waste and thickness of permafrost layer. Because a proper analytical expression for the TEM response over the layered earth model for the large loop TEM system does not exist, the forward problem used in this inversion scheme is first formulated in the frequency domain and then it is transformed in the time domain using Fourier cosine or sine transforms. Using the EMLCLLER algorithm, the forward computation is initially carried out in the frequency domain. As a result, the EMLCLLER modified the forward calculation scheme in NLSTCI to compute frequency domain answers before converting them to the time domain using Fourier Cosine and/or Sine transforms.

Keywords: time domain electromagnetic (TDEM), TEM system, geoelectrical sounding structure, Fourier cosine

Procedia PDF Downloads 63
8929 Corrosion Evaluation of Zinc Coating Prepared by Two Types of Electric Currents

Authors: M. Sajjadnejad, H. Karimi Abadeh

Abstract:

In this research, zinc coatings were fabricated by electroplating process in a sulfate solution under direct and pulse current conditions. In direct and pulse current conditions, effect of maximum current was investigated on the coating properties. Also a comparison was made between the obtained coatings under direct and pulse current. Morphology of the coatings was investigated by scanning electron microscopy (SEM). Corrosion behavior of the coatings was investigated by potentiodynamic polarization test. In pulse current conditions, the effect of pulse frequency and duty cycle was also studied. The effect of these conditions and parameters were also investigated on morphology and corrosion behavior. All of DC plated coatings are showing a distinct passivation area in -1 to -0.4 V range. Pulsed current coatings possessed a higher corrosion resistance. The results showed that current density is the most important factor regarding the fabrication process. Furthermore, a rise in duty cycle deteriorated corrosion resistance of coatings. Pulsed plated coatings performed almost 10 times better than DC plated coatings.

Keywords: corrosion, duty cycle, pulsed current, zinc

Procedia PDF Downloads 94
8928 Close Loop Controlled Current Nerve Locator

Authors: H. A. Alzomor, B. K. Ouda, A. M. Eldeib

Abstract:

Successful regional anesthesia depends upon precise location of the peripheral nerve or nerve plexus. Locating peripheral nerves is preferred to be done using nerve stimulation. In order to generate a nerve impulse by electrical means, a minimum threshold stimulus of current “rheobase” must be applied to the nerve. The technique depends on stimulating muscular twitching at a close distance to the nerve without actually touching it. Success rate of this operation depends on the accuracy of current intensity pulses used for stimulation. In this paper, we will discuss a circuit and algorithm for closed loop control for the current, theoretical analysis and test results and compare them with previous techniques.

Keywords: Close Loop Control (CLC), constant current, nerve locator, rheobase

Procedia PDF Downloads 230
8927 Model-Based Fault Diagnosis in Carbon Fiber Reinforced Composites Using Particle Filtering

Authors: Hong Yu, Ion Matei

Abstract:

Carbon fiber reinforced composites (CFRP) used as aircraft structure are subject to lightning strike, putting structural integrity under risk. Indirect damage may occur after a lightning strike where the internal structure can be damaged due to excessive heat induced by lightning current, while the surface of the structures remains intact. Three damage modes may be observed after a lightning strike: fiber breakage, inter-ply delamination and intra-ply cracks. The assessment of internal damage states in composite is challenging due to complicated microstructure, inherent uncertainties, and existence of multiple damage modes. In this work, a model based approach is adopted to diagnose faults in carbon composites after lighting strikes. A resistor network model is implemented to relate the overall electrical and thermal conduction behavior under simulated lightning current waveform to the intrinsic temperature dependent material properties, microstructure and degradation of materials. A fault detection and identification (FDI) module utilizes the physics based model and a particle filtering algorithm to identify damage mode as well as calculate the probability of structural failure. Extensive simulation results are provided to substantiate the proposed fault diagnosis methodology with both single fault and multiple faults cases. The approach is also demonstrated on transient resistance data collected from a IM7/Epoxy laminate under simulated lightning strike.

Keywords: carbon composite, fault detection, fault identification, particle filter

Procedia PDF Downloads 172
8926 Improvement of Analysis Vertical Oil Exploration Wells (Case Study)

Authors: Azza Hashim Abbas, Wan Rosli Wan Suliman

Abstract:

The old school of study, well testing reservoir engineers used the transient pressure analyses to get certain parameters and variable factors on the reservoir's physical properties, such as, (permeability-thickness). Recently, the difficulties facing the newly discovered areas are the convincing fact that the exploration and production (E&p) team should have sufficiently accurate and appropriate data to work with due to different sources of errors. The well-test analyst does the work without going through well-informed and reliable data from colleagues which may consequently cause immense environmental damage and unnecessary financial losses as well as opportunity losses to the project. In 2003, new potential oil field (Moga) face circulation problem well-22 was safely completed. However the high mud density had caused an extensive damage to the nearer well area which also distracted the hypothetical oil rate of flow that was not representive of the real reservoir characteristics This paper presents methods to analyze and interpret the production rate and pressure data of an oil field. Specifically for Well- 22 using the Deconvolution technique to enhance the transient pressure .Applying deconvolution to get the best range of certainty of results needed for the next subsequent operation. The range determined and analysis of skin factor range was reasonable.

Keywords: well testing, exploration, deconvolution, skin factor, un certainity

Procedia PDF Downloads 417
8925 PSRR Enhanced LDO Regulator Using Noise Sensing Circuit

Authors: Min-ju Kwon, Chae-won Kim, Jeong-yun Seo, Hee-guk Chae, Yong-seo Koo

Abstract:

In this paper, we presented the LDO (low-dropout) regulator which enhanced the PSRR by applying the constant current source generation technique through the BGR (Band Gap Reference) to form the noise sensing circuit. The current source through the BGR has a constant current value even if the applied voltage varies. Then, the noise sensing circuit, which is composed of the current source through the BGR, operated between the error amplifier and the pass transistor gate of the LDO regulator. As a result, the LDO regulator has a PSRR of -68.2 dB at 1k Hz, -45.85 dB at 1 MHz and -45 dB at 10 MHz. the other performance of the proposed LDO was maintained at the same level of the conventional LDO regulator.

Keywords: LDO regulator, noise sensing circuit, current reference, pass transistor

Procedia PDF Downloads 251
8924 Simulation of Heat Exchanger Behavior during LOCA Accident in THTL Test Loop

Authors: R. Mahmoodi, A. R. Zolfaghari

Abstract:

In nuclear power plants, loss of coolant from the primary system is the type of reduced removed capacity that is given most attention; such an accident is referred as Loss of Coolant Accident (LOCA). In the current study, investigation of shell and tube THTL heat exchanger behavior during LOCA is implemented by ANSYS CFX simulation software in both steady state and transient mode of turbulent fluid flow according to experimental conditions. Numerical results obtained from ANSYS CFX simulation show good agreement with experimental data of THTL heat exchanger. The results illustrate that in large break LOCA as short term accident, heat exchanger could not fast response to temperature variables but in the long term, the temperature of shell side of heat exchanger will be increase.

Keywords: shell-and-tube heat exchanger, shell-side, CFD, flow and heat transfer, LOCA

Procedia PDF Downloads 406
8923 Current Issues on Enterprise Architecture Implementation Evaluation

Authors: Fatemeh Nikpay, Rodina Binti Ahmad, Babak Darvish Rouhani

Abstract:

Enterprise Architecture (EA) is employed by enterprises for providing integrated Information Systems (ISs) in order to support alignment of their business and Information Technology (IT). Evaluation of EA implementation can support enterprise to reach intended goals. There are some problems in current evaluation methods of EA implementation that lead to ineffectiveness implementation of EA. This paper represents current issues on evaluation of EA implementation. In this regard, we set the framework in order to represent evaluation’s issues based on their functionality and structure. The results of this research not only increase the knowledge of evaluation, but also could be useful for both academics and practitioners in order to realize the current situation of evaluations.

Keywords: current issues on EA implementation evaluation, evaluation, enterprise architecture, evaluation of enterprise architecture implementation

Procedia PDF Downloads 487