Search results for: symplectic geometry method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19164

Search results for: symplectic geometry method

18924 Simulation of Nonlinear Behavior of Reinforced Concrete Slabs Using Rigid Body-Spring Discrete Element Method

Authors: Felix Jr. Garde, Eric Augustus Tingatinga

Abstract:

Most analysis procedures of reinforced concrete (RC) slabs are based on elastic theory. When subjected to large forces, however, slabs deform beyond elastic range and the study of their behavior and performance require nonlinear analysis. This paper presents a numerical model to simulate nonlinear behavior of RC slabs using rigid body-spring discrete element method. The proposed slab model composed of rigid plate elements and nonlinear springs is based on the yield line theory which assumes that the nonlinear behavior of the RC slab subjected to transverse loads is contained in plastic or yield-lines. In this model, the displacement of the slab is completely described by the rigid elements and the deformation energy is concentrated in the flexural springs uniformly distributed at the potential yield lines. The spring parameters are determined from comparison of transverse displacements and stresses developed in the slab obtained using FEM and the proposed model with assumed homogeneous material. Numerical models of typical RC slabs with varying geometry, reinforcement, support conditions, and loading conditions, show reasonable agreement with available experimental data. The model was also shown to be useful in investigating dynamic behavior of slabs.

Keywords: RC slab, nonlinear behavior, yield line theory, rigid body-spring discrete element method

Procedia PDF Downloads 293
18923 The Application of Distributed Optical Strain Sensing to Measure Rock Bolt Deformation Subject to Bedding Shear

Authors: Thomas P. Roper, Brad Forbes, Jurij Karlovšek

Abstract:

Shear displacement along bedding defects is a well-recognised behaviour when tunnelling and mining in stratified rock. This deformation can affect the durability and integrity of installed rock bolts. In-situ monitoring of rock bolt deformation under bedding shear cannot be accurately derived from traditional strain gauge bolts as sensors are too large and spaced too far apart to accurately assess concentrated displacement along discrete defects. A possible solution to this is the use of fiber optic technologies developed for precision monitoring. Distributed Optic Sensor (DOS) embedded rock bolts were installed in a tunnel project with the aim of measuring the bolt deformation profile under significant shear displacements. This technology successfully measured the 3D strain distribution along the bolts when subjected to bedding shear and resolved the axial and lateral strain constituents in order to determine the deformational geometry of the bolts. The results are compared well with the current visual method for monitoring shear displacement using borescope holes, considering this method as suitable.

Keywords: distributed optical strain sensing, rock bolt, bedding shear, sandstone tunnel

Procedia PDF Downloads 133
18922 A Case Study on Re-Assessment Study of an Earthfill Dam at Latamber, Pakistan

Authors: Afnan Ahmad, Shahid Ali, Mujahid Khan

Abstract:

This research presents the parametric study of an existing earth fill dam located at Latamber, Karak city, Pakistan. The study consists of carrying out seepage analysis, slope stability analysis, and Earthquake analysis of the dam for the existing dam geometry and do the same for modified geometry. Dams are massive as well as expensive hydraulic structure, therefore it needs proper attention. Additionally, this dam falls under zone 2B region of Pakistan, which is an earthquake-prone area and where ground accelerations range from 0.16g to 0.24g peak. So it should be deal with great care, as the failure of any dam can cause irreparable losses. Similarly, seepage as well as slope failure can also cause damages which can lead to failure of the dam. Therefore, keeping in view of the importance of dam construction and associated costs, our main focus is to carry out parametric study of newly constructed dam. GeoStudio software is used for this analysis in the study in which Seep/W is used for seepage analysis, Slope/w is used for Slope stability analysis and Quake/w is used for earthquake analysis. Based on the geometrical, hydrological and geotechnical data, Seepage and slope stability analysis of different proposed geometries of the dam are carried out along with the Seismic analysis. A rigorous analysis was carried out in 2-D limit equilibrium using finite element analysis. The seismic study began with the static analysis, continuing by the dynamic response analysis. The seismic analyses permitted evaluation of the overall patterns of the Latamber dam behavior in terms of displacements, stress, strain, and acceleration fields. Similarly, the seepage analysis allows evaluation of seepage through the foundation and embankment of the dam, while slope stability analysis estimates the factor of safety of the upstream and downstream of the dam. The results of the analysis demonstrate that among multiple geometries, Latamber dam is secure against seepage piping failure and slope stability (upstream and downstream) failure. Moreover, the dam is safe against any dynamic loading and no liquefaction has been observed while changing its geometry in permissible limits.

Keywords: earth-fill dam, finite element, liquefaction, seepage analysis

Procedia PDF Downloads 129
18921 Generalized Approach to Linear Data Transformation

Authors: Abhijith Asok

Abstract:

This paper presents a generalized approach for the simple linear data transformation, Y=bX, through an integration of multidimensional coordinate geometry, vector space theory and polygonal geometry. The scaling is performed by adding an additional ’Dummy Dimension’ to the n-dimensional data, which helps plot two dimensional component-wise straight lines on pairs of dimensions. The end result is a set of scaled extensions of observations in any of the 2n spatial divisions, where n is the total number of applicable dimensions/dataset variables, created by shifting the n-dimensional plane along the ’Dummy Axis’. The derived scaling factor was found to be dependent on the coordinates of the common point of origin for diverging straight lines and the plane of extension, chosen on and perpendicular to the ’Dummy Axis’, respectively. This result indicates the geometrical interpretation of a linear data transformation and hence, opportunities for a more informed choice of the factor ’b’, based on a better choice of these coordinate values. The paper follows on to identify the effect of this transformation on certain popular distance metrics, wherein for many, the distance metric retained the same scaling factor as that of the features.

Keywords: data transformation, dummy dimension, linear transformation, scaling

Procedia PDF Downloads 278
18920 Computational Fluid Dynamics Based Analysis of Heat Exchanging Performance of Rotary Thermal Wheels

Authors: H. M. D. Prabhashana Herath, M. D. Anuradha Wickramasinghe, A. M. C. Kalpani Polgolla, R. A. C. Prasad Ranasinghe, M. Anusha Wijewardane

Abstract:

The demand for thermal comfort in buildings in hot and humid climates increases progressively. In general, buildings in hot and humid climates spend more than 60% of the total energy cost for the functionality of the air conditioning (AC) system. Hence, it is required to install energy efficient AC systems or integrate energy recovery systems for both new and/or existing AC systems whenever possible, to reduce the energy consumption by the AC system. Integrate a Rotary Thermal Wheel as the energy recovery device of an existing AC system has shown very promising with attractive payback periods of less than 5 years. A rotary thermal wheel can be located in the Air Handling Unit (AHU) of a central AC system to recover the energy available in the return air stream. During this study, a sensitivity analysis was performed using a CFD (Computational Fluid Dynamics) software to determine the optimum design parameters (i.e., rotary speed and parameters of the matrix profile) of a rotary thermal wheel for hot and humid climates. The simulations were performed for a sinusoidal matrix geometry. Variation of sinusoidal matrix parameters, i.e., span length and height, were also analyzed to understand the heat exchanging performance and the induced pressure drop due to the air flow. The results show that the heat exchanging performance increases when increasing the wheel rpm. However, the performance increment rate decreases when increasing the rpm. As a result, it is more advisable to operate the wheel at 10-20 rpm. For the geometry, it was found that the sinusoidal geometries with lesser spans and higher heights have higher heat exchanging capabilities. Considering the sinusoidal profiles analyzed during the study, the geometry with 4mm height and 3mm width shows better performance than the other combinations.

Keywords: air conditioning, computational fluid dynamics, CFD, energy recovery, heat exchangers

Procedia PDF Downloads 106
18919 DFT Study of Hoogsteen-Type Base Pairs

Authors: N. Amraoui, D. Hammoutene

Abstract:

We have performed a theoretical study using dispersion-corrected Density Functional Methods to evaluate a variety of artificial nucleobases as candidates for metal-mediated Hoogsteen-type base pairs. We focus on A-M-T Hoogsteen-type base pair with M=Co(II), Ru(I), Ni(I). All calculations are performed using (ADF 09) program. Metal-mediated Hoogsteen-type base pairs are studied as drug candidates, their geometry optimizations are performed at ZORA/TZ2P/BLYP-D level. The molecular geometries and different energies as total energies, coordination energies, Pauli interactions, orbital interactions and electrostatic energies are determined.

Keywords: chemistry, biology, density functional method, orbital interactions

Procedia PDF Downloads 260
18918 Architectural Geometric Shapes That Have Changed the World: Heydar Aliyev Centre vs. the Pyramid of Quéops

Authors: Ayda Kurtulus

Abstract:

Heydar Aliyev Centre and Quéops Pyramid are two contrasting examples of sacred geometry perceived as metaphorical alchemy by linking cosmos and earth. Zaha Hadid’s modern building has a wave-like shape and semi-circular alternations that show fluidity and movement, while The Great Pyramid of Giza is triangular. The centre is reminding of the shape of planets, an attempt to regain the balance lost in the modern-day capitalist world, while the Great Pyramid of Giza represents a vortex of energy that connects heaven and earth, harmony and balance. The sacred geometric shapes link the past and the future through God and Ra, humanism and spiritualism in an architectural evolution continuum, mind and spirit into one. An analysis of two geometrical forms, a semi-circle, and a triangle, were carried out through a comprehensive literature review, indicating that behind the materialistic perceptual beauty of buildings, ancient and contemporary, there are mathematical and sacred geometrical constructions that add value to one superficiality can interpret.

Keywords: architectural shapes, The Great Pyramid of Giza, Heydar Aliyev Centre, sacred geometry, philosophy

Procedia PDF Downloads 77
18917 Progress Towards Optimizing and Standardizing Fiducial Placement Geometry in Prostate, Renal, and Pancreatic Cancer

Authors: Shiva Naidoo, Kristena Yossef, Grimm Jimm, Mirza Wasique, Eric Kemmerer, Joshua Obuch, Anand Mahadevan

Abstract:

Background: Fiducial markers effectively enhance tumor target visibility prior to Stereotactic Body Radiation Therapy or Proton therapy. To streamline clinical practice, fiducial placement guidelines from a robotic radiosurgery vendor were examined with the goals of optimizing and standardizing feasible geometries for each treatment indication. Clinical examples of prostate, renal, and pancreatic cases are presented. Methods: Vendor guidelines (Accuray, Sunnyvale, Ca) suggest implantation of 4–6 fiducials at least 20 mm apart, with at least a 15-degree angular difference between fiducials, within 50 mm or less from the target centroid, to ensure that any potential fiducial motion (e.g., from respiration or abdominal/pelvic pressures) will mimic target motion. Also recommended is that all fiducials can be seen in 45-degree oblique views with no overlap to coincide with the robotic radiosurgery imaging planes. For the prostate, a standardized geometry that meets all these objectives is a 2 cm-by-2 cm square in the coronal plane. The transperineal implant of two pairs of preloaded tandem fiducials makes the 2 cm-by-2 cm square geometry clinically feasible. This technique may be applied for renal cancer, except repositioned in a sagittal plane, with the retroperitoneal placement of the fiducials into the tumor. Pancreatic fiducial placement via endoscopic ultrasound (EUS) is technically more challenging, as fiducial placement is operator-dependent, and lesion access may be limited by adjacent vasculature, tumor location, or restricted mobility of the EUS probe in the duodenum. Fluoroscopically assisted fiducial placement during EUS can help ensure fiducial markers are deployed with optimal geometry and visualization. Results: Among the first 22 fiducial cases on a newly installed robotic radiosurgery system, live x-ray images for all nine prostatic cases had excellent fiducial visualization at the treatment console. Renal and pancreatic fiducials were not as clearly visible due to difficult target access and smaller caliber insertion needle/fiducial usage. The geometry of the first prostate case was used to ensure accurate geometric marker placement for the remaining 8 cases. Initially, some of the renal and pancreatic fiducials were closer than the 20 mm recommendation, and interactive feedback with the proceduralists led to subsequent fiducials being too far to the edge of the tumor. Further feedback and discussion of all cases are being used to help guide standardized geometries and achieve ideal fiducial placement. Conclusion: The ideal tradeoffs of fiducial visibility versus the thinnest possible gauge needle to avoid complications needs to be systematically optimized among all patients, particularly in regards to body habitus. Multidisciplinary collaboration among proceduralists and radiation oncologists can lead to improved outcomes.

Keywords: fiducial, prostate cancer, renal cancer, pancreatic cancer, radiotherapy

Procedia PDF Downloads 66
18916 Practical Guide To Design Dynamic Block-Type Shallow Foundation Supporting Vibrating Machine

Authors: Dodi Ikhsanshaleh

Abstract:

When subjected to dynamic load, foundation oscillates in the way that depends on the soil behaviour, the geometry and inertia of the foundation and the dynamic exctation. The practical guideline to analysis block-type foundation excitated by dynamic load from vibrating machine is presented. The analysis use Lumped Mass Parameter Method to express dynamic properties such as stiffness and damping of soil. The numerical examples are performed on design block-type foundation supporting gas turbine compressor which is important equipment package in gas processing plant

Keywords: block foundation, dynamic load, lumped mass parameter

Procedia PDF Downloads 460
18915 Improving the Frequency Response of a Circular Dual-Mode Resonator with a Reconfigurable Bandwidth

Authors: Muhammad Haitham Albahnassi, Adnan Malki, Shokri Almekdad

Abstract:

In this paper, a method for reconfiguring bandwidth in a circular dual-mode resonator is presented. The method concerns the optimized geometry of a structure that may be used to host the tuning elements, which are typically RF (Radio Frequency) switches. The tuning elements themselves, and their performance during tuning, are not the focus of this paper. The designed resonator is able to reconfigure its fractional bandwidth by adjusting the inter-coupling level between the degenerate modes, while at the same time improving its response by adjusting the external-coupling level and keeping the center frequency fixed. The inter-coupling level has been adjusted by changing the dimensions of the perturbation element, while the external-coupling level has been adjusted by changing one of the feeder dimensions. The design was arrived at via optimization. Agreeing simulation and measurement results of the designed and implemented filters showed good improvements in return loss values and the stability of the center frequency.

Keywords: dual-mode resonators, perturbation theory, reconfigurable filters, software defined radio, cognitine radio

Procedia PDF Downloads 126
18914 Microstructural and Mechanical Characterization of a 16MND5 Steel Manufactured by Innovative WAAM SAW Process

Authors: F. Villaret, I. Jacot, Y. Shen, Z. Kong, T. XU, Y. Wang, D. Lu

Abstract:

Wire Arc Additive Manufacturing (WAAM) allows the rapid production of large, homogeneous parts with complex geometry. However, in the nuclear field, parts can reach dimensions of ten to a hundred tons. In this case, the usual WAAM TIG or CMT processes do not have sufficient deposition rates to consider the manufacture of parts of such dimensions within a reasonable time. The submerged arc welding process (SAW, Submerged Arc Welding) allows much higher deposition rates. Although there are very few references to this process for additive manufacturing in the literature, it has been used for a long time for the welding and coating of nuclear power plant vessels, so this process is well-known and mastered as a welding process. This study proposes to evaluate the SAW process as an additive manufacturing technique by taking as an example a low-alloy steel of type 16MND5. In the first step, a parametric study allowed the evaluation of the effect of the different parameters and the deposition rate on the geometry of the beads and their microstructure. Larger parts were also fabricated and characterized by metallography and mechanical tests (tensile, impact, toughness). The effect of different heat treatments on the microstructure is also studied.

Keywords: WAAM, low alloy steel, submerged arc, caracterization

Procedia PDF Downloads 53
18913 Secrecy Analysis in Downlink Cellular Networks in the Presence of D2D Pairs and Hardware Impairment

Authors: Mahdi Rahimi, Mohammad Mahdi Mojahedian, Mohammad Reza Aref

Abstract:

In this paper, a cellular communication scenario with a transmitter and an authorized user is considered to analyze its secrecy in the face of eavesdroppers and the interferences propagated unintentionally through the communication network. It is also assumed that some D2D pairs and eavesdroppers are randomly located in the cell. Assuming hardware impairment, perfect connection probability is analytically calculated, and upper bound is provided for the secrecy outage probability. In addition, a method based on random activation of D2Ds is proposed to improve network security. Finally, the analytical results are verified by simulations.

Keywords: physical layer security, stochastic geometry, device-to-device, hardware impairment

Procedia PDF Downloads 141
18912 Improving the Efficiency of a High Pressure Turbine by Using Non-Axisymmetric Endwall: A Comparison of Two Optimization Algorithms

Authors: Abdul Rehman, Bo Liu

Abstract:

Axial flow turbines are commonly designed with high loads that generate strong secondary flows and result in high secondary losses. These losses contribute to almost 30% to 50% of the total losses. Non-axisymmetric endwall profiling is one of the passive control technique to reduce the secondary flow loss. In this paper, the non-axisymmetric endwall profile construction and optimization for the stator endwalls are presented to improve the efficiency of a high pressure turbine. The commercial code NUMECA Fine/ Design3D coupled with Fine/Turbo was used for the numerical investigation, design of experiments and the optimization. All the flow simulations were conducted by using steady RANS and Spalart-Allmaras as a turbulence model. The non-axisymmetric endwalls of stator hub and shroud were created by using the perturbation law based on Bezier Curves. Each cut having multiple control points was supposed to be created along the virtual streamlines in the blade channel. For the design of experiments, each sample was arbitrarily generated based on values automatically chosen for the control points defined during parameterization. The Optimization was achieved by using two algorithms i.e. the stochastic algorithm and gradient-based algorithm. For the stochastic algorithm, a genetic algorithm based on the artificial neural network was used as an optimization method in order to achieve the global optimum. The evaluation of the successive design iterations was performed using artificial neural network prior to the flow solver. For the second case, the conjugate gradient algorithm with a three dimensional CFD flow solver was used to systematically vary a free-form parameterization of the endwall. This method is efficient and less time to consume as it requires derivative information of the objective function. The objective function was to maximize the isentropic efficiency of the turbine by keeping the mass flow rate as constant. The performance was quantified by using a multi-objective function. Other than these two classifications of the optimization methods, there were four optimizations cases i.e. the hub only, the shroud only, and the combination of hub and shroud. For the fourth case, the shroud endwall was optimized by using the optimized hub endwall geometry. The hub optimization resulted in an increase in the efficiency due to more homogenous inlet conditions for the rotor. The adverse pressure gradient was reduced but the total pressure loss in the vicinity of the hub was increased. The shroud optimization resulted in an increase in efficiency, total pressure loss and entropy were reduced. The combination of hub and shroud did not show overwhelming results which were achieved for the individual cases of the hub and the shroud. This may be caused by fact that there were too many control variables. The fourth case of optimization showed the best result because optimized hub was used as an initial geometry to optimize the shroud. The efficiency was increased more than the individual cases of optimization with a mass flow rate equal to the baseline design of the turbine. The results of artificial neural network and conjugate gradient method were compared.

Keywords: artificial neural network, axial turbine, conjugate gradient method, non-axisymmetric endwall, optimization

Procedia PDF Downloads 203
18911 Automated Ultrasound Carotid Artery Image Segmentation Using Curvelet Threshold Decomposition

Authors: Latha Subbiah, Dhanalakshmi Samiappan

Abstract:

In this paper, we propose denoising Common Carotid Artery (CCA) B mode ultrasound images by a decomposition approach to curvelet thresholding and automatic segmentation of the intima media thickness and adventitia boundary. By decomposition, the local geometry of the image, its direction of gradients are well preserved. The components are combined into a single vector valued function, thus removes noise patches. Double threshold is applied to inherently remove speckle noise in the image. The denoised image is segmented by active contour without specifying seed points. Combined with level set theory, they provide sub regions with continuous boundaries. The deformable contours match to the shapes and motion of objects in the images. A curve or a surface under constraints is developed from the image with the goal that it is pulled into the necessary features of the image. Region based and boundary based information are integrated to achieve the contour. The method treats the multiplicative speckle noise in objective and subjective quality measurements and thus leads to better-segmented results. The proposed denoising method gives better performance metrics compared with other state of art denoising algorithms.

Keywords: curvelet, decomposition, levelset, ultrasound

Procedia PDF Downloads 309
18910 Anti-Gravity to Neo-Concretism: The Epodic Spaces of Non-Objective Art

Authors: Alexandra Kennedy

Abstract:

Making use of the notion of ‘epodic spaces’ this paper presents a reconsideration of non-objective art practices, proposing alternatives to established materialist, formalist, process-based conceptualist approaches to such work. In his Neo-Concrete Manifesto (1959) Ferreira Gullar (1930-2016) sought to create a distinction between various forms of non-objective art. He distinguished the ‘geometric’ arts of neoplasticism, constructivism, and suprematism – which he described as ‘dangerously acute rationalism’ – from other non-objective practices. These alternatives, he proposed, have an expressive potential lacking in the former and this formed the basis for their categorisation as neo-concrete. Gullar prioritized the phenomenological over the rational, with an emphasis on the role of the spectator (a key concept of minimalism). Gullar highlighted the central role of sensual experience, colour and the poetic in such work. In the early twentieth century, Russian Cosmism – an esoteric philosophical movement – was highly influential on Russian avant-garde artists and can account for suprematist artists’ interest in, and approach to, planar geometry and four-dimensional space as demonstrated in the abstract paintings of Kasimir Malevich (1879-1935). Nikolai Fyodorov (1823-1903) promoted the idea of anti-gravity and cosmic space as the field for artistic activity. The artist and writer Kuzma Petrov-Vodkin (1878-1939) wrote on the concept of Euclidean space, the overcoming of such rational conceptions of space and the breaking free from the gravitational field and the earth’s sphere. These imaginary spaces, which also invoke a bodily experience, present a poetic dimension to the work of the suprematists. It is a dimension that arguably aligns more with Gullar’s formulation of his neo-concrete rather than that of his alignment of Suprematism with rationalism. While found in experiments with planar geometry, the interest in forms suggestive of an experience of breaking free–both physically from the earth and conceptually from rational, mathematical space (in a pre-occupation with non-Euclidean space and anti-geometry) and in their engagement with the spatial properties of colour, Suprematism presents itself as imaginatively epodic. The paper discusses both historical and contemporary non-objective practices in this context, drawing attention to the manner in which the category of the non-objective is used to categorise art works which are, arguably, qualitatively different.

Keywords: anti-gravity, neo-concrete, non-Euclidian geometry, non-objective painting

Procedia PDF Downloads 147
18909 3D Simulation of the Twin-Aperture IRON Superconducting Quadrupole for Charm-Tau Factory

Authors: K. K. Riabchenko, T. V Rybitskaya, A. A. Starostenko

Abstract:

Sper Charm-Tau Factory is a double ring e+e- collider to be operated in the center-of-mass energy range from 2 to 6 GeV, with a peak luminosity of about 1035 cm-2s-1 (Crab Waist collision) and with longitudinally polarized electrons at the IP (interaction point). One of the important elements of the cτ-factory is the superconducting two-aperture quadrupole of the final focus. It was decided to make a full-scale prototype quadrupole. The main objectives of our study included: 1) 3D modeling of the quadrupole in the Opera program, 2) Optimization of the geometry of the quadrupole lens, 3) Study of the influence of magnetic properties and geometry of a quadrupole on integral harmonics. In addition to this, the ways of producing unwanted harmonics have been studied. In the course of this work, a 3D model of a two-aperture iron superconducting quadrupole lens was created. A three-dimensional simulation of the magnetic field was performed, and the geometrical parameters of the lens were selected. Calculations helped to find sources of possible errors and methods for correcting unwanted harmonics. In addition to this, calculations show that there are no obstacles to the production of a prototype lens.

Keywords: super cτ-factory, final focus, twin aperture quadrupole lens, integral harmonics

Procedia PDF Downloads 101
18908 A Supramolecular Cocrystal of 2-Amino-4-Chloro-6-Methylpyrimidine with 4-Methylbenzoic Acid: Synthesis, Structural Determinations and Quantum Chemical Investigations

Authors: Nuridayanti Che Khalib, Kaliyaperumal Thanigaimani, Suhana Arshad, Ibrahim Abdul Razak

Abstract:

The 1:1 co-crystal of 2-amino-4-chloro-6-methylpyrimidine (2A4C6MP) with 4-methylbenzoic acid (4MBA) (I) has been prepared by slow evaporation method in methanol, which was crystallized in monoclinic C2/c space group, Z = 8, a = 28.431 (2) Å, b = 7.3098 (5) Å, c = 14.2622 (10) Å, and β = 109.618 (3)°. The presence of unionized –COOH functional group in co-crystal I was identified both by spectral methods (1H and 13C NMR, FTIR) and X-ray diffraction structural analysis. The 2A4C6MP molecule interact with the carboxylic group of the respective 4MBA molecule through N—H⋯O and O—H⋯N hydrogen bonds, forming a cyclic hydrogen –bonded motif R22(8). The crystal structure was stabilized by Npyrimidine-H⋯O=C and C=O-H⋯Npyrimidine types hydrogen bonding interactions. Theoretical investigations have been computed by HF and density function (B3LYP) method with 6-311+G(d,p) basis set. The vibrational frequencies together with 1H and 13C NMR chemical shifts have been calculated on the fully optimized geometry of co-crystal I. Theoretical calculations are in good agreement with the experimental results. Solvent-free formation of this co-crystal I is confirmed by powder X-ray diffraction analysis.

Keywords: supramolecular co-crystal, 2-amino-4-chloro-6-methylpyrimidine, Harthree-Fock and DFT studies, spectroscopic analysis

Procedia PDF Downloads 272
18907 Opposed Piston Engine Crankshaft Strength Calculation Using Finite Element Method

Authors: Konrad Pietrykowski, Michał Gęca, Michał Bialy

Abstract:

The paper presents the results of the crankshaft strength simulation. The crankshaft was taken from the opposed piston engine. Calculations were made using finite element method (FEM) in Abaqus software. This program allows to perform strength tests of individual machine parts as well as their assemblies. The crankshaft that was used in the calculations will be used in the two-stroke aviation research aircraft engine. The assumptions for the calculations were obtained from the AVL Boost software, from one-dimensional engine cycle model and from the multibody model using the method developed in the MSC Adams software. The research engine will be equipped with 3 combustion chambers and two crankshafts. In order to shorten the calculation time, only one crankcase analysis was performed. The cut of the shaft has been selected with the greatest forces resulting from the engine operation. Calculations were made for two cases. For maximum piston force when maximum bending load occurs and for the maximum torque. Cast iron material was adopted. For this material, Poisson's number, density, and Young's modulus were determined. The computational grid contained of 1,977,473 Tet elements. This type of elements was chosen because of the complex design of the crankshaft. Results are presented in the form of stress distributions maps and displacements on the surface and inside the geometry of the shaft. The results show the places of tension stresses, however, no stresses are exceeded at any place. The shaft can thus be applied to the engine in its present form. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK 'PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: aircraft diesel engine, crankshaft, finite element method, two-stroke engine

Procedia PDF Downloads 158
18906 Investigation on the Energy Impact of Spatial Geometry in a Residential Building Using Building Information Modeling Technology

Authors: Shashank. S. Bagane, H. N. Rajendra Prasad

Abstract:

Building Information Modeling (BIM) has currently developed into a potent solution. The consistent development of BIM technology in the sphere of Architecture, Engineering, and Construction (AEC) industry has enhanced the effectiveness of construction and decision making. However, aggrandized global warming and energy crisis has impacted on building energy analysis. It is now becoming an important factor to be considered in the AEC industry. Amalgamating energy analysis in the planning and design phase of a structure has become a necessity. In the current construction industry, estimating energy usage and reducing its footprint is of high priority. The construction industry is giving more prominence to sustainability alongside energy efficiency. This demand is compelling the designers, planners, and engineers to inspect the sustainable performance throughout the building's life cycle. The current study primarily focuses on energy consumption, space arrangement, and spatial geometry of a residential building. Most commonly residential structures in India are constructed considering Vastu Shastra. Vastu designs are intended to integrate architecture with nature and utilizing geometric patterns, symmetry, and directional alignments. In the current study, a residential brick masonry structure is considered for BIM analysis, Architectural model of the structure will be created using Revit software, later the orientation and spatial arrangement will be finalized based on Vastu principles. Furthermore, the structure will be investigated for the impact of building orientation and spatial arrangements on energy using Green Building Studio software. Based on the BIM analysis of the structure, energy consumption of subsequent building orientations will be understood. A well-orientated building having good spatial arrangement can save a considerable amount of energy throughout its life cycle and reduces the need for heating and lighting which will prove to diminish energy usage and improve the energy efficiency of the residential building.

Keywords: building information modeling, energy impact, spatial geometry, vastu

Procedia PDF Downloads 128
18905 Biomimetics and Additive Manufacturing for Industrial Design Innovation

Authors: Axel Thallemer, Martin Danzer, Dominik Diensthuber, Aleksandar Kostadinov, Bernhard Rogler

Abstract:

Nature has always inspired the creative mind, to a lesser or greater extent. Introduced around the 1950s, Biomimetics served as a systematic method to treat the natural world as a ‘pattern book’ for technical solutions with the aim to create innovative products. Unfortunately, this technique is prone to failure when performed as a mere reverse engineering of a natural system or appearance. Contrary to that, a solution which looks at the principles of a natural design, promises a better outcome. One such example is the here presented case study, which shows the design process of three distinctive grippers. The devices have biomimetic properties on two levels. Firstly, they use a kinematic chain found in beaks and secondly, they have a biomimetic structural geometry, which was realized using additive manufacturing. In a next step, the manufacturing method was evaluated to estimate its efficiency for commercial production. The results show that the fabrication procedure is still in its early stage and thus it is not able to guarantee satisfactory results. To summarize the study, we claim that a novel solution can be derived using principles from nature, however, for the solution to be actualized successfully, there are parameters which are beyond reach for designers. Nonetheless, industrial designers can contribute to product innovation using biomimetics.

Keywords: biomimetics, innovation, design process, additive manufacturing

Procedia PDF Downloads 173
18904 Ghost Frequency Noise Reduction through Displacement Deviation Analysis

Authors: Paua Ketan, Bhagate Rajkumar, Adiga Ganesh, M. Kiran

Abstract:

Low gear noise is an important sound quality feature in modern passenger cars. Annoying gear noise from the gearbox is influenced by the gear design, gearbox shaft layout, manufacturing deviations in the components, assembly errors and the mounting arrangement of the complete gearbox. Geometrical deviations in the form of profile and lead errors are often present on the flanks of the inspected gears. Ghost frequencies of a gear are very challenging to identify in standard gear measurement and analysis process due to small wavelengths involved. In this paper, gear whine noise occurring at non-integral multiples of gear mesh frequency of passenger car gearbox is investigated and the root cause is identified using the displacement deviation analysis (DDA) method. DDA method is applied to identify ghost frequency excitations on the flanks of gears arising out of generation grinding. Frequency identified through DDA correlated with the frequency of vibration and noise on the end-of-line machine as well as vehicle level measurements. With the application of DDA method along with standard lead profile measurement, gears with ghost frequency geometry deviations were identified on the production line to eliminate defective parts and thereby eliminate ghost frequency noise from a vehicle. Further, displacement deviation analysis can be used in conjunction with the manufacturing process simulation to arrive at suitable countermeasures for arresting the ghost frequency.

Keywords: displacement deviation analysis, gear whine, ghost frequency, sound quality

Procedia PDF Downloads 110
18903 Investigation of Microstructure and Mechanical Properties of Friction Stir Welded Dissimilar Aluminium Alloys

Authors: Gurpreet Singh, Hazoor Singh, Kulbir Singh Sandhu

Abstract:

Friction Stir Welding Process emerged as promising solid-state welding and eliminates various welding defects like cracks and porosity in joining of dissimilar aluminum alloys. In the present research, Friction Stir Welding (FSW) is carried out on dissimilar aluminum alloys 2000 series and 6000 series this combination of alloys are highly used in automobile and aerospace industry due to their good strength to weight ratio, mechanical, and corrosion properties. The joints characterized by applying various destructive and non-destructive tests. Three critical welding parameters were considered i.e. Tool Rotation speed, Transverse speed, and Tool Geometry. The effective range of tool rotation speed from 1200-1800 rpm and transverse speed from 60-240 mm/min and tool geometry was studied. The two-different difficult to weld alloys were successfully welded. All the samples showed different microstructure with different set of welding parameters. It has been revealed with microstructure scans that grain refinement plays a crucial role in mechanical properties.

Keywords: aluminum alloys, friction stir welding, mechanical properties, microstructure

Procedia PDF Downloads 245
18902 Studies on Pre-ignition Chamber Dynamics of Solid Rockets with Different Port Geometries

Authors: S. Vivek, Sharad Sharan, R. Arvind, D. V. Praveen, J. Vigneshwar, S. Ajith, V. R. Sanal Kumar

Abstract:

In this paper numerical studies have been carried out to examine the starting transient flow features of high-performance solid propellant rocket motors with different port geometries but with same propellant loading density. Numerical computations have been carried out using a 3D SST k-ω turbulence model. This code solves standard k-omega turbulence equations with shear flow corrections using a coupled second order implicit unsteady formulation. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations are employed. We have observed from the numerical results that in solid rocket motors with highly loaded propellants having divergent port geometry the hot igniter gases can create pre-ignition thrust oscillations due to flow unsteadiness and recirculation. Under these conditions the convective flux to the surface of the propellant will be enhanced, which will create reattachment point far downstream of the transition region and it will create a situation for secondary ignition and formation of multiple-flame fronts. As a result the effective time required for the complete burning surface area to be ignited comes down drastically giving rise to a high pressurization rate (dp/dt) in the second phase of starting transient. This in effect could lead to starting thrust oscillations and eventually a hard start of the solid rocket motor. We have also observed that the igniter temperature fluctuations will be diminished rapidly and will reach the steady state value faster in the case of solid propellant rocket motors with convergent port than the divergent port irrespective of the igniter total pressure. We have concluded that the thrust oscillations and unexpected thrust spike often observed in solid rockets with non-uniform ports are presumably contributed due to the joint effects of the geometry dependent driving forces, transient burning and the chamber gas dynamics forces. We also concluded that the prudent selection of the port geometry, without altering the propellant loading density, for damping the total temperature fluctuations within the motor is a meaningful objective for the suppression and control of instability and/or pressure/thrust oscillations often observed in solid propellant rocket motors with non-uniform port geometry.

Keywords: ignition transient, solid rockets, starting transient, thrust transient

Procedia PDF Downloads 419
18901 3D Model Completion Based on Similarity Search with Slim-Tree

Authors: Alexis Aldo Mendoza Villarroel, Ademir Clemente Villena Zevallos, Cristian Jose Lopez Del Alamo

Abstract:

With the advancement of technology it is now possible to scan entire objects and obtain their digital representation by using point clouds or polygon meshes. However, some objects may be broken or have missing parts; thus, several methods focused on this problem have been proposed based on Geometric Deep Learning, such as GCNN, ACNN, PointNet, among others. In this article an approach from a different paradigm is proposed, using metric data structures to index global descriptors in the spectral domain and allow the recovery of a set of similar models in polynomial time; to later use the Iterative Close Point algorithm and recover the parts of the incomplete model using the geometry and topology of the model with less Hausdorff distance.

Keywords: 3D reconstruction method, point cloud completion, shape completion, similarity search

Procedia PDF Downloads 95
18900 RPM-Synchronous Non-Circular Grinding: An Approach to Enhance Efficiency in Grinding of Non-Circular Workpieces

Authors: Matthias Steffan, Franz Haas

Abstract:

The production process grinding is one of the latest steps in a value-added manufacturing chain. Within this step, workpiece geometry and surface roughness are determined. Up to this process stage, considerable costs and energy have already been spent on components. According to the current state of the art, therefore, large safety reserves are calculated in order to guarantee a process capability. Especially for non-circular grinding, this fact leads to considerable losses of process efficiency. With present technology, various non-circular geometries on a workpiece must be grinded subsequently in an oscillating process where X- and Q-axis of the machine are coupled. With the approach of RPM-Synchronous Noncircular Grinding, such workpieces can be machined in an ordinary plung grinding process. Therefore, the workpieces and the grinding wheels revolutionary rate are in a fixed ratio. A non-circular grinding wheel is used to transfer its geometry onto the workpiece. The authors use a worldwide unique machine tool that was especially designed for this technology. Highest revolution rates on the workpiece spindle (up to 4500 rpm) are mandatory for the success of this grinding process. This grinding approach is performed in a two-step process. For roughing, a highly porous vitrified bonded grinding wheel with medium grain size is used. It ensures high specific material removal rates for efficiently producing the non-circular geometry on the workpiece. This process step is adapted by a force control algorithm, which uses acquired data from a three-component force sensor located in the dead centre of the tailstock. For finishing, a grinding wheel with a fine grain size is used. Roughing and finishing are performed consecutively among the same clamping of the workpiece with two locally separated grinding spindles. The approach of RPM-Synchronous Noncircular Grinding shows great efficiency enhancement in non-circular grinding. For the first time, three-dimensional non-circular shapes can be grinded that opens up various fields of application. Especially automotive industries show big interest in the emerging trend in finishing machining.

Keywords: efficiency enhancement, finishing machining, non-circular grinding, rpm-synchronous grinding

Procedia PDF Downloads 259
18899 Using Tilted Façade to Reduce Thermal Discomfort in a UK Passivhaus Dwelling for a Warming Climate

Authors: Yahya Lavafpour, Steve Sharples

Abstract:

This study investigated the potential negative impacts of future UK climate change on dwellings. In particular, the risk of overheating was considered for a Passivhaus dwelling in London. The study used dynamic simulation modelling software to investigate the potential use of building geometry to control current and future overheating risks in the dwelling for London climate. Specifically, the focus was on the optimum inclination of a south façade to make use of the building’s shape to self-protect itself. A range of different inclined façades were examined to test their effectiveness in reducing the overheating risk. The research found that implementing a 115° tilted façade could completely eliminate the risk of overheating in current climate, but with some consequence for natural ventilation and daylighting. Future overheating was significantly reduced by the tilted façade. However, geometric considerations could not eradicate completely the risk of overheating particularly by the 2080s. The study also used CFD modelling and sensitivity analysis to investigate the effect of the façade geometry on the wind pressure distributions on and around the building surface. This was done to assess natural ventilation flows for alternative façade inclinations.

Keywords: climate change, tilt façade, thermal comfort, passivhaus, overheating

Procedia PDF Downloads 734
18898 Prediction of the Torsional Vibration Characteristics of a Rotor-Shaft System Using Its Scale Model and Scaling Laws

Authors: Jia-Jang Wu

Abstract:

This paper presents the scaling laws that provide the criteria of geometry and dynamic similitude between the full-size rotor-shaft system and its scale model, and can be used to predict the torsional vibration characteristics of the full-size rotor-shaft system by manipulating the corresponding data of its scale model. The scaling factors, which play fundamental roles in predicting the geometry and dynamic relationships between the full-size rotor-shaft system and its scale model, for torsional free vibration problems between scale and full-size rotor-shaft systems are firstly obtained from the equation of motion of torsional free vibration. Then, the scaling factor of external force (i.e., torque) required for the torsional forced vibration problems is determined based on the Newton’s second law. Numerical results show that the torsional free and forced vibration characteristics of a full-size rotor-shaft system can be accurately predicted from those of its scale models by using the foregoing scaling factors. For this reason, it is believed that the presented approach will be significant for investigating the relevant phenomenon in the scale model tests.

Keywords: torsional vibration, full-size model, scale model, scaling laws

Procedia PDF Downloads 369
18897 Improving the Accuracy of Stress Intensity Factors Obtained by Scaled Boundary Finite Element Method on Hybrid Quadtree Meshes

Authors: Adrian W. Egger, Savvas P. Triantafyllou, Eleni N. Chatzi

Abstract:

The scaled boundary finite element method (SBFEM) is a semi-analytical numerical method, which introduces a scaling center in each element’s domain, thus transitioning from a Cartesian reference frame to one resembling polar coordinates. Consequently, an analytical solution is achieved in radial direction, implying that only the boundary need be discretized. The only limitation imposed on the resulting polygonal elements is that they remain star-convex. Further arbitrary p- or h-refinement may be applied locally in a mesh. The polygonal nature of SBFEM elements has been exploited in quadtree meshes to alleviate all issues conventionally associated with hanging nodes. Furthermore, since in 2D this results in only 16 possible cell configurations, these are precomputed in order to accelerate the forward analysis significantly. Any cells, which are clipped to accommodate the domain geometry, must be computed conventionally. However, since SBFEM permits polygonal elements, significantly coarser meshes at comparable accuracy levels are obtained when compared with conventional quadtree analysis, further increasing the computational efficiency of this scheme. The generalized stress intensity factors (gSIFs) are computed by exploiting the semi-analytical solution in radial direction. This is initiated by placing the scaling center of the element containing the crack at the crack tip. Taking an analytical limit of this element’s stress field as it approaches the crack tip, delivers an expression for the singular stress field. By applying the problem specific boundary conditions, the geometry correction factor is obtained, and the gSIFs are then evaluated based on their formal definition. Since the SBFEM solution is constructed as a power series, not unlike mode superposition in FEM, the two modes contributing to the singular response of the element can be easily identified in post-processing. Compared to the extended finite element method (XFEM) this approach is highly convenient, since neither enrichment terms nor a priori knowledge of the singularity is required. Computation of the gSIFs by SBFEM permits exceptional accuracy, however, when combined with hybrid quadtrees employing linear elements, this does not always hold. Nevertheless, it has been shown that crack propagation schemes are highly effective even given very coarse discretization since they only rely on the ratio of mode one to mode two gSIFs. The absolute values of the gSIFs may still be subject to large errors. Hence, we propose a post-processing scheme, which minimizes the error resulting from the approximation space of the cracked element, thus limiting the error in the gSIFs to the discretization error of the quadtree mesh. This is achieved by h- and/or p-refinement of the cracked element, which elevates the amount of modes present in the solution. The resulting numerical description of the element is highly accurate, with the main error source now stemming from its boundary displacement solution. Numerical examples show that this post-processing procedure can significantly improve the accuracy of the computed gSIFs with negligible computational cost even on coarse meshes resulting from hybrid quadtrees.

Keywords: linear elastic fracture mechanics, generalized stress intensity factors, scaled finite element method, hybrid quadtrees

Procedia PDF Downloads 114
18896 Predicting the Uniaxial Strength Distribution of Brittle Materials Based on a Uniaxial Test

Authors: Benjamin Sonnenreich

Abstract:

Brittle fracture failure probability is best described using a stochastic approach which is based on the 'weakest link concept' and the connection between a microstructure and macroscopic fracture scale. A general theoretical and experimental framework is presented to predict the uniaxial strength distribution according to independent uniaxial test data. The framework takes as input the applied stresses, the geometry, the materials, the defect distributions and the relevant random variables from uniaxial test results and gives as output an overall failure probability that can be used to improve the reliability of practical designs. Additionally, the method facilitates comparisons of strength data from several sources, uniaxial tests, and sample geometries.

Keywords: brittle fracture, strength distribution, uniaxial, weakest link concept

Procedia PDF Downloads 297
18895 Normal Coordinate Analysis, Molecular Structure, Vibrational, Electronic Spectra, and NMR Investigation of 4-Amino-3-Phenyl-1H-1,2,4-Triazole-5(4H)-Thione by Ab Initio HF and DFT Method

Authors: Khaled Bahgat

Abstract:

In the present work, the characterization of 4-Amino-3-phenyl-1H-1,2,4-triazole-5(4H)-thione (APTT) molecule was carried out by quantum chemical method and vibrational spectral techniques. The FT-IR (4000–400 cm_1) and FT-Raman (4000–100 cm_1) spectra of APTT were recorded in solid phase. The UV–Vis absorption spectrum of the APTT was recorded in the range of 200–400 nm. The molecular geometry, harmonic vibrational frequencies and bonding features of APTT in the ground state have been calculated by HF and DFT methods using 6-311++G(d,p) basis set. The complete vibrational frequency assignments were made by normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology (SQMF). The molecular stability and bond strength were investigated by applying the natural bond orbital analysis (NBO) and natural localized molecular orbital (NLMO) analysis. The electronic properties, such as excitation energies, absorption wavelength, HOMO and LUMO energies were performed by time depended DFT (TD-DFT) approach. The 1H and 13C nuclear magnetic resonance chemical shift of the molecule were calculated using the gauge-including atomic orbital (GIAO) method and compared with experimental results. Finally, the calculation results were analyzed to simulate infrared, FT-Raman and UV spectra of the title compound which shows better agreement with observed spectra.

Keywords: 4-amino-3-phenyl-1H-1, 2, 4-triazole-5(4H)-thione, vibrational assignments, normal coordinate analysis, quantum mechanical calculations

Procedia PDF Downloads 442